IzUMi NAKASHIMA Jun-IChi Tamura Shin-Ichi Yasutomi
 *-sturmian words and complexity

Journal de Théorie des Nombres de Bordeaux, tome 15, n 3 (2003), p. 767-804
http://www.numdam.org/item?id=JTNB_2003__15_3_767_0
© Université Bordeaux 1, 2003, tous droits réservés.
L'accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

*-Sturmian words and complexity

par Izumi NAKASHIMA, Jun-ICHi TAMURA et Shin-ICHi YASUTOMI

Résumé. Nous définissons des notions analogues à la complexité $p(n)$ et aux mots Sturmiens qui sont appelées respectivement *complexité $p_{*}(n)$ et mots $*$-Sturmiens. Nous démontrons que la classe des mots $*$-Sturmiens coinncide avec la classe des mots satisfaisant à $p_{*}(n) \leq n+1$ et nous déterminons la structure des mots $*$-Sturmiens. Pour une classe de mots satisfaisant à $p_{*}(n)=$ $n+1$, nous donnons une formule générale et une borne supérieure pour $p(n)$. En utilisant cette formule générale, nous donnons des formules explicites pour $p(n)$ pour certains mots appartenant à cette classe. En général, $p(n)$ peut prendre des valeurs élevées, à savoir $p(n) \geq 2^{n^{1-\epsilon}}$ pour certains mots $*$-Sturmiens. Cependant l'entropie topologique de n'importe quel mot *-Sturmien est nulle.

Abstract. We give analogs of the complexity $p(n)$ and of Sturmian words which are called respectively the $*$-complexity $p_{*}(n)$ and *-Sturmian words. We show that the class of $*$-Sturmian words coincides with the class of words satisfying $p_{*}(n) \leq n+1$, and we determine the structure of $*$-Sturmian words. For a class of words satisfying $p_{*}(n)=n+1$, we give a general formula and an upper bound for $p(n)$. Using this general formula, we give explicit formulae for $p(n)$ for some words belonging to this class. In general, $p(n)$ can take large values, namely, $p(n) \geq 2^{n^{1-\epsilon}}$ holds for some *-Sturmian words; however the topological entropy of any *-Sturmian word is zero.

1. Introduction

We announced results about *-Sturmian words as analogs of Sturmian words in [11]. In this paper, we give proofs for all the results given there together with some additional results. We define some notations. Let L be an alphabet, i.e., a non-empty finite set of letters. We denote by L^{n} the set of all finite words of length n over L, L^{*} denotes the set $\bigcup_{n=0}^{\infty} L^{n}$, where $L^{0}=\{\lambda\}$ and λ is the empty word. $L^{\boldsymbol{N}}$ (resp. $L^{-\boldsymbol{N}}$) is the set of rightsided (resp. left-sided) infinite words over L. We define an equivalence

[^0]relation \sim on the set $L^{\boldsymbol{Z}}$ by: $W_{1} \sim W_{2}$ (where $W_{1}, W_{2} \in L^{\boldsymbol{Z}}$) if there exists an integer y such that
$$
W_{1}(x+y)=W_{2}(x) \quad \text { for all } x \in Z
$$

We mean by a two-sided infinite word over L an element of the set $L^{\boldsymbol{Z}} / \sim$.
We say that $W \in L^{Z} / \sim$ is purely periodic if $W(x+y)=W(x)$ for all $x \in Z$ for some fixed positive integer y. If $W=w_{1} w_{2} \cdots \in L^{N}$ (resp. $W=\cdots w_{-2} w_{-1} \in L^{-\boldsymbol{N}^{\prime}}$) satisfy

$$
\begin{equation*}
w_{i}=w_{i+n} \tag{1.1}
\end{equation*}
$$

for any sufficiently large (resp. small) i with some fixed positive integer n, we say that W is ultimately periodic with period n. The least period n of W is called its fundamental period and for sufficiently large (resp. small) i, the word $w_{i+1} \cdots w_{i+n}$ is also called a fundamental period. Especially, if (1.1) holds for all integer $i>0$ (resp. $i<-n$), we say that W is purely periodic.

For any $W=\cdots w_{i+1} \cdots w_{i+n} \cdots \in L^{\wedge}:=L^{*} \cup L^{\boldsymbol{N}} \cup L^{-\boldsymbol{N}} \cup L^{\boldsymbol{Z}} / \sim$ (where $w_{j} \in L, n \geq 0$), the word $w_{i+1} \cdots w_{i+n}$ is called a subword of W.
Definition 1.1. We define $D(W):=\{V ; V$ is a subword of $W\}$ and $D(n ; W):=D(W) \cap L^{n}(n \geq 0)$.

Definition 1.2. The complexity of a word $W \in L^{\wedge}$ is the function that counts the number of elements of $D(n ; W)$:

$$
p(n)=p(n ; W):=\sharp D(n ; W) .
$$

For $W=\cdots w_{i} \cdots \in L^{\boldsymbol{N}} \cup L^{-N} \cup L^{Z} / \sim$, we say that a subword $w=w_{i+1} \cdots w_{i+n}(n \geq 0)$ of W is a *-subword of W if w occurs infinitely many times in W, i.e.,

$$
w_{i_{j}+1} \cdots w_{i_{j}+n}=w_{i+1} \cdots w_{i+n}
$$

for $i_{1}<i_{2}<\cdots$ (or $\cdots<i_{2}<i_{1}$).
Definition 1.3. We define $D_{*}(W):=\{V ; V$ is a $*$-subword of $W\}$ and $D_{*}(n ; W):=D_{*}(W) \cup L^{n}$.
Definition 1.4. The $*$-complexity of a word $W \in L^{\wedge}$ is the function that counts the number of elements of $D_{*}(n ; W)$:

$$
p_{*}(n)=p_{*}(n ; W):=\sharp D_{*}(n ; W)
$$

In general, $p(n ; W) \geq p_{*}(n ; W)$ holds for all $W \in L^{N} \cup L^{-N} \cup L^{Z} / \sim$. We remark that $p(n ; W)=p_{*}(n ; W)$ holds for billiard words W (also called cutting sequences) of dimension s, which are defined by billiards in the cube of dimension s with totally irrational direction $v \in \boldsymbol{R}^{*}$ (for the definition of these words, see [1] and [3]). This fact follows from Kronecker's theorem
related to the distribution of the sequence $\{v n \bmod 1\}_{n=1,2, \ldots}$. It is well known that billiard words of dimension $s=1$ coincide with Sturmian words defined below with some exceptions (for example, see [8]).

In what follows we assume that $L=\{0,1\}$.
Definition 1.5. A word $W \in L^{N} \cup L^{-N} \cup L^{Z} / \sim$ is Sturmian, if W satisfies

$$
\left||A|_{1}-|B|_{1}\right| \leq 1
$$

for any $A, B \in D(n ; W)$ for all $n \geq 0$, where $|w|_{1}$ denotes the number of occurrences of the symbol 1 appearing in the word $w \in L^{*}, c f$. [10].

Remark 1.1. We should use the term "balanced" instead of "Sturmian" if we followed the usual terminology. Note that the terminology "Sturmian" is used in the recent literature for the words whose complexity function is $p(n)=n+1$; however we follow the terminology given by Morse and Hedlund in $[9,10]$, since they started from Definition 1.5 and showed that any Sturmian word has complexity function $p(n)=n+1$ under a minor condition, and since our results for $*$-Sturmian given in Section 2 will be parallel to their results.

A *-Sturmian word W is defined to be a word satisfying the condition with $D_{*}(n ; W)$ in place of $D(n ; W)$ in the definition above, i.e.,

Definition 1.6. A*-Sturmian word is defined to be a word $W \in L^{\boldsymbol{N}} \cup$ $L^{-N} \cup L^{Z} / \sim$ satisfying

$$
\left||A|_{1}-|B|_{1}\right| \leq 1
$$

for any $A, B \in D_{*}(n ; W)$ for all $n \geq 0$.
*-Sturmian words have been considered by a number of authors (see [4] and its references). There are some classical and well-known results on Sturmian words and words satisfying $p(n) \leq n+1$ given by Morse, Hedlund and Coven, Hedlund. It is known that $p\left(n_{0} ; W\right) \leq n_{0}\left(W \in L^{N}\right)$ for some n_{0} implies that W is ultimately periodic and any $W \in L^{Z} / \sim$ with $p\left(n_{0} ; W\right) \leq n_{0}$ for some n_{0} is always purely periodic (see [9]). The class of words satisfying $p(n) \leq n+1$ coincides with the class of Sturmian words with some explicit exceptions, cf. Theorems 2.1, 2.4, 2.5 below. Furthermore the authors above give a concrete description of Sturmian words, cf. Theorems 2.2, 2.3.

In this paper, we show that the class of $*$-Sturmian words coincides with the class of words satisfying $p_{*}(n) \leq n+1$, cf. Theorems $2.6,2.8$. We also describe the structure of $*$-Sturmian words in a constructive manner. In [13] Yasutomi introduced super Bernoulli sequences as a generalization of Sturmian words. Super Bernoulli sequences coincide with $*$-Sturmian
words in specific cases. But in [13] super Bernoulli sequences are not given in a constructive manner.

For completeness, we give our results (Theorems 2.6-2.11) together with classical results (Theorems 2.1-2.5) in Section 2. In Section 3, we give the proofs of Theorems 2.6-2.11.

For a class of words given by

$$
W=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \cdots, \quad 0<a_{1}<a_{2}<a_{3} \cdots,
$$

which satisfy $p_{*}(n ; W)=n+1$, we give a general formula for $p(n ; W)$ and an upper bound: $p(n ; W) \leq \frac{n^{2}}{4}+\frac{n}{2}+\frac{17}{8}+\frac{(-1)^{n+1}}{8}-\left\lfloor\left(\frac{3}{4}+\frac{n}{4}\right)^{-1}\right\rfloor(n \geq 0)$, cf. Theorems 4.1, 4.2 in Section 4. Using the general formula, we give explicit formulae $p(n ; W)=k n+c$ for some words belonging to this class and sufficiently large n, where k and c are constants, cf. Theorem 4.4. Also, using the general formula, there exist a word W and constants c_{1} and c_{2}, such that $c_{1} n^{1+1 / \alpha}<p(n ; W)<c_{2} n^{1+1 / \alpha}$ for any given $\alpha \geq 1$, cf. Theorem 4.3.

For a more general class of words given by (4.11), we can also give a general formula for $p(n ; W)$, cf. Theorem 4.5 in Section 4.

In general, for W satisfying $p_{*}(n ; W) \leq n+1, p(n ; W)$ can take large values, namely, $p(n ; W) \geq 2^{n^{1-\epsilon}}$ holds for some W, cf. Theorem 5.2. On the other hand, any *-Sturmian word W is deterministic, i.e., the topological entropy $\lim _{n \rightarrow \infty} \frac{\log p(n ; W)}{n}$ of W is zero, cf. Theorem 5.1. We give Theorems 5.1-5.2 together with their proofs in Section 5.

2. Characterization of Sturmian words and *-Sturmian words

2.1. Sturmian words. We put

$$
\sigma(n ; W):=\max _{A \in D(n ; W)}|A|_{1} \quad \text { and } \quad \sigma^{\prime}(n ; W):=\min _{A \in D(n ; W)}|A|_{1} \quad\left(W \in L^{\wedge}\right) .
$$

Theorem 2.1 (Morse and Hedlund [10]). If W is a one-sided or two-sided infinite Sturmian word, then $p(n ; W) \leq n+1$, and the density $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n, W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n, W)}{n}$ exists.

Now, we classify one-sided or two-sided infinite Sturmian words as follows:
(Type I) : α is irrational,
(Type II) : α is rational and W is purely periodic,
(Type III) : α is rational and W is not purely periodic.
It is known that each case can occur. The words of Type III are referred to as skew Sturmian words.

Definition 2.1. Let $0 \leq \alpha \leq 1$ and β be real numbers. We define $G(n ; \alpha, \beta):=\lfloor(n+1) \alpha+\beta\rfloor-\lfloor n \alpha+\beta\rfloor$ and $G^{\prime}(n ; \alpha, \beta):=\lceil(n+1) \alpha+$ $\beta\rceil-\lceil n \alpha+\beta\rceil$, where $\lfloor x\rfloor$ is the greatest integer which does not exceed x and $\lceil x\rceil$ is the least integer which is not smaller than x. Obviously $G(n ; \alpha, \beta)$, $G^{\prime}(n ; \alpha, \beta) \in\{0,1\}$. A word $G(\alpha, \beta)$ is defined by

$$
G(\alpha, \beta):=G(0 ; \alpha, \beta) G(1 ; \alpha, \beta) G(2 ; \alpha, \beta) \cdots G(n ; \alpha, \beta) \cdots
$$

Similarly, $G^{\prime}(\alpha, \beta)$ is defined by using $G^{\prime}(n ; \alpha, \beta)$. We set $G(\alpha):=G(\alpha, 0)$, $G^{\prime}(\alpha):=G^{\prime}(\alpha, 0), G(n ; \alpha):=G(n ; \alpha, 0)$ and $G^{\prime}(n ; \alpha):=G^{\prime}(n ; \alpha, 0)$.

If α is rational, $G(\alpha, \beta)$ is obviously purely periodic.
Definition 2.2. Let α be a rational number with $0 \leq \alpha \leq 1$. For $\alpha \neq 0,1$ we define $S(\alpha), S^{\prime}(\alpha) \in L^{Z} / \sim$ as follows:

$$
S(\alpha)=\ldots s(\alpha)_{-1} s(\alpha)_{0} \ldots s(\alpha)_{n} \ldots
$$

where

$$
s(\alpha)_{n}= \begin{cases}\lceil(n+1) \alpha\rceil-\lceil n \alpha\rceil & \text { if }(n+1) \alpha<1 \\ \lfloor(n+1) \alpha\rfloor-\lfloor n \alpha\rfloor & \text { if }(n+1) \alpha \geq 1\end{cases}
$$

and

$$
S^{\prime}(\alpha)=\ldots s^{\prime}(\alpha)_{-1} s^{\prime}(\alpha)_{0} \ldots s^{\prime}(\alpha)_{n} \ldots
$$

where

$$
s^{\prime}(\alpha)_{n}= \begin{cases}\lfloor(n+1) \alpha\rfloor-\lfloor n \alpha\rfloor & \text { if }(n+1) \alpha<1 \\ \lceil(n+1) \alpha\rceil-\lceil n \alpha\rceil & \text { if }(n+1) \alpha \geq 1\end{cases}
$$

For $\alpha=0,1$ we define $S(0), S^{\prime}(1)$ by

$$
\begin{aligned}
S(0) & =\ldots s(0)_{-1} s(0)_{0} \ldots s(0)_{n} \ldots \\
S^{\prime}(1) & =\ldots s(1)_{-1} s(1)_{0} \ldots s(1)_{n} \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
s(0)_{n} & = \begin{cases}0 & \text { if } n \neq 0 \\
1 & \text { if } n=0\end{cases} \\
s^{\prime}(1)_{n} & = \begin{cases}1 & \text { if } n \neq 0 \\
0 & \text { if } n=0\end{cases}
\end{aligned}
$$

and we define $S^{\prime}(0)=S(0)$ and $S(1)=S^{\prime}(1)$.
Theorem 2.2 (Morse and Hedlund [10]). If α is irrational (resp. rational), then $G(\alpha, \beta)$ and $G^{\prime}(\alpha, \beta)$ are Sturmian words of Type I (resp. Type II). Conversely, if $W \in L^{\boldsymbol{N}}$ is a Sturmian word of type I or II with density $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n, W)}{n}$, there exists a real number β such that $W=G(\alpha, \beta)$ or $W=G^{\prime}(\alpha, \beta)$.

Theorem 2.3 (Morse and Hedlund [10]).
(I) Let W be a two-sided infinite skew Sturmian word with density $\alpha=$ ${ }_{q}^{p}(p, q \in Z,(p, q)=1)$. Then W is represented by $W=\cdots A A \cdots$ $A A C B B \cdots B B \cdots\left(A, B, C \in L^{q}\right)$ with $|A|_{1}=|B|_{1}=p$, and $|C|_{1}=p-1$ or $p+1$.
(II) Let W be a two-sided infinite skew Sturmian word with density $\alpha=$ $\underset{q}{p}(p, q \in Z,(p, q)=1)$. Then, $W=S(\alpha)$ or $W=S^{\prime}(\alpha)$. Conversely, for each rational number α with $0 \leq \alpha \leq 1, S(\alpha)$ and $S^{\prime}(\alpha)$ are skew Sturmian words.
(III) Let D be a finite word and assume that the one-sided infinite word $W=D D \cdots D D \cdots$ is Sturmian. Then W can be extended to a two-sided infinite skew Sturmian word.

The converse of the assertion given in Theorem 2.1 does not hold, but the words $W \in L^{\wedge}$ satisfying $p(n ; W) \leq n+1$ for all $n \in N$ are characterized by Coven and Hedlund, in particular, they showed the following
Theorem 2.4 (Coven and Hedlund [5]). Let W be a one-sided infinite word and $p(n ; W)=n+1$ for all $n \geq 0$. Then W is a Sturmian word.
Theorem 2.5 (Coven and Hedlund [5]). Let W be a two-sided infinite word and $p(n ; W)=n+1$ for all $n \geq 0$ that is not Sturmian. Then there exist a number $m \geq 0$ and a word $B \in D(m ; W)$ such that
(1) Both $0 B 0$ and $1 B 1$ belong to $D(m+2 ; W)$ and one and only one of $0 B 1$ and $1 B 0$ belongs to $D(m+2 ; W)$, so that $a B a^{\prime} \in D(m+2 ; W)$ and $a^{\prime} B a \notin D(m+2 ; W)$ with $a \neq a^{\prime}\left(a, a^{\prime} \in L\right)$.
(2) $a B a^{\prime}$ occurs exactly once in W.
(3) If $a B a^{\prime}=x_{i} \cdots x_{i+m+1}$, then
(3a) $W_{R}=x_{i+1} x_{i+2} \cdots$ is purely periodic and Sturmian and $i+1$ is the least integer such that $x_{i+1} x_{i+2} \cdots$ is purely periodic.
(3b) $W_{L}=\cdots x_{i+m-1} x_{i+m}$ is purely periodic and Sturmian and $i+m$ is the greatest integer such that $\cdots x_{i+m-1} x_{i+m}$ is purely periodic.
(4) If l_{R}, l_{L} are the lengths of the shortest periods of W_{R}, W_{L}, respectively, then $l_{R}+l_{L}=m+2$ and $\left(l_{R}, l_{L}\right)=1$.
2.2. *-Sturmian words. We give a characterization of *-Sturmian words in terms of the $*$-complexity together with a description of $*$-Sturmian words by which we can construct any *-Sturmian word in Theorems 2.6, 2.8 below. We need some definitions.

For $A, B \in L^{*}$ we denote by $\{A, B\}^{*}$ the set

$$
\{A, B\}^{*}:=\left\{w_{1} \cdots w_{n} ; w_{i}=A \text { or } B, n \geq 0\right\}
$$

We say a word $W \in\{a, b\}^{*}$ is strictly over $\{a, b\}$ if both a and b eventually occur in W. The notation w^{*} (resp. $\left.{ }^{*} w\right)\left(\lambda \neq w \in L^{*}\right)$ stands for the word
$w^{*}:=w w w \cdots \in L^{N}$ (resp. $\left.{ }^{*} w:=\cdots w w w \in L^{-N}\right), w^{n}\left(n \in N, w \in L^{*}\right)$ is the word $w^{n}:=v_{1} v_{2} \cdots v_{n}$ where $v_{i}=w$ for all i. We mean by ${ }^{*} v w$ (resp. $v w^{*}$) the word ($\left.{ }^{*} v\right) w\left(\operatorname{resp} . v\left(w^{*}\right)\right)$.

Definition 2.3. We define the substitutions δ_{0}, δ_{1} by

$$
\delta_{0}:\left\{\begin{array}{lll}
0 & \rightarrow & 0 \\
1 & \rightarrow & 01
\end{array}, \quad \delta_{1}:\left\{\begin{array}{lll}
0 & \rightarrow & 01 \\
1 & \rightarrow & 1
\end{array} .\right.\right.
$$

δ_{k} can be extended to L^{\wedge} by

$$
\delta_{k}(W):=\cdots \delta_{k}\left(w_{i}\right) \cdots
$$

for $W=\cdots w_{i} \cdots \in L^{\wedge}$. The map $\delta_{k}: L^{\wedge} \rightarrow L^{\wedge}$ is injective. Hence we can write $B=\delta_{k}^{-1}(A)$ if $A=\delta_{k}(B),\left(A, B \in L^{\wedge}\right)$.

It is known that Sturmian words have deep relations with substitutions (see [4]).

Definition 2.4. For $k_{1}, \ldots, k_{i} \in\{0,1\}$, we define $A_{i}=A\left(k_{1}, \ldots, k_{i}\right):=$ $\delta_{k_{1}} \circ \cdots \circ \delta_{k_{i}}(0), B_{i}=B\left(k_{1}, \ldots, k_{i}\right):=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{i}}(1)\left(A_{0}:=0, B_{0}:=1\right)$.

Let x be a rational number with $0 \leq x \leq 1$. The two-sided infinite words $\underline{G}(x)$ and $\bar{G}(x)$ are defined in [13] as follows $(\underline{G}(0)$ and $\bar{G}(1)$ are not defined). Recall the definition of $G(\cdot)$, cf. Definition 2.1.

Definition 2.5. If x is a rational number, $0<x=n / m \leq 1,((n, m)=1)$, let $\underline{x}=\underline{n} / \underline{m}$ denotes the greatest number satisfying $x>\underline{x}$ and $\underline{m} \leq m$. We define

$$
\underline{G}(x)=\cdots G(-3 ; x) G(-2 ; x) G(-1 ; x) G(0 ; \underline{x}) G(1 ; \underline{x}) \cdots G(\underline{m}-1 ; \underline{x}) G(x) .
$$

Definition 2.6. If x is a rational number, $0 \leq x=n / m<1,((n, m)=1)$, let $\bar{x}=\bar{n} / \bar{m}$ denotes the least number satisfying $x<\bar{x}$ and $\bar{m} \leq m$. We define

$$
\bar{G}(x)=\cdots G(-3 ; x) G(-2 ; x) G(-1 ; x) G(0 ; \bar{x}) G(1 ; \bar{x}) \cdots G(\bar{m}-1 ; \bar{x}) G(x) .
$$

We see that $S(x)=\bar{G}(x)$ and $S^{\prime}(x)=\underline{G}(x)$ with some exceptions (see Section 3).

Definition 2.7. For $W \in L^{\boldsymbol{N}} \cup L^{-\boldsymbol{N}} \cup L^{\boldsymbol{Z}} / \sim$ and $x \in[0,1]$, we define the following conditions
(C1) $\quad D_{*}(W)=D(G(x))$,
(C2) $\quad D_{*}(W)=D(\underline{G}(x))$ with $x \in \mathbf{Q}$ and $x \neq 0$,
(C3) $\quad D_{*}(W)=D(\bar{G}(x))$ with $x \in \mathbf{Q}$ and $x \neq 1$,
where $D(\cdot)$ and $D_{*}(\cdot)$ are defined in Definition 1.1 and Definition 1.3 respectively.

Remark 2.1. Words which satisfy one of the conditions (C1)-(C3) are super Bernoulli words. Super Bernoulli words play an important role for Markov spectra as shown in [13]. For any $x \in[0,1], G(x)$ is a super Bernoulli word that satisfies Condition (C1).

Theorem 2.6. Let $W \in L^{\mathbf{N}}$. Then the following four conditions are equivalent:
(i) W is *-Sturmian.
(ii) $p_{*}(n ; W) \leq n+1$ for all $n \geq 0$.
(iii) There exists a finite or infinite sequence $\kappa=\left\{k_{1}, k_{2}, \ldots, k_{i} \ldots\right\}, k_{i} \in$ $\{0,1\}$ which satisfies the following equation,
where $A_{i}=A\left(k_{1}, \cdots, k_{i}\right), B_{i}=B\left(k_{1}, \cdots, k_{i}\right)$ are the words given in Definition 2.4, $u_{0} \in L^{*}$, and each u_{i} is a certain finite word strictly over $\left\{A_{i}, B_{i}\right\}$ for all $i>0$.
(iv) W satisfies one of the conditions (C1), (C2) or (C3) in Definition 2.7.

Remark 2.2. In condition (iii), if $p_{*}(m ; W)=m+1$ for any m, then $W=u_{0} u_{1} \cdots u_{i} \cdots$. If $p_{*}(m ; W)<m+1$ for some m, then $W=u_{0} A_{i}^{*}$ or $u_{0} B_{i}^{*}$ for some i and $p_{*}(n ; W)$ is bounded. In condition (iv), if x is an irrational number or W satisfies Condition (C2) or (C3) in Definition 2.7, then $p_{*}(n ; W)=n+1$ for all n. If x is a rational number and W satisfies condition (C1) in Definition 2.7, then $p_{*}(n ; W)$ is bounded.
Theorem 2.7. Let $W=w_{1} w_{2} \ldots \in L^{\mathbf{N}}$ be $*$-Sturmian. Then there exists $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n ; W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n ; W)}{n}$, and one of the conditions (C1)-(C3) in Definition 2.7 holds with $x=\alpha$.

We give an example.
Example 2.1. Let $W=010^{2} 10^{3} 10^{4} 10^{5} 1 \cdots$. Then, we see that

$$
\begin{equation*}
D_{*}(n ; W)=\left\{0^{l} 10^{m} \mid l, m \geq 0, l+m=n-1\right\} \cup\left\{0^{n}\right\} \tag{2.1}
\end{equation*}
$$

By Definition 1.6 we see that W is $*$-Sturmian and $p_{*}(n ; W)=n+1$. Let $k_{i}=0$ for $i=1,2, \ldots$ and $A_{i}=A\left(k_{1}, \cdots, k_{i}\right), B_{i}=B\left(k_{1}, \cdots, k_{i}\right)$ be the words given in Definition 2.4. Then, we have $A_{i}=0, B_{i}=0^{i-1} 1$. Thus, we have

$$
W=A_{1} B_{1} A_{2} B_{2} A_{3} B_{3} \cdots
$$

On the other hand, we have $\lim _{n \rightarrow \infty} \frac{\sigma(n ; W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n ; W)}{n}=0$. Using (2.1) and $\bar{G}(0)=\cdots 0001000 \cdots, W$ satisfies Condition (C3) with $x=0$ in Definition 2.7.

Theorem 2.8. Let $W \in L^{\mathbf{Z}}$. Then the following three conditions are equivalent:
(i) W is $*$-Sturmian.
(ii) There exists a finite or infinite sequence $\kappa=\left\{k_{1}, k_{2}, \ldots, k_{i}, \ldots\right\}$, $k_{i} \in\{0,1\}$ such that W has one of the following representations.
(1) $W=\cdots u_{-i} \cdots u_{-1} u_{0} u_{1} \cdots u_{i} \cdots, \kappa$ is an infinite sequence,
(2) $W=\cdots u_{-i} \cdots u_{-1} u_{0} A_{j}^{*}$, κ is an infinite sequence and $k_{i}=0$ for all $i>j$
(3) $W={ }^{*} A_{j} u_{0} u_{1} \cdots u_{i} \cdots, \kappa$ is an infinite sequence and $k_{i}=0$ for all $i>j$,
(4) $W=\cdots u_{-i} \cdots u_{-1} u_{0} B_{j}^{*}$, κ is an infinite sequence and $k_{i}=1$ for all $i>j$,
(5) $W={ }^{*} B_{j} u_{0} u_{1} \cdots u_{i} \cdots, \kappa$ is an infinite sequence and $k_{i}=1$ for all $i>j$,
(6) $W={ }^{*} A_{j} u_{0} A_{j}^{*}, \kappa$ is a finite sequence and k_{j} is its final term,
(7) $W={ }^{*} B_{j} u_{0} B_{j}^{*}, \kappa$ is a finite sequence and k_{j} is its final term, where $A_{i}=A\left(k_{1}, \cdots, k_{i}\right), B_{i}=B\left(k_{1}, \cdots, k_{i}\right)$ are the words given in Definition 2.4 and u_{i} and u_{-i} are certain finite words strictly over $\left\{A_{i}, B_{i}\right\}$ for $i>0$ and $u_{0} \in L^{*}$.
(iii) W satisfies one of the conditions (C1), (C2) or (C3) in Definition 2.7.

Theorem 2.9. Let $W=\ldots w_{-1} w_{0} w_{1} w_{2} \ldots \in L^{\mathbf{Z}}$ be *-Sturmian. Then there exists $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n ; W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n ; W)}{n}$, and one of the conditions (C1)(C3) holds with $x=\alpha$.
Theorem 2.10. Let $W \in L^{\mathbf{Z}}$ be a $*$-Sturmian word. Then, $p_{*}(n ; W) \leq$ $n+1$ for all $n \geq 0$.

We give an example.
Example 2.2. Let $W_{1}={ }^{*} 0010^{2} 10^{3} 1 \cdots$ and $W_{2}=\cdots 0^{3} 10^{2} 1010^{2} 10^{3} 1 \cdots$. Then, we see that

$$
\begin{equation*}
D_{*}(n ; W)=\left\{0^{l} 10^{m} \mid l, m \geq 0, l+m=n-1\right\} \cup\left\{0^{n}\right\} \tag{2.2}
\end{equation*}
$$

By Definition 1.6 we see that W_{1} and W_{2} are $*-S t u r m i a n ~ a n d ~ p * ~(n ; ~ W 1)=$ $p_{*}\left(n ; W_{2}\right)=n+1$. Let $k_{i}=0$ for $i=1,2, \ldots$ and $A_{i}=A\left(k_{1}, \cdots, k_{i}\right)$, $B_{i}=B\left(k_{1}, \cdots, k_{i}\right)$ be the words given in Definition 2.4. Then, we have $A_{i}=0, B_{i}=0^{i-1} 1$. Thus, we have
$W_{1}={ }^{*} A_{1} A_{1} B_{1} A_{2} B_{2} A_{3} B_{3} \cdots, W_{2}=\cdots A_{3} B_{3} A_{2} B_{2} A_{1} A_{1} B_{1} A_{2} B_{2} A_{3} B_{3} \cdots$.
On the other hand, we have $\lim _{n \rightarrow \infty} \frac{\sigma\left(n ; W_{i}\right)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}\left(n ; W_{i}\right)}{n}=0$ for $i=1,2$. Using (2.2) and $\bar{G}(0)=\cdots 0001000 \cdots, W_{i}(i=1,2)$ satisfies Condition (C3) with $x=0$ in Definition 2.7.

Theorem 2.11. Let $W \in L^{\mathbf{Z}}$. Suppose that $p_{*}(n ; W) \leq n+1$ for all $n \geq 0$ and W is not a *-Sturmian word. Then, there exists a finite sequence $\left\{k_{i}\right\}_{i=1}^{j}$, and a word $u_{0} \in L^{*}$ such that

$$
W={ }^{*} A_{j} u_{0} B_{j}^{*}, \quad \text { or } \quad{ }^{*} B_{j} u_{0} A_{j}^{*}
$$

where $A_{j}=A\left(k_{1}, \cdots, k_{j}\right), B_{j}=B\left(k_{1}, \cdots, k_{j}\right)$ are the words given in Definition 2.4.

We give an example.
Example 2.3. Let $W=01^{*}$. Then, we have

$$
D_{*}(n ; W)=\left\{0^{n}, 1^{n}\right\}
$$

We see easily that $p_{*}(n ; W)=2$ and W is not $*$-Sturmian.

3. Lemmas and the proof of Theorems 2.6-2.11

3.1. A dynamical system. We need some definitions to state lemmas.

Definition 3.1. Let $I_{0}:=[0,1 / 2], I_{1}:=(1 / 2,1], \phi_{0}(x):=\frac{x}{x+1} \in I_{0}$, $\phi_{1}(x):=\frac{1}{2-x} \in I_{1} \cup\{1 / 2\}(x \in[0,1])$. Let T denotes the transformation on $[0,1]$ defined by

$$
T(x):=\left\{\begin{array}{lll}
\phi_{0}^{-1}(x) & \text { if } & x \in I_{0}, \\
\phi_{1}^{-1}(x) & \text { if } & x \in I_{1} .
\end{array}\right.
$$

The above ϕ_{0}, ϕ_{1} and T have an important role in our paper. The following lemma gives a connection between ϕ_{i} and δ_{i} for $i=0,1$. We give a proof of Lemma 3.1 for completeness.

Lemma 3.1 (Ito, Yasutomi [7]). For any $x \in[0,1]$, the equality $G\left(\phi_{i}(x)\right)=$ $\delta_{i} G(x)(i \in\{0,1\})$ holds.

Proof. First, let us show $G\left(\phi_{0}(x)\right)=\delta_{0} G(x)$. If $x=0,1$, then we see easily that the equality holds. Let $x \neq 0,1$. Let $U=[-1,0), U_{0}=[-1,-x)$ and $U_{1}=[-x, 0)$. We define a transformation F on U as follows: for $y \in U$

$$
F(y):=\left\{\begin{array}{lll}
y+x & \text { if } y \in U_{0} \\
y+x-1 & \text { if } y \in U_{1}
\end{array}\right.
$$

We define an infinite word $j_{0} j_{1} \ldots j_{n} \ldots$ by

$$
j_{n}:=\left\{\begin{array}{lll}
1 & \text { if } & F^{n}(-1) \in U_{1} \\
0 & \text { if } & F^{n}(-1) \in U_{0}
\end{array}\right.
$$

Let us show that $G(m ; x)=1$ if and only if $F^{m}(-1) \in U_{1}$ for some nonnegative integer m. First, we suppose $G(m ; x)=1$. Then, from Definition (2.1) we see that $m x<\lfloor(m+1) x\rfloor \leq(m+1) x$. Therefore, we have $m x-\lfloor(m+1) x\rfloor \in U_{1}$. On the other hand, it is not difficult to see that $F^{m}(-1)-m x \in \mathbf{Z}$. Therefore, $F^{m}(-1)=m x-\lfloor(m+1) x\rfloor$ and $F^{m}(-1) \in$
U_{1}. Next, we suppose $G(m ; x)=0$. Then, similarly, we have $F^{m}(-1) \in U_{0}$. Thus, we have $G(x)=j_{0} j_{1} \ldots$

Let $V=[-1, x), V_{0}=[-1,0)$ and $V_{1}=[0, x)$. We define a transformation h_{0} on V as follows: for $y \in V$

$$
h_{0}(y):=\left\{\begin{array}{lll}
y+x & \text { if } y \in V_{0} \\
y-1 & \text { if } y \in V_{1}
\end{array}\right.
$$

We define an infinite word $j_{0}^{0} j_{1}^{0} \ldots j_{n}^{0} \ldots$ by

$$
j_{n}^{0}:=\left\{\begin{array}{lll}
1 & \text { if } & h_{0}^{n}(-1) \in V_{1} \\
0 & \text { if } & h_{0}^{n}(-1) \in V_{0}
\end{array}\right.
$$

Then, we see that
(1) if $y \in U_{0}$, then $y \in V_{0}$ and $F(y)=h_{0}(y)$,
(2) if $y \in U_{1}$, then $y \in V_{0}, h_{0}(y) \in V_{1}$ and $h_{0}^{2}(y)=F(y)$.

Therefore, we have $\delta_{0}\left(j_{0} j_{1} \ldots\right)=j_{0}^{0} j_{1}^{0} \ldots$ On the other hand, by using a map Θ from V to $[-1,0)$ defined by $\Theta(y)=\frac{y-x}{x+1}$, the dynamical system $\left(V, h_{0}\right)$ is equivalent to the dynamical system ($\left[-1,0\right.$), h_{0}^{\prime}) where the transformation h_{0}^{\prime} on $\Theta(V)$ is defined as follows: for $y \in V$

$$
h_{0}^{\prime}(y):=\left\{\begin{array}{lll}
y+a & \text { if } y \in \Theta\left(V_{0}\right)=[-1,-a) \\
y+a-1 & \text { if } & y \in \Theta\left(V_{1}\right)=[-a, 0)
\end{array}\right.
$$

where $a=\frac{x}{x+1}$. Similarly we have $G(a)=j_{0}^{0} j_{1}^{0} \ldots$. Thus, we have $\delta_{0}(G(x))=G\left(\frac{x}{x+1}\right)$.

Secondly, let us show $G\left(\phi_{1}(x)\right)=\delta_{1} G(x)$. Let $V^{\prime}=[-1,1-x), V_{0}^{\prime}=$ $[-1,-x)$ and $V_{1}^{\prime}=[-x, 1-x)$. We define a transformation h_{1} on V^{\prime} as follows: for $y \in V^{\prime}$

$$
h_{1}(y):=\left\{\begin{array}{lll}
y+1 & \text { if } y \in V_{0}^{\prime} \\
y+x-1 & \text { if } y \in V_{1}^{\prime}
\end{array}\right.
$$

We define an infinite word $j_{0}^{1} j_{1}^{1} \ldots j_{n}^{1} \ldots$ by

$$
j_{n}^{1}:=\left\{\begin{array}{lll}
1 & \text { if } & h_{0}^{n}(-1) \in V_{1}^{\prime} \\
0 & \text { if } & h_{0}^{n}(-1) \in V_{0}^{\prime}
\end{array}\right.
$$

We see that
(1) if $y \in U_{0}$, then $y \in V_{0}^{\prime}, h_{1}(y) \in V_{1}^{\prime}$ and $h_{1}^{2}(y)=F(y)$,
(2) if $y \in U_{1}$, then $y \in V_{1}^{\prime}$ and $h_{1}(y)=F(y)$.

Therefore, we have $\delta_{1}\left(j_{0} j_{1} \ldots\right)=j_{0}^{1} j_{1}^{1} \ldots$ Similarly we have $j_{0}^{1} j_{1}^{1} \ldots=$ $G\left(\frac{1}{2-x}\right)$. Thus, we have $G\left(\phi_{1}(x)\right)=\delta_{1} G(x)$.

The following Lemma 3.2 is obtained from Lemma 3.1.

Lemma 3.2 (Ito, Yasutomi [7]). The following diagrams commute for $k=0,1$;

where $\mathcal{W}\left(\right.$ resp. $\left.\mathcal{W}_{k}\right)$ is the image of $[0,1]$ (resp. $\left.I_{k}\right)$ by G.
The assertion obtained by replacing, respectively, I_{k} and T by \tilde{I}_{k} and \tilde{T} in Lemma 3.2 can be shown in the same way as in [7].

Definition 3.2 (Itinerary of a real number). We define the itinerary of $x \in[0,1]$ to be the sequence $\left\{i_{n}\right\}_{n=1}^{\infty}$ given by

$$
i(x):=\left\{i_{n}\right\}_{n=1}^{\infty}, i_{n}=i_{n}(x):=\left\{\begin{array}{lll}
0 & \text { if } & T^{n-1}(x) \in I_{0} \\
1 & \text { if } & T^{n-1}(x) \in I_{1}
\end{array}\right.
$$

Lemma 3.3. If $x \in[0,1]$ is an irrational number, then 0 and 1 occur infinitely many times in its itinerary. If $x \neq 0$ is a rational number, then there exists a natural number j such that $T^{l}(x)=1$ and $i_{l}(x)=1$ for any natural number $l>j$.

Proof. Let $x \in[0,1]$ be an irrational number. We suppose that 0 or 1 does not occur infinitely many times in its itinerary. First, we suppose that 1 does not occur infinitely many times in its itinerary. Then, there exists an integer $k>0$ such that $i_{n}=0$ for each $n \geq k$. Let $n \geq k$. On the other hand, from Definition 3.2 and Lemma 3.2

$$
T^{k-1}(x)=\phi_{i_{k}} \circ \cdots \circ \phi_{i_{n-1}} \circ \phi_{i_{n}} T^{n}(x)
$$

Therefore, $T^{k-1}(x) \in \phi_{0}^{n-k+1}([0,1])$. We see easily that $\phi_{0}^{n-k+1}([0,1])=$ $\left[0, \frac{1}{n-k+2}\right]$. Since $T^{k-1}(x) \in \cap_{n=k}^{\infty}\left[0, \frac{1}{n-k+2}\right], T^{k-1}(x)=0$. From Definition 3.2 and Lemma 3.2 we have

$$
x=\phi_{i_{1}} \circ \cdots \circ \phi_{i_{k-1}} T^{k-1}(x)
$$

Therefore, $x \in \mathbf{Q}$. But this contradicts the assumption. Thus, 1 occurs infinitely many times in the itinerary of x. Similarly we see that 0 occurs infinitely many times in the itinerary of x. Secondly, let $x \in(0,1]$ be a rational number. We set $x=\frac{p}{q}$, where $p, q \in \mathbf{Z}$ and $p \geq 0, q>0$ and p and q are relatively prime. We shall prove the lemma by induction on q. Let $q=1$. Then, $x=1$. We see easily that $i_{n}=1$ for any integer $n>0$. Next, we suppose that $q>1$ and the lemma holds for each $y \in(0,1]$ whose denominator is less than q. Let x be in I_{0}. Then, $T(x)=\frac{y}{1-y}=\frac{q}{q-p}$. Since the denominator of $T(x)$ is less than x, from the induction hypothesis there exists an integer j such that $i_{l}(T(x))=1$ for any integer l with $l>j$. Therefore, we have $i_{l}(x)=1$ for any integer l with $l>j+1$. Secondly, let x be in I_{1}. Then, $T(x)=\frac{2 y-1}{y}=\frac{2 p-q}{p}$. Since the denominator of $T(x)$
is less than x, from the induction hypothesis there exists an integer j such that $i_{l}(T(x))=1$ for any integer l with $l>j$. Therefore, we have $i_{l}(x)=1$ for any integer l with $l>j+1$. Thus, we have the lemma.
Lemma 3.4. For any sequence $\left\{i_{n}\right\}_{n=1}^{\infty}\left(i_{n}=0,1\right)$ in which 0 and 1 occur infinitely many times, there exists a unique irrational number x such that $\left\{i_{n}\right\}_{n=1}^{\infty}=i(x)$.
Proof. For any positive integer n we set $\Delta_{n}=\phi_{i_{1}} \circ \cdots \circ \phi_{i_{n}}[0,1]$. Then, $\Delta_{1} \supset \Delta_{2} \supset \Delta_{3} \supset \cdots$. Since $[0,1]$ is a compact set, there exists an x such that $x \in \cap_{n=1}^{\infty} \Delta_{n}$. It is not difficult to see that $i_{n}(x)=i_{n}$ for $n=1,2, \ldots$ Let $y \in \cap_{n=1}^{\infty} \Delta_{n}$. Let us show that $x=y$. We suppose that $x \neq y$. We suppose that $x<y$ without loss of generality. Then, apparently, for any $z \in[x, y], i(z)=i(x)$. Since $\mathbf{Q} \cap[0,1]$ is dense in $[0,1]$, there exists a rational number z^{\prime} such that $z^{\prime} \in[x, y]$. Then Lemma 3.3 implies that there exists a natural number j such that $i_{l}\left(z^{\prime}\right)=1$ for any natural number $l>j$. But this is a contradiction. Thus, we have the lemma.
Lemma 3.5. For any sequence $\left\{i_{n}\right\}_{n=1}^{\infty},\left(i_{n}=0,1\right)$ in which 0 occurs finitely many times, there exists a rational number $x \neq 0$ such that $\left\{i_{n}\right\}_{n=1}^{\infty}=i(x)$.
Proof. If for all $n \geq 1, i_{n}=1$, then $i_{n}(1)=i_{n}$ for all $n \geq 0$. We suppose that 0 occurs in $\left\{i_{n}\right\}_{n=1}^{\infty}$. Then, there exists an integer $j>1$ such that $i_{j-1}=0$ and for any integer $l \geq j, i_{l}=1$. We set $x=\phi_{i_{1}} \circ \cdots \circ \phi_{i_{j-1}}(1)$. Then we see that $\left\{i_{n}\right\}_{n=1}^{\infty}=i(x)$.

Let $\tilde{I}_{0}=[0,1 / 2), \tilde{I}_{1}=[1 / 2,1]$. We define $\tilde{T}(x)$ as $T(x)$ in Definition 3.1 with \tilde{I}_{i} in place of $I_{i}(i=0,1)$ and $\tilde{i}(x)=\left\{\tilde{i}_{n}\right\}_{n=1}^{\infty},\left(\tilde{i}_{n}=\tilde{i}_{n}(x)\right)$ is defined in the same manner as $i(x)$ in Definition 3.2 with \tilde{T} in place of T. Noting $T(x)=\tilde{T}(x),(x \neq 1 / 2)$, we can show the following
Lemma 3.6. If x is irrational, then $i(x)=\tilde{i}(x)$. If $x \neq 1$ is a rational number, then there is a natural number j such that $\tilde{T}^{l}(x)=0$ and $\tilde{i}_{l}(x)=0$ for any natural number $l>j$.

We remark that $i(x) \neq \tilde{i}(x)$ if $x(\neq 0,1)$ is a rational number. The proof of the following lemma is similar to the proof of Lemma 3.5.

Lemma 3.7. For any sequence $\left\{i_{n}\right\}_{n=1}^{\infty}$ in which 1 occurs finitely many times, there exists a rational number $x \neq 1$ such that $\tilde{i}(x)=\left\{i_{n}\right\}_{n=1}^{\infty}$.

Lemma 3.8. Let x be a rational number with $0 \leq x \leq 1$. Let $\left\{i_{n}\right\}_{n=1}^{\infty}=$ $i(x)$ and $\left\{i_{n}^{\prime}\right\}_{n=1}^{\infty}=\tilde{i}(x)$. Let for any integer $n>0$

$$
\begin{array}{ll}
A_{n}=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{n}}(0), & B_{n}=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{n}}(1) \\
A_{n}^{\prime}=\delta_{i_{1}^{\prime}} \circ \cdots \circ \delta_{i_{n}^{\prime}}(0), & B_{n}^{\prime}=\delta_{i_{1}^{\prime}} \circ \cdots \circ \delta_{i_{n}^{\prime}}(1)
\end{array}
$$

and $A_{0}=0, B_{0}=1, A_{0}^{\prime}=0$ and $B_{0}^{\prime}=1$. Let $j \geq 0$ be the least integer such that $i_{l}=1$ for any l with $l>j$. Let $j^{\prime} \geq 0$ be the least integer such that $i_{l}^{\prime}=0$ for any l with $l>j^{\prime}$. Then, if $x \neq 0, \underline{G}(x)={ }^{*} B_{j} A_{j} B_{j}^{*}$; and if $x \neq 1$, $\bar{G}(x)={ }^{*} A_{j^{\prime}}^{\prime} B_{j^{\prime}}^{\prime} A_{j^{\prime}}^{\prime}$.
Proof. Let $x \neq 0$. We set $x=\frac{p}{q}$ where $p \geq 0$ and $q>0$ are integers and $(p, q)=1$. Let us show that $\left(\left|A_{n}\right|,\left|A_{n}\right|_{1}\right)=1$ and $\left(\left|B_{n}\right|,\left|B_{n}\right|_{1}\right)=1$. From

$$
A_{n}=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{n}}(0), \quad B_{n}=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{n}}(1),
$$

it follows

$$
\left(\begin{array}{ll}
\left|A_{n}\right| & \left|B_{n}\right| \\
\left|A_{n}\right|_{1} & \left|B_{n}\right|_{1}
\end{array}\right)=M_{0} M_{i_{1}} \cdots M_{i_{n}}
$$

where

$$
M_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad M_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

Therefore, we get

$$
\begin{equation*}
\left|A _ { n } \left\|\left.B_{n}\right|_{1}-\left|B_{n} \| A_{n}\right|_{1}=1 .\right.\right. \tag{3.1}
\end{equation*}
$$

On the other hand, Lemma 3.2 implies $G(x)=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{n}}\left(G\left(T^{n}(x)\right)\right.$ for any integer $n \geq 0$. Since $T^{k}(x)=1$ for $k>j$, we see that

$$
\begin{equation*}
G(x)=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{j}}(G(1))=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{j}}\left(1^{*}\right)=B_{j}^{*} . \tag{3.2}
\end{equation*}
$$

On the other hand, from the definition of $G(x)$

$$
\begin{equation*}
G(x)=G(0 ; x) G(1 ; x) \cdots=\left(G\left(0 ; \frac{p}{q}\right) G\left(1 ; \frac{p}{q}\right) \cdots G\left(q-1 ; \frac{p}{q}\right)\right)^{*}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|G\left(0 ; \frac{p}{q}\right) G\left(1 ; \frac{p}{q}\right) \cdots G\left(q-1 ; \frac{p}{q}\right)\right|_{1}=\sum_{j=0}^{q-1}\left\lfloor(j+1) \frac{p}{q}\right\rfloor-\left\lfloor j \frac{p}{q}\right\rfloor=p . \tag{3.4}
\end{equation*}
$$

Using (3.2), (3.3), (3.4) and the fact $\left(\left|B_{j}\right|,\left|B_{j}\right|_{1}\right)=1$ which is a consequence of (3.1), we see that $B_{j}=G\left(0 ; \frac{p}{q}\right) G\left(1 ; \frac{p}{q}\right) \cdots G\left(q-1 ; \frac{p}{q}\right)$. Thus, $\left|B_{j}\right|=q$ and $\left|B_{j}\right|_{1}=p$. On the other hand,

$$
A_{j}^{*}=\delta_{i_{1}} \circ \cdots \circ \delta_{i_{j}}\left(0^{*}\right)=G\left(\phi_{i_{1}} \circ \cdots \circ \phi_{i_{j}}(0)\right) .
$$

We set $\frac{p^{\prime}}{q^{\prime}}=\phi_{i_{1}} \circ \cdots \circ \phi_{i_{j}}(0)$, where $p^{\prime} \geq 0$ and $q^{\prime}>0$ are integers with $\left(p^{\prime}, q^{\prime}\right)=1$. Similarly, we have $A_{j}=G\left(0 ; \frac{p^{\prime}}{q^{\prime}}\right) G\left(1 ; \frac{p^{\prime}}{q^{\prime}}\right) \cdots G\left(q^{\prime}-1 ; \frac{p^{\prime}}{q^{\prime}}\right)$. Thus, we see that $\left|A_{j}\right|=q^{\prime},\left|A_{j}\right|_{1}=p^{\prime}$. Since $j>0$ and $i_{j}=0$ for $x \neq 1$, we see
that

$$
\begin{aligned}
\left|B_{j}\right| & =\left|\delta_{i_{1}} \circ \cdots \circ \delta_{i_{j}}(1)\right| \\
& =\left|\delta_{i_{1}} \circ \cdots \circ \delta_{i_{j-1}}(01)\right| \\
& =\left|A_{j} \delta_{i_{1}} \circ \cdots \circ \delta_{i_{j-1}}(1)\right| \\
& >\left|A_{j}\right| .
\end{aligned}
$$

Since $j=0$ for $x=1$, we have

$$
\left|B_{j}\right|=\left|A_{j}\right|=1
$$

Thus, we get that $p \geq p^{\prime}$ and $p q^{\prime}-q p^{\prime}=1$. Therefore, we obtain $\underline{G}(x)=$ ${ }^{*} B_{j} A_{j} B_{j}{ }^{*}$. Similarly, we see that $\bar{G}(x)={ }^{*} A_{j^{\prime}}^{\prime} B_{j^{\prime}}^{\prime} A_{j^{\prime}}^{\prime *}$ for $x \neq 0$.

We show that $\bar{G}(x)=S(x)$ and $\underline{G}(x)=S^{\prime}(x)$ hold with some exceptions in the following lemma.

Lemma 3.9. Let x be a rational number with $0 \leq x \leq 1$. Then, $\bar{G}(x)=$ $S(x)(x \neq 1)$, and $\underline{G}(x)=S^{\prime}(x)(x \neq 0)$.
Proof. Let $x \neq 1$. Let us show $\bar{G}(x)=S(x)$. If $x=0$, then we see easily that $\bar{G}(x)=S(x)$. Let $0<x<1$. We set $x=\frac{p}{q}$, where $p>0$ and $q>0$ are integers with $(p, q)=1$. Let $p^{\prime} \geq 0$ and $q^{\prime}>0$ be integers with $q \geq p^{\prime}$ and $p^{\prime} q-p q^{\prime}=1$. Then, from the definition of $\bar{G}(x)$
$\bar{G}(x)=\cdots G(-3 ; x) G(-2 ; x) G(-1 ; x) G\left(0 ; \frac{p^{\prime}}{q^{\prime}}\right) G\left(1 ; \frac{p^{\prime}}{q^{\prime}}\right) \cdots G\left(q^{\prime}-1 ; \frac{p^{\prime}}{q^{\prime}}\right) G(x)$.
First, let us show that for $n<q-q^{\prime}, s(x)_{n}=G\left(n+q^{\prime} ; x\right)$. Let $n<q-q^{\prime}$. Since, for any integer $m,\left\lceil(m+1)_{q}^{p}\right\rceil=\left\lceil m_{q}^{p}\right\rceil$ if and only if $\left\lfloor(m+1)_{q}^{p}-\frac{1}{q}\right\rfloor=$ $\left\lfloor m_{q}^{p}-\frac{1}{q}\right\rfloor$, we see that $\left\lceil(m+1)_{q}^{p}\right\rceil-\left\lceil m_{q}^{p}\right\rceil=\left\lfloor(m+1)_{q}^{p}-\frac{1}{q}\right\rfloor-\left\lfloor m_{q}^{p}-\frac{1}{q}\right\rfloor$. On the other hand, using $p^{\prime} q-p q^{\prime}=1$ we have

$$
\begin{aligned}
G\left(n+q^{\prime} ; x\right) & =\left\lfloor\left(n+q^{\prime}+1\right) \frac{p}{q}\right\rfloor-\left\lfloor\left(n+q^{\prime}\right) \frac{p}{q}\right\rfloor \\
& =\left\lfloor(n+1) \frac{p}{q}-\frac{1}{q}\right\rfloor-\left\lfloor n \frac{p}{q}-\frac{1}{q}\right\rfloor
\end{aligned}
$$

Therefore, we get $s(x)_{n}=G\left(n+q^{\prime} ; x\right)$ for x such that $(n+1) x<1$. Let $(n+1) x \geq 1$. Since $0<n<q-q^{\prime}$ and $n p \not \equiv 1 \bmod q$, we have $n_{q}^{p}-\left\lfloor n_{q}^{p}\right\rfloor>\frac{1}{q}$. On the other hand, $\left(q-q^{\prime}\right)_{q}^{p}-\left\lfloor\left(q-q^{\prime}\right)_{q}^{p}\right\rfloor=\frac{1}{q}$. Therefore, we have $(n+1) \frac{p}{q}-\left\lfloor(n+1)_{q}^{p}\right\rfloor \geq \frac{1}{q}$. Thus, we have

$$
\begin{aligned}
s(x)_{n} & =\left\lfloor(n+1) \frac{p}{q}\right\rfloor-\left\lfloor n \frac{p}{q}\right\rfloor \\
& =\left\lfloor(n+1) \frac{p}{q}-\frac{1}{q}\right\rfloor-\left\lfloor n \frac{p}{q}-\frac{1}{q}\right\rfloor \\
& =G\left(n+q^{\prime} ; x\right) .
\end{aligned}
$$

Secondly, let us show that $s(x)_{n}=G\left(n+q^{\prime}-q ; \frac{p^{\prime}}{q^{\prime}}\right)$ for n such that $q-q^{\prime} \leq$ $n<q$. Let $n=q-q^{\prime}+m$ with $0 \leq m<q^{\prime}$. If $n \neq q-1$, we get in the same way

$$
s(x)_{n}=\left\lfloor(m+1) \frac{p}{q}+\frac{1}{q}\right\rfloor-\left\lfloor m \frac{p}{q}+\frac{1}{q}\right\rfloor .
$$

On the other hand,

$$
\begin{aligned}
G\left(n+q^{\prime}-q ; \frac{p^{\prime}}{q^{\prime}}\right) & =\left\lfloor(m+1) \frac{p^{\prime}}{q^{\prime}}\right\rfloor-\left\lfloor m \frac{p^{\prime}}{q^{\prime}}\right\rfloor \\
& =\left\lfloor(m+1)\left(\frac{p^{\prime}}{q^{\prime}}-\frac{p}{q}+\frac{p}{q}\right)\right\rfloor-\left\lfloor m\left(\frac{p^{\prime}}{q^{\prime}}-\frac{p}{q}+\frac{p}{q}\right)\right\rfloor \\
& =\left\lfloor(m+1) \frac{p}{q}+\frac{m+1}{q q^{\prime}}\right\rfloor-\left\lfloor m \frac{p}{q}+\frac{m}{q q^{\prime}}\right\rfloor .
\end{aligned}
$$

Since $(m+1)_{q}^{p}+\frac{1}{q}, m_{q}^{p}+\frac{1}{q} \notin \mathbf{Z}$ for m with $0 \leq m<q^{\prime}-1, s(x)_{n}=$ $G\left(n+q^{\prime}-q ; \frac{p^{\prime}}{q^{\prime}}\right)$ for m with $0 \leq m<q^{\prime}-1$. Let $m=q^{\prime}-1$. Then, $s(x)_{n}=s(x)_{q-1}=\left\lfloor q_{q}^{p}\right\rfloor-\left\lfloor(q-1)_{q}^{p}\right\rfloor=1$. On the other hand, $G(n+$ $\left.q^{\prime}-q ; \frac{p^{\prime}}{q^{\prime}}\right)=G\left(q^{\prime}-1 ; \frac{p^{\prime}}{q^{\prime}}\right)=1$. Hence, $s(x)_{n}=G\left(n+q^{\prime}-q ; \frac{p^{\prime}}{q^{\prime}}\right)$. We can prove $s(x)_{n}=G(n-q ; x)$ for $n \geq q$ in the same way. Thus, we obtain $\bar{G}(x)=S(x)\left(\in L^{Z} / \sim\right)$. We get $\underline{G}(x)=S^{\prime}(x)$ similarly.

3.2. Combinatorial considerations.

Lemma 3.10. Let $W \in L^{N}$ be a word satisfying $p_{*}(m ; W)=p_{*}(m+1 ; W)$ for some integer $m \geq 0$. Then we have
(i) $p_{*}(n ; W)=p_{*}(m ; W)$ for any integer $n \geq m$,
(ii) W is ultimately periodic.

Proof. (i) We suppose $p_{*}(m ; W)=p_{*}(m+1 ; W)=l$. Let $W_{1}, W_{2}, \ldots, W_{l}$ be all the words in $D_{*}(m, W)$. Then we can choose $a_{i}=0$ or 1 such that $a_{1} W_{1}, a_{2} W_{2}, \ldots, a_{l} W_{l}$ are words in $D_{*}(m+1, W)$. On the other hand, $p_{*}(m ; W)=p_{*}(m+1 ; W)$ yields that they are all the words in $D_{*}(m+1, W)$, so that the l-tuple ($a_{1}, a_{2}, \ldots, a_{l}$) is uniquely determined.

Similarly, we can choose $b_{i}=0$ or 1 such that $W_{1} b_{1}, W_{2} b_{2}, \ldots, W_{l} b_{l}$ are all the words in $D_{*}(m+1, W)$ and $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$ is uniquely determined. Obviously $a_{1} W_{1} b_{1}, a_{2} W_{2} b_{2}, \ldots, a_{l} W_{l} b_{l}$ are all the words in $D_{*}(m+2, W)$. Then $p_{*}(m+2 ; W)=l$. By induction $p_{*}(n)=p_{*}(m)$ holds for any $n \geq m$.

Proof of Lemma 3.10, (ii). We assume that W satisfies $p_{*}(m ; W)=$ $p_{*}(m+1 ; W)$. Any subword V belonging to $D(m+1 ; W)$ but not belonging to $D_{*}(m+1, W)$ occurs in W finitely many times. Hence taking sufficiently large N, we may assume that V is not a subword of $U=w_{N} w_{N+1} \cdots$, i.e., $p(m+1 ; U)=p_{*}(m+1 ; U)=l, p(m ; U)=p_{*}(m ; U)=l$. Let $U=$ $U_{0} a_{1} a_{2} \cdots, U_{0} \in D_{*}(m, U)$, then, by the proof of (i) above, a_{1}, a_{2}, \ldots are uniquely determined by U_{0} as subsequent symbols and U_{0} occurs in $a_{1} a_{2} \ldots$
again, i.e., $U=U_{0} a_{1} a_{2} \cdots U_{0} a_{1} a_{2} \cdots$. Hence U is purely periodic and therefore W is ultimately periodic.

By Lemma 3.10 we have the following remark.
Remark 3.1. Condition (ii) in Theorem 2.6 implies that we have the following two cases:
(i) $p_{*}(n ; W)=n+1$ for all $n \geq 1$.
(ii) There exists a number $m \geq 0$ such that

$$
p_{*}(n ; W)= \begin{cases}n+1 & n<m \\ m & n \geq m\end{cases}
$$

In Case (ii), W is ultimately periodic and $D_{*}(m ; W)$ coincides with the set of fundamental periods of W.

Lemma 3.11. Let $p_{*}(1 ; W)=2$ and $p_{*}(n ; W) \leq n+1$ for all $n \geq 0$ for a word $W=w_{1} w_{2} \cdots \in L^{\boldsymbol{N}}$. Then there exists some number m such that there is an inverse image $\delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)$ and $p_{*}\left(n ; \delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right) \leq$ $n+1$ holds for all $n \geq 0$, where $k \in\{0,1\}$ is defined by

$$
k= \begin{cases}0 & \text { if } 00 \in D_{*}(2, W) \\ 1 & \text { if } 11 \in D_{*}(2, W) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The assumption implies $p_{*}(2 ; W) \leq 3$. First, we consider the case $p_{*}(2 ; W)=2$. Then $D_{*}(2, W)=\{01,10\}$, which implies $w_{m} w_{m+1} \cdots=$ (01) ${ }^{*}$ and $\delta_{0}^{-1}\left(w_{m} w_{m+1} \cdots\right)=00 \cdots=0^{*}$ for some $m \geq 1$. Noting $p_{*}\left(n ; 0^{*}\right)=1 \leq n+1$, we have the lemma in this case.

Secondly we consider the case $p_{*}(2 ; W)=3$. Since $01,10 \in D_{*}(2, W)$, only one of 00 or 11 belongs to $D_{*}(2, W)$. We suppose $00 \in D_{*}(2, W)$. Since 11 occurs finitely many times in W, we can choose m such that

$$
w_{m} w_{m+1} \cdots=0^{m_{1}} 10^{m_{2}} 1 \cdots 10^{m_{i}} 1 \cdots\left(m_{i} \geq 1\right)
$$

Then

$$
\delta_{0}^{-1}\left(w_{m} w_{m+1} \cdots\right)=0^{m_{1}-1} 10^{m_{2}-1} 1 \cdots 10^{m_{i}-1} 1 \cdots
$$

Put $S=0^{m_{1}-1} 10^{m_{2}-1} 1 \cdots 10^{m_{i}-1} 1 \cdots$. Assuming $p_{*}\left(n_{0} ; S\right)>n_{0}+1$ for some $n_{0} \geq 0$, we shall obtain a contradiction.

If $p_{*}(m+1 ; S)-p_{*}(m ; S) \leq 1$ for any positive integer $m<n_{0}$, then $p_{*}\left(n_{0} ; S\right) \leq n_{0}+1$. We put $n_{1}=\min \left\{m \geq 1 ; p_{*}(m+1 ; S)-p_{*}(m ; S)>1\right\}$, consequently $p_{*}\left(n_{1} ; S\right)-p_{*}\left(n_{1}-1 ; S\right)=1, p_{*}\left(n_{1}+1 ; S\right)-p_{*}\left(n_{1} ; S\right)>1$. So there are distinct words $A, B \in D_{*}\left(n_{1}, S\right)$ such that $A 0, A 1, B 0, B 1 \in$ $D_{*}\left(n_{1}+1, S\right)$. We can write $A=e A^{\prime}, B=f B^{\prime}, e, f \in\{1,0\}$. If $A^{\prime} \neq B^{\prime}$, then $p_{*}\left(n_{1} ; S\right)-p_{*}\left(n_{1}-1 ; S\right)>1$ follows from $A^{\prime} 0, A^{\prime} 1, B^{\prime} 0, B^{\prime} 1 \in$ $D_{*}\left(n_{1}, S\right)$. Hence, we get $A^{\prime}=B^{\prime}, e \neq f$. We may suppose $e=0, f=$ 1 without loss of generality. Since $0 A^{\prime} 00 \in D_{*}\left(n_{1}+3, S\right)$ or $0 A^{\prime} 01 \in$
$D_{*}\left(n_{1}+3, S\right)$, we obtain $\delta_{0}\left(0 A^{\prime} 00\right)=0 \delta_{0}\left(A^{\prime}\right) 00 \in D_{*}(j+1, W)$ or $0 \delta_{0}\left(A^{\prime}\right) 001 \in D_{*}(j+2, W)$, where j is the length of $0 \delta_{0}\left(A^{\prime}\right) 0$. Consequently, $0 \delta_{0}\left(A^{\prime}\right) 00 \in D_{*}(j+1, W)$ follows. It can be shown similarly that $0 \delta_{0}\left(A^{\prime}\right) 01,1 \delta_{0}\left(A^{\prime}\right) 00,1 \delta_{0}\left(A^{\prime}\right) 01 \in D_{*}(j+1, W)$. Therefore $p_{*}(j+1 ; W)-$ $p_{*}(j ; W)>1$, which contradicts that $p_{*}(n ; W) \leq n+1$ for all n. Next, we suppose $11 \in D_{*}(2, W)$. Since 00 occurs finitely many times in W, we can choose m such that

$$
w_{m} w_{m+1} \cdots=01^{m_{1}} 01^{m_{2}} 1 \cdots 01^{m_{i}} 1 \cdots\left(m_{i} \geq 1\right) .
$$

Then

$$
\delta_{1}^{-1}\left(w_{m} w_{m+1} \cdots\right)=01^{m_{1}-1} 01^{m_{2}-1} 1 \cdots 01^{m_{i}-1} 1 \cdots .
$$

Put $S=0^{m_{1}-1} 10^{m_{2}-1} 1 \cdots 10^{m_{i}-1} 1 \cdots$. We can prove in the same way as above that $p_{*}(n ; S) \leq n+1$ for each $n \geq 1$.
Lemma 3.12. Let $p_{*}(n ; W)=n+1$ for all $n \geq 0$ for $W=w_{1} w_{2} \cdots \in L^{N}$. Then there exist a number $m>1$ and a number $k \in\{0,1\}$ such that $p_{*}\left(n ; \delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right)=n+1$ for all $n \geq 0$.
Proof. In Lemma 3.11 the inequality $p_{*}\left(n ; \delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right) \leq n+1$ has been shown. If $p_{*}\left(l ; \delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right)<l+1$ for some l, then $\delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)$ is ultimately periodic and so is W. Therefore $p_{*}(n ; W)$ does not exceed the length of a fundamental period of W, which is a contradiction.
Lemma 3.13. Let $p_{*}(n ; W) \leq n+1\left(W=w_{1} w_{2} \cdots \in L^{\boldsymbol{N}}\right)$ for all $n \geq$ 0 with $p_{*}(1 ; W)=2$ and $p_{*}(l ; W)<l+1$ for a number $l \geq 1$. Then $p_{*}\left(l ; \delta_{k}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right)<p_{*}(l ; W)$ for a number $m \geq 0$.
Proof. Let l^{\prime} be the least positive integer satisfying $p_{*}\left(l^{\prime} ; W\right)<l^{\prime}+1$. Then $p_{*}\left(l^{\prime} ; W\right)=l^{\prime}$ and W is ultimately periodic with period l^{\prime}. Let $00,11 \notin$ $D_{*}(2, W)$. Then, for some $m, w_{m} w_{m+1} \cdots=(01)^{*}$. Therefore, the lemma holds apparently. We assume $00 \in D_{*}(2, W)$. We may assume a word $V \in D_{*}\left(l^{\prime}, W\right)$ has 1 as its suffix. Then 0 is a prefix of V, because $V V$ occurs in W infinitely many times and 11 occurs finitely many times in W. Since V has 0 (resp. 1) as its prefix (resp. suffix), and 11 is not a subword of $V, \delta_{0}^{-1}(V)$ does exist. Hence $\delta_{0}^{-1}\left(w_{m} w_{m+1} \cdots\right)=\delta_{0}^{-1}(V)^{*}$ for some m. Let q be the length of $\delta_{0}^{-1}(V)$. Then

$$
p_{*}\left(l ; \delta_{0}^{-1}\left(w_{m} w_{m+1} \cdots\right)\right) \leq q<l^{\prime} \leq l .
$$

We can prove the lemma similarly for the case $11 \in D_{*}(2, W)$.
Definition 3.3 (itinerary of a word). Let $p_{*}(n ; W) \leq n+1$ for any $n \geq 0\left(W \in L^{\boldsymbol{N}}\right)$. We define a finite or infinite sequence $\kappa=\kappa(W):=$ $\left\{k_{n}\right\}_{n=1,2, \ldots}\left(k_{n}=0,1\right)$ inductively by the following algorithm:

- If $p_{*}(1 ; W)=1$, then κ is defined to be the null sequence, i.e., $\kappa=\emptyset$.
- If $p_{*}(1 ; W)=2$, then we set $W_{1}:=W=w_{1,1} w_{2,1} \cdots$, $k_{1}:=\left\{\begin{array}{cc}1 & \text { if } 11 \in D_{*}\left(2, W_{1}\right) \\ 0 & \text { otherwise }\end{array}\right.$, and $W_{2}:=\delta_{k_{1}}^{-1}\left(w_{m_{1}, 1} w_{m_{1}+1,1} \cdots\right)$ for a number m_{1} such that $\delta_{k_{1}}^{-1}\left(w_{m_{1}, 1} w_{m_{1}+1,1} \cdots\right)$ exists.

Suppose W_{1}, \ldots, W_{t}, and k_{1}, \ldots, k_{t-1} are defined. Set $W_{t}=w_{1, t} w_{2, t} \cdots$.

- If $p_{*}\left(1 ; W_{t}\right)=1$, then the algorithm terminates.
- If $p_{*}\left(1 ; W_{t}\right)=2$, then we define $k_{t}:=\left\{\begin{array}{cc}1 & \text { if } \\ 0 & 11 \in D_{*}\left(2, W_{t}\right) \\ 0 & \text { otherwise }\end{array}\right.$ and $W_{t+1} \quad:=\delta_{k_{t}}^{-1}\left(w_{m_{t}, t} w_{m_{t}+1, t} \cdots\right)$ for a number $m_{t} \quad$ such that $\delta_{k_{t}}^{-1}\left(w_{m_{t}, t} w_{m_{t}+1, t} \cdots\right)$ exists.

We call $\kappa(W)$ the itinerary of $W\left(W \in L^{\boldsymbol{N}}\right)$.
In the definition of W_{t+1} above, note that Lemma 3.11 implies the existence of a number m_{t} such that $\delta_{k_{t}}^{-1}\left(w_{m_{t}, t} w_{m_{t}+1, t} \cdots\right)$ exists. We remark that the sequence $\kappa(W)$ is uniquely determined for any W satisfying $p_{*}(n ; W) \leq n+1$ for all $n \geq 0$; while, in general, the sequence of words W_{t} is not uniquely determined.

We can define the itinerary for $W \in L^{-N}$ by Definition 3.3 with ${ }^{R} W$ in place of W, where ${ }^{R} W=w_{1} w_{2} w_{3} \cdots$ for $W=\cdots w_{3} w_{2} w_{1}$.

Lemma 3.14. $\kappa(G(x))=i(x)$ for all irrational $x \in[0,1]$.
Proof. Let $x \in[0,1]$ be an irrational number. It is not difficult to see that if $x<\frac{1}{2}$, then 00 occurs in $G(x)$ and if $x>\frac{1}{2}$, then 11 occurs in $G(x)$. Therefore, $k_{1}=i_{1}$. By Lemma 3.10, for any natural number n, $G\left(T^{n-1}(x)\right)=W_{n}$. By induction we get the lemma.

3.3. Proof of Theorems.

Proof of Theorem 2.6. The proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is similar to that of Theorem 2.1. Let us prove (ii) \Rightarrow (iii). First, let us suppose $p_{*}(n, W)=n+1$ for any $n \geq 0$. Then, it follows from Lemma 3.12 that $\left\{k_{n}\right\}_{n=1,2, \ldots}=\kappa(W)$ is an infinite sequence. We can choose a sequence $\left\{W_{n}\right\}_{n=1,2, \ldots}$ of infinite words and a sequence $\left\{m_{n}\right\}_{n=1,2, \ldots}$ of positive integers as in Definition 3.3, so that

$$
\begin{equation*}
W_{n}=w_{1, n} w_{2, n} \cdots w_{m_{n}-1, n} \delta_{k_{n}}\left(W_{n+1}\right) \tag{3.5}
\end{equation*}
$$

where $w_{1, n}, w_{2, n}, \ldots, w_{m_{n}-1, n}$ are words strictly over L for $n>1$. In view of (3.5), we have $W=W_{1}$, which can be written in the following form:

$$
\begin{aligned}
W= & w_{1,1} \cdots w_{m_{1}-1,1} \delta_{k_{1}}\left(w_{1,2} \cdots w_{m_{2}-1,2}\right) \delta_{k_{1}} \circ \delta_{k_{2}}\left(w_{1,3} \cdots w_{m_{3}-1,3}\right) \cdots \\
& \cdots \delta_{k_{1}} \circ \cdots \circ \delta_{k_{n-1}}\left(w_{1, n} \cdots w_{m_{n}-1, n} W_{n}\right)
\end{aligned}
$$

It is clear that $\delta_{k_{1}} \circ \cdots \delta_{k_{n}}\left(w_{1, n} \cdots w_{m_{n}-1, n}\right)$ is a word strictly over $\left\{A_{n}, B_{n}\right\}$ with $A_{n}=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{n}}(0), B_{n}=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{n}}(1)$. Setting $\delta_{k_{1}} \circ \cdots \circ$ $\delta_{k_{n}}\left(w_{1, n} \cdots w_{m_{n}-1, n}\right)=u_{n}$, we obtain the assertion (iii).

Secondly, let us suppose $p_{*}(n, W)<n+1$ for some $n>0$. From Remark 3.1, $p_{*}(n, W)$ is bounded and W is ultimately periodic. We can choose a sequence $\left\{W_{n}\right\}_{n=1,2, \ldots}$ as in Definition 3.3. Lemma 3.13 implies that $\left\{W_{n}\right\}_{n=1,2, \ldots}$ is a finite sequence of infinite words, i.e., $\left\{W_{n}\right\}_{n=1,2, \ldots}=$ $\left\{W_{n}\right\}_{n=1,2, \ldots, l+1}$. In view of Definition 3.3, we can write

$$
W_{l+1}=w_{1, l+1} \cdots w_{m_{1}-1, l+1} V, \quad V=1^{*} \text { or } 0^{*}
$$

Hence, we get

$$
\begin{aligned}
W= & w_{1,1} \cdots w_{m_{1}-1,1} \delta_{k_{1}}\left(w_{1,2} \cdots w_{m_{2}-1,2}\right) \delta_{k_{1}} \circ \delta_{k_{2}}\left(w_{1,3} \cdots w_{m_{3}-1,3}\right) \cdots \\
& \cdots \delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}\left(w_{1, l+1} \cdots w_{m_{l}-1, l+1} V\right) \\
= & w_{1,1} \cdots w_{m_{1}-1,1} \delta_{k_{1}}\left(w_{1,2} \cdots w_{m_{2}-1,2}\right) \delta_{k_{1}} \circ \delta_{k_{2}}\left(w_{1,3} \cdots w_{m_{3}-1,3}\right) \cdots \\
& \cdots \delta_{k_{1}} \circ \cdots \circ \delta_{k_{l-1}}\left(w_{1, l} \cdots w_{m_{l-1}-1, l} \delta_{k_{l}}\left(w_{1, l+1} \cdots w_{m_{l}-1, l+1}\right)\right) \\
& \delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}(V)
\end{aligned}
$$

Since $\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}(V)$ is A_{l}^{*} or B_{l}^{*}, setting

$$
\begin{aligned}
u_{0}= & w_{1,1} \cdots w_{m_{1}-1,1} \delta_{k_{1}}\left(w_{1,2} \cdots w_{m_{2}-1,2}\right) \delta_{k_{1}} \circ \delta_{k_{2}}\left(w_{1,3} \cdots w_{m_{3}-1,3}\right) \cdots \\
& \cdots \delta_{k_{1}} \circ \cdots \circ \delta_{k_{l-1}}\left(w_{1, l} \cdots w_{m_{l-1}-1, l} \delta_{k_{l}}\left(w_{1, l+1} \cdots w_{m_{l}-1, l+1}\right)\right)
\end{aligned}
$$

we obtain assertion the (iii).
(iii) \Rightarrow (iv): We divide the proof into the following four cases (Cases I-IV).

Case I: Suppose that $\left\{k_{n}\right\}_{n=1,2, \ldots}$ is an infinite sequence in which 0 and 1 occur infinitely many times. Let R be a *-subword of W. There exists an integer l such that the length of A_{l} and B_{l} is larger than the length of R. Choose an integer $j>0$ such that 10 is a subword of $\delta_{k_{l+1}} \circ \cdots \circ \delta_{k_{l+j}}(0)$ and $\delta_{k_{l+1}} \circ \cdots \circ \delta_{k_{l+j}}(1)$. Then

$$
\begin{align*}
A_{l+j} & =\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}\left(\delta_{k_{l+1}} \circ \cdots \circ \delta_{k_{l+j}}(0)\right) \\
& =\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}(0 \cdots 10 \cdots 1) \\
& =A_{l} \cdots B_{l} A_{l} \cdots B_{l}, \tag{3.6}\\
B_{l+j} & =\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}\left(\delta_{k_{l+1}} \circ \cdots \circ \delta_{k_{l+j}}(1)\right) \\
& =\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l}}(0 \cdots 10 \cdots 1) \\
& =A_{l} \cdots B_{l} A_{l} \cdots B_{l} . \tag{3.7}
\end{align*}
$$

R occurs in $A_{l+j}, B_{l+j}, A_{l+j} A_{l+j}, A_{l+j} B_{l+j}, B_{l+j} A_{l+j}$ or $B_{l+j} B_{l+j}$.
Suppose that R occurs in $A_{l+j} A_{l+j}$. If R does not occur in A_{l+j}, then (3.6) implies that R occurs in $B_{l} A_{l}$ since the length of R is smaller than that of A_{l}, B_{l}. Therefore R occurs in A_{l+j}. Similarly, we can conclude that
R occurs in B_{l+j} by (3.7). Lemma 3.4 implies that $\left\{k_{n}\right\}_{n=1,2, \ldots}=i(x)$ for an irrational x. It follows from Lemma 3.2 that

$$
G(x)=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l+j}}\left(G\left(T^{l+j}(x)\right)\right) .
$$

Since 0 and 1 occurs in $G\left(T^{l+j}(x)\right)$, both $A_{l+j}=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{l+j}}(0)$ and $B_{l+j}=\delta_{k_{1}} \cdots \circ \delta_{k_{l+j}}(1)$ occur in $G(x)$. Thus we obtain that $R \in D(G(x))$ and $D_{*}(W) \subset D(G(x))$.

Conversely, we suppose $V \in D(G(x))$. Then, there exist natural numbers l and m such that V occurs in A_{l+m} and B_{l+m} by an argument similar to the argument above. We have $V \in D_{*}(W)$, since $A_{l+m}, B_{l+m} \in D_{*}(W)$. Therefore, we obtain that $D_{*}(W)=D(G(x))$, so that W satisfies Condition (C1). Thus we have shown the assertion (iv) in Case I.

Case II: Suppose that there exists an integer j such that $k_{n}=0$ for any $n>j$ and $k_{j}=1$. Lemma 3.7 implies that $\left\{k_{n}\right\}_{n=1,2, \ldots}=\tilde{i}(x)$ for a rational x. Then if $n>j$,

$$
\begin{align*}
& A_{n}=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{n}}(0)=A_{j} \tag{3.8}\\
& B_{n}=\delta_{k_{1}} \circ \cdots \circ \delta_{k_{n}}(1)=\left(A_{j}\right)^{n-j} B_{j} . \tag{3.9}
\end{align*}
$$

We can write by (3.8) and (3.9)

$$
\begin{align*}
W & =u_{0} \cdots u_{j} \cdots \tag{3.10}\\
& =u_{0} \cdots u_{j-1} A_{j}^{a_{1}} B_{j} A_{j}^{a_{2}} B_{j} A_{j}^{a_{3}} B_{j} \cdots .
\end{align*}
$$

where $\left\{a_{n}\right\}_{n=1,2, \ldots}$ is an infinite sequence of non-negative integers with $\lim _{n \rightarrow \infty} a_{n}=\infty$. Therefore, any $*$-subword R in W occurs in $A_{j}^{m} B_{j} A_{j}^{m}$ for sufficiently large integer m. By Lemma 3.8,

$$
\bar{G}(x)=\cdots A_{j} A_{j} B_{j} A_{j} A_{j} \cdots
$$

Therefore R occurs in $\bar{G}(x)$, i.e., $D_{*}(W) \subset D(\bar{G}(x))$.
Conversely if $V \in D(\bar{G}(x))$, then V occurs in $A_{j}^{m} B_{j} A_{j}^{m}$ for a sufficiently large integer m. (3.10) implies that V is a $*$-subword of W, i.e., $V \in D_{*}(W)$. Therefore, we get $D_{*}(W)=D(\bar{G}(x))$, so that W satisfies Condition (C3).

Case III: Suppose that there exists an integer j such that $k_{n}=1$ for any $n>j$ and $k_{j}=0$. Then W satisfies Condition (C2). The proof is similar to that given in Case II.

Case IV: Suppose that the sequence $\left\{k_{n}\right\}_{n=1,2 \ldots \ldots}$ is a finite sequence. In this case $D_{*}(n, W)=D\left(n ; A_{i}^{*}\right)$ or $D_{*}(n, W)=D\left(n ; B_{i}^{*}\right)$. There exist rational numbers u, v such that $A_{i}^{*}=G(u), B_{i}^{*}=G(v)$ by the proof of Lemma 3.8. Then W satisfies Condition (C1) for $x=u$ or $x=v$. We have completed the proof of (iii) \Rightarrow (iv).
(iv) \Rightarrow (i): By Definition 2.7, $D_{*}(W)$ coincides with one of the sets $D(G(x)), D(\underline{G}(x))$ or $D(\bar{G}(x))$. Since by Theorem 2.2, 2.3 and Lemma 3.9, $G(x), \underline{G}(x)$ and $\bar{G}(x)$ are Sturmian, W is a *-Sturmian word.

Proof of Theorem 2.7. Let $W=w_{1} w_{2} \ldots \in L^{\mathbf{N}}$ be $*$-Sturmian. By Theorem 2.6 there exists $\alpha \in[0,1]$ such that one of the following three conditions holds:
(1) $D_{*}(W)=D(G(\alpha))$,
(2) $D_{*}(W)=D(\underline{G}(\alpha))$ with $\alpha \in \mathbf{Q}$,
(3) $D_{*}(W)=D(\bar{G}(\alpha))$ with $\alpha \in \mathbf{Q}$.

Let us show that $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n ; W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n ; W)}{n}$. First, we suppose that (1) holds. Let $\epsilon>0$ be any small number. Let m be a natural number with $\frac{1}{m}<\frac{\epsilon}{3}$. Since $W=w_{1} w_{2} \ldots \in L^{\mathbf{N}}$ is $*$-Sturmian, there exists an integer $k>0$ such that any subword of $w_{k+1} w_{k+2} \ldots$ with length m is in $D_{*}(W)$. Let c be a positive integer with $\frac{k}{c}<\frac{\epsilon}{3}$. Let n be a positive integer with $n>c$. Let $w=w_{l} w_{l+1} \ldots w_{l+n-1} \in D(n ; W)$. Then, we have

$$
|w|_{1}=\left|w_{l} w_{l+1} \ldots w_{l+k-1}\right|_{1}+\left|w_{l+k} \ldots w_{l+n-1}\right|_{1}
$$

$$
\begin{aligned}
= & \left|w_{l} w_{l+1} \ldots w_{l+k-1}\right|_{1} \\
& +\sum_{j=0}^{d-1}\left|w_{l+k+m * j} \ldots w_{l+k+m *(j+1)-1}\right|_{1}+\left|w_{l+k+m d} \ldots w_{l+n-1}\right|_{1},
\end{aligned}
$$

where $d=\left\lceil\frac{n-k}{m}\right\rceil-1$. Since $w_{l+k+m * j} \ldots w_{l+k+m *(j+1)-1} \in D_{*}(W)$ for $j=$ $0, \ldots, d-1, w_{l+k+m * j} \ldots w_{l+k+m *(j+1)-1} \in D(G(\alpha))$. Therefore, there exist integers f_{j} for $j=0, \ldots, d-1$ such that for $i=0, \ldots, m-1, w_{l+k+m * j+i}=$ $\left\lfloor\left(f_{j}+i\right) \alpha\right\rfloor-\left\lfloor\left(f_{j}+i-1\right) \alpha\right\rfloor$. Thus, $\|\left. w_{l+k+m * j} \ldots w_{l+k+m *(j+1)-1}\right|_{1}-$ $m \alpha\left|=\left|\left\lfloor\left(f_{j}+m-1\right) \alpha\right\rfloor-\left\lfloor\left(f_{j}-1\right) \alpha\right\rfloor-m \alpha\right| \leq 1\right.$. Similarly we have $\left|w_{l+k+m d} \ldots w_{l+n-1}-(n-k-m d) \alpha\right|_{1} \leq 1$. Therefore, by (3.11) we have

$$
\left||w|_{1}-n \alpha\right| \leq\left|\left|w_{l} w_{l+1} \ldots w_{l+k-1}\right|_{1}-k \alpha\right|+d+1 \leq k+d+1 .
$$

Therefore, we have

$$
\left|\frac{|w|_{1}}{n}-\alpha\right| \leq \frac{k}{n}+\frac{d}{n}+\frac{1}{n} \leq \epsilon .
$$

Thus, we have $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n ; W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n ; W)}{n}$. For cases (2) and (3) we have a similar proof.

The proofs of Theorems 2.8 and 2.11 are similar to that of Theorem 2.6, so we give a sketch of the proofs. Let $W=W_{1} W_{2}$ be a two-sided infinite word satisfying $p_{*}(n ; W) \leq n+1$ with $W_{1} \in L^{-N}, W_{2} \in L^{\boldsymbol{N}}$, then W_{1} and W_{2} are $*$-Sturmian words. There are four cases.

Case I: Suppose $p_{*}\left(n ; W_{1}\right)=p_{*}\left(n ; W_{2}\right)=n+1$ for all n. Then there exists an irrational number $x \in(0,1)$ or a rational number $x^{\prime} \in[0,1]$ such that $D_{*}\left(W_{1}\right)=D_{*}\left(W_{2}\right)=D(G(x)), D\left(\underline{G}\left(x^{\prime}\right)\right)$, or $D\left(\bar{G}\left(x^{\prime}\right)\right)$. Therefore, W_{1} and W_{2} have the same itinerary, and $W_{1}=\cdots u_{-2} u_{-1} u, W_{2}=v u_{1} u_{2} \cdots$ $\left(u, v \in L^{*}\right)$.

Case II: Suppose $p_{*}\left(n ; W_{1}\right)=n+1$ for all n and $p_{*}\left(m ; W_{2}\right)<m+1$ for some m. Then W_{2} is ultimately periodic and there exists a rational number $x \in[0,1]$ such that $D_{*}\left(W_{1}\right)=D_{*}(\underline{G}(x)) \supset D_{*}\left(W_{2}\right)$ or $D_{*}\left(W_{1}\right)=$ $D_{*}(\bar{G}(x)) \supset D_{*}\left(W_{2}\right)$. By the definition of $\underline{G}(x)$ (resp. $\left.\bar{G}(x)\right), W_{2}=v B_{j}^{*}$ (resp. $\left.v A_{j}^{*}\right)\left(v \in L^{*}\right)$. Therefore $W=\cdots u_{-1} u_{0} v B_{j}^{*}$ or $W=\cdots u_{-1} u_{0} v A_{j}^{*}$.

Case III: Suppose $p_{*}\left(n ; W_{2}\right)=n+1$ for all n and $p_{*}\left(m ; W_{1}\right)<m+1$ for some m. Then $W={ }^{*} A_{j} v u_{0} u_{1} \cdots$ or $W={ }^{*} B_{j} v u_{0} u_{1} \cdots$. The proof is similar to Case II.

Case IV: Suppose $p_{*}\left(m ; W_{1}\right)<m+1$ and $p_{*}\left(m ; W_{2}\right)<m+1$ for some m. Then $W_{1}=^{*} A_{j} u$ or ${ }^{*} B_{j} u$ and $W_{2}=v A_{j}^{*}$ or $v B_{j}^{*}$. It is easy to show that ${ }^{*} A_{j} u_{0} A_{j}^{*}$ and ${ }^{{ }^{B}}{ }_{j} u_{0} B_{j}^{*}$ are ${ }^{*}$-Sturmian and ${ }^{*} A_{j} u_{0} B_{j}^{*}$ and ${ }^{*} B_{j} u_{0} A_{j}^{*}$ are not *-Sturmian.

The proof of Theorem 2.10 is similar to that of Theorem 2.1 and the proof of Theorem 2.9 is similar to that of Theorem 2.7, so we omit these proofs.

4. Complexity of certain *-Sturmian words

Let us consider the complexity of an infinite word W :

$$
\begin{equation*}
W=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \cdots, 0 \leq a_{1} \leq a_{2} \leq a_{3} \cdots . \tag{4.1}
\end{equation*}
$$

It is clear that W is a $*$-Sturmian word. We write $u \prec_{p} v(u, v \in D(W))$ if u is a prefix of v. The binary relation \prec_{p} is reflexive, asymmetric, and transitive, so that $X=X(W):=\left(D(W), \prec_{p}\right)$ is a partially ordered set with the order \prec_{p}. For each element $v \in D(n+1 ; W),(n \geq 0)$, there exists a unique element $u \in D(n ; W)$ such that $u \prec_{p} v$. Hence, X can be regarded as a tree consisting of the nodes $w \in D(W)$ with λ as its root, where every edge is understood to be one of the segments connecting two nodes $u \in D(n ; W), v \in D(n+1 ; W)$ as far as $u \prec_{p} v$. For example, if W is the word (4.1) with $a_{n}=n-1$, then $X(W)$ is the following tree.

Fig. 1. $X\left(11010^{2} 10^{3} 10^{4} \cdots\right)$
In Figure 1 , only words of the form $0^{k}, 0^{l} 10^{m}(l<m)$ are followed by two words:

Theorem 4.1. Let W be a word given by (4.1) with ($a_{0}:=$) $0 \leq a_{1}$ $<a_{2}<a_{3} \cdots$. Then

$$
p(n ; W)=n+1+\sharp\left\{(i, j) \in N^{2} ; j \leq a_{i-1}+1, a_{i}+j \leq n-1\right\}, n \geq 0
$$

Proof. We put

$$
\begin{align*}
B_{n} & :=B_{n}(W) \\
B & =B(W):=\bigcup_{n \geq 0} B_{n}(W) \tag{4.2}
\end{align*}
$$

Then, we have

$$
\begin{equation*}
p(n)-p(n-1)=\sharp B_{n-1} \quad\left(n \geq 1 ; \quad p(0)=1, B_{0}=\{\lambda\}\right) . \tag{4.3}
\end{equation*}
$$

Since $a_{1}<a_{2}<a_{3}<\cdots, w$ occurs only once in W if $|w|_{1} \geq 2$, so that $w \notin B$. Hence, we get

$$
w \in B \Rightarrow|w|_{1} \leq 1
$$

If $|w|_{1}=0$, i.e., $w=0^{n}$, then $w \in B$, since a_{n} tends to infinity. If w belongs to B with $|w|_{1}=1$, then w can be written as follows, and vice versa:

$$
\begin{equation*}
w=0^{j-1} 10^{a_{i}}, \quad 1 \leq j \leq a_{i-1}+1, \quad i \geq 1 \tag{4.4}
\end{equation*}
$$

Hence, in view of (4.3) and (4.4), we obtain

$$
\begin{aligned}
p(n) & =1+\sum_{m=0}^{n-1} \sharp B_{m} \\
& =n+1+\sharp\left\{w=0^{j-1} 10^{a_{i}} ;|w| \leq n-1,1 \leq j \leq a_{i-1}+1, i \geq 1\right\}
\end{aligned}
$$

where $|w|$ is the length of w, which implies the theorem.
Theorem 4.2. Let W be as in Theorem 4.1. Then,

$$
\begin{equation*}
p(n ; W) \leq \frac{n^{2}}{4}+\frac{n}{2}+\frac{17}{8}+\frac{(-1)^{n+1}}{8}-\left\lfloor\left(\frac{3}{4}+\frac{n}{4}\right)^{-1}\right\rfloor \quad(n \geq 0) \tag{4.5}
\end{equation*}
$$

The above estimate is sharp; the equality is attained by

$$
W=W_{0}:=11010^{2} 10^{3} 10^{4} \cdots
$$

Proof. From the proof of Theorem 4.1, it follows that if $w \in B_{n}(W)$ with $w \neq 0^{n}$, then w is of the form (4.4) with $|w|=n$. On the other hand, all the words $w=0^{j-1} 10^{a_{i}}$ with

$$
1 \leq j \leq a_{i}, \quad i \geq 1, \quad|w|=n
$$

belong to $B_{n}\left(W_{0}\right)$. Hence $B_{n}(W) \subset B_{n}\left(W_{0}\right)$, so that $\sharp B_{n}(W) \leq \sharp B_{n}\left(W_{0}\right)$, which implies $p(n ; W) \leq p\left(n ; W_{0}\right)$.

Now, we consider

$$
d_{n}:=p\left(n ; W_{0}\right)-p\left(n-1 ; W_{0}\right)=\sharp B_{n-1}\left(W_{0}\right) \quad(n \geq 1) .
$$

In view of Figure 1, we have $d_{1}=1, d_{2}=2$. For a given sequence $b=$ $\left\{b_{n}\right\}_{n=1,2, \ldots}$, we denote by $\int_{1}^{n}\left(b_{1}, b_{2}, b_{3}, \cdots\right)$ the number defined by

$$
\begin{equation*}
\int_{1}^{n}\left(b_{1}, b_{2}, b_{3}, \cdots\right):=1+\sum_{m=1}^{n} b_{m}, \quad n \geq 0 \tag{4.6}
\end{equation*}
$$

We use the notation $\int_{1}^{n} w$ also for a word w over \boldsymbol{N} as far as its meaning is clear. For instance, $\int_{1}^{n} 12^{3} 3^{2} 5151 \cdots$ is the number $\int_{1}^{n}(1,2,2,2,3,3,5$, $1,5,1, \cdots)$. Noting

$$
\begin{array}{ll}
B_{2 n-2}\left(W_{0}\right)=\left\{0^{2 n-2},\right. & \left.0^{i} 10^{2 n-i-3} ; \quad 0 \leq i \leq n-2\right\} \\
B_{2 n-1}\left(W_{0}\right)=\left\{0^{2 n-1},\right. & \left.0^{i} 10^{2 n-i-2} ; \quad 0 \leq i \leq n-2\right\} \quad(n \geq 2)
\end{array}
$$

we get $d_{2 n-1}=d_{2 n}=n(n \geq 2)$. Therefore, we obtain

$$
\begin{equation*}
p\left(n ; W_{0}\right)=\int_{1}^{n} 12^{3} 3^{2} 4^{2} 5^{2} \ldots \tag{4.7}
\end{equation*}
$$

By induction, we can show that the right-hand side of (4.7) coincides with that of (4.5), which completes the proof.

Remark 4.1. If $\mathbf{N} \backslash\left\{a_{n} ; n \geq 1\right\}$ is not the empty set, then

$$
p(n ; W)<p\left(n ; W_{0}\right)
$$

holds for all $n \geq 2+\min \left(\mathbf{N} \backslash\left\{a_{n} ; n \geq 1\right\}\right)$.

We can give some examples.

Example 4.1.

(i)

$$
\begin{aligned}
p\left(n ; 1010^{2} 10^{3} 10^{4} \cdots\right) & =\int_{1}^{n} 1^{2} 2^{2} 3^{2} 4^{2} \cdots \\
& =\frac{n^{2}}{4}+\frac{n}{2}+\frac{9}{8}+\frac{(-1)^{n+1}}{8} \quad(n \geq 0) .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
p\left(n ; 10^{2} 10^{4} 10^{6} 10^{8} \cdots\right)= & \int_{1}^{n} 1^{3} 212^{2} 323^{2} 434^{2} 545^{2} 6 \ldots \\
= & 2\left\lfloor\frac{n+1}{4}\right\rfloor\left(\left\lfloor\frac{n+1}{4}\right\rfloor+1\right) \\
& +\left\lfloor\frac{n+1}{4}+1\right\rfloor\left(n+1-4\left\lfloor\frac{n+1}{4}\right\rfloor\right) \\
& +1-\left\lfloor\frac{n+3}{4}\right\rfloor \quad(n \geq 1) .
\end{aligned}
$$

For a word W as in Theorem 4.1, it is easily seen that

$$
p(n ; W)= \begin{cases}n+1 & \left(0 \leq n \leq a_{1}+1\right) \\ n+2 & \left(a_{1}+2 \leq n \leq a_{2}+1\right)\end{cases}
$$

In view of Theorem 4.1, for any $n \geq a_{2}+2$, we have

$$
p(n ; W)=n+1+\sum_{i=1}^{r(n)} \min \left\{a_{i-1}+1, n-1-a_{i}\right\},
$$

where

$$
r(n)=r(n ; W):=\max \left\{m ; a_{m} \leq n-2\right\} .
$$

Hence, setting

$$
s(n)=s(n ; W):=\max \left\{m ; a_{m-1}+a_{m} \leq n-2\right\}
$$

which does not exceed $r(n)$, we get

$$
\begin{equation*}
p(n ; W)=n+1+\sum_{i=1}^{s(n)}\left(a_{i-1}+1\right)+\sum_{i=s(n)+1}^{r(n)}\left(n-1-a_{i}\right) \quad\left(n \geq a_{2}+2\right) \tag{4.8}
\end{equation*}
$$

Hence we obtain the following
Corollary 4.1. Let W be as in Theorem 4.1, then

$$
p(n ; W)= \begin{cases}n+1 & \left(0 \leq n \leq a_{1}+1\right), \\ n+2 & \left(a_{1}+2 \leq n \leq a_{2}+1\right), \\ (r(n)-s(n)+1) n+2 s(n)-r(n) & \\ +1+\sum_{i=1}^{s(n)-1} a_{i}-\sum_{i=s(n)+1}^{r(n)} a_{i} & \left(n \geq a_{2}+2\right) .\end{cases}
$$

Remark 4.2. If $a_{n}+a_{n+1} \leq a_{n+2}$ holds for all $n \geq 1$, then

$$
s(n)=r(n) \text { or } r(n)-1
$$

holds for all $n \geq a_{2}+2$. In particular, if $a_{n}+a_{n+1}=a_{n+2}$ holds for all $n \geq 1$, then

$$
s(n)=r(n)-1 \quad\left(n \geq a_{2}+2\right)
$$

Suppose that

$$
\begin{equation*}
a_{n}+a_{n+1}<a_{n+2} \quad \text { for all } n \geq n_{0} . \tag{4.9}
\end{equation*}
$$

Then, $d_{n}(W)=1$, or $2\left(n \geq a_{n_{0}+2}+2\right)$, so that

$$
1 \leq \liminf _{n \rightarrow \infty} \frac{p(n ; W)}{n} \leq \limsup _{n \rightarrow \infty} \frac{p(n ; W)}{n} \leq 2
$$

Noting that $d_{n}(W)=2$ if and only if

$$
a_{i+2}+2 \leq n \leq a_{i+1}+a_{i+2}+2
$$

holds for some $i \geq n_{0}$, we get

$$
\begin{aligned}
& p\left(N_{n}\right)=N_{n}+a_{1}+a_{2}+\ldots+a_{n}+n+O(1) \\
& p\left(M_{n}\right)=M_{n}+a_{1}+a_{2}+\ldots+a_{n}+n+O(1)
\end{aligned}
$$

$$
\limsup _{n \rightarrow \infty} \frac{p(n)}{n}=\limsup _{n \rightarrow \infty} \frac{p\left(N_{n}\right)}{N_{n}}, \quad \liminf _{n \rightarrow \infty} \frac{p(n)}{n}=\liminf _{n \rightarrow \infty} \frac{p\left(M_{n}\right)}{M_{n}},
$$

where

$$
N_{n}=a_{n}+a_{n+1}+2, \quad M_{n}=a_{n+2}+1
$$

It follows from (4.9) that

$$
1+\frac{a_{n+1}}{a_{n}}<\frac{a_{n+1}}{a_{n}} \frac{a_{n+2}}{a_{n+1}},
$$

which implies

$$
\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \geq \frac{1+\sqrt{5}}{2}
$$

Hence, we get

$$
\begin{aligned}
\frac{p\left(N_{n}\right)}{N_{n}} & =1+\frac{a_{1}+a_{2}+\ldots+a_{n}}{a_{n}+a_{n+1}}+o(1) \\
\frac{p\left(M_{n}\right)}{N_{n}} & =1+\frac{a_{1}+a_{2}+\ldots+a_{n}}{a_{n+2}}+o(1)
\end{aligned}
$$

In view of the above formulae, we can show Remarks 4.3, 4.4.

Remark 4.3. If there exists an infinite set $S \subset \mathbf{N}$ for a fixed positive number ϵ such that

$$
(1+\epsilon)\left(a_{n}+a_{n+1}\right)<a_{n+2} \quad \text { for all } n \in S
$$

and

$$
\frac{a_{n+2}}{a_{1}+a_{2}+\ldots+a_{n}} \text { is bounded for all } n \in S
$$

then,

$$
1 \leq \liminf _{n \rightarrow \infty} \frac{p(n)}{n}<\limsup _{n \rightarrow \infty} \frac{p(n)}{n} \leq 2
$$

Remark 4.4. If $\frac{a_{n+1}}{a_{1}+\ldots+a_{n}}$ tends to infinity, then $\lim _{n \rightarrow \infty} \frac{p(n)}{n}=1$. For instance, the word over $\{0,1\}$ defined by the digits in the base 2 expansion of a Liouville number $\sum_{n=1}^{\infty} 2^{-n!}$ has this property.

Example 4.2.

(i)

$$
p\left(n ; 10^{2^{0}} 10^{2^{1}} 10^{2^{2}} \cdots\right)=\int_{1}^{n} 1^{2} 2^{6} 1^{2^{1}-1} 2^{2^{2}+1} 1^{2^{2}-1} 2^{2^{3}+1} 1^{2^{3}-1} 2^{2^{4}+1} \cdots,
$$

which implies

$$
\liminf _{n \rightarrow \infty} \frac{p(n)}{n}=\frac{3}{2}, \quad \limsup _{n \rightarrow \infty} \frac{p(n)}{n}=\frac{5}{3}
$$

since the identities

$$
\begin{aligned}
p\left(2^{n}+1\right) & =3 \cdot 2^{n-1}+n+1 \\
p\left(3 \cdot 2^{n-1}+2\right) & =5 \cdot 2^{n-1}+n+3 \quad(n \geq 1)
\end{aligned}
$$

hold. It is remarkable that the example shares a common phenomenon with a word different from *-Sturmian words: for the word generated by the catenative formula $B_{n+1}=B_{n}^{2} 1 B_{n}^{2},\left(n \geq 0, B_{0}:=0\right)$, $\liminf _{n \rightarrow \infty} \frac{p(n)}{n}=\frac{3}{2}$ and $\lim \sup _{n \rightarrow \infty} \frac{p(n)}{n}=\frac{5}{3}$ hold, cf. Proposition 11 in [6].
(ii) Let $W=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \ldots$ with $a_{1}=1, a_{2}=2, a_{3}=4, a_{n+3}=$ $a_{n+2}+a_{n+1}+a_{n}(n \geq 1)$. Then,

$$
p(n ; W)=\int_{1}^{n} 1^{2} 2^{11} 1^{a_{2}-1} 2^{a_{4}+1} 1^{a_{3}-1} 2^{a_{5}+1} 1^{a_{4}-1} 2^{a_{6}+1} \ldots(n \geq 0)
$$

Using the above formula, we can show

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{p(n ; W)}{n}=\frac{1}{13} \alpha^{2}-\frac{1}{26} \alpha+\frac{43}{26}=1.843333 \cdots \notin \mathbf{Q} \\
& \liminf _{n \rightarrow \infty} \frac{p(n ; W)}{n}=\frac{3}{22} \alpha^{2}-\frac{2}{11} \alpha+\frac{35}{22}=1.717808 \cdots \notin \mathbf{Q}
\end{aligned}
$$

where

$$
\alpha=\frac{1+\sqrt[3]{19+3 \sqrt{33}}+\sqrt[3]{19-3 \sqrt{33}}}{3}
$$

(iii) For any recurrence sequence $\left\{a_{n}\right\}_{n=1,2, \ldots}$ with $x^{2}-x-1$ as its characteristic polynomial and satisfying $0 \leq a_{1}<a_{2}$,

$$
p(n ; W)=2 n+r(n ; W)-a_{2}-1 \quad\left(n \geq a_{2}+2\right)
$$

holds for $W=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \cdots$, so that

$$
p(n ; W)=2 n+\frac{\log n}{\log \alpha}+O(1), \quad \alpha=\frac{1+\sqrt{5}}{2}
$$

In particular,

$$
\begin{aligned}
& p(n ; W)=\int_{1}^{n} 1^{2} 2^{2} 32^{a_{2}-1} 32^{a_{3}-1} 32^{a_{4}-1} 32^{a_{5}-1} \ldots\left(a_{1}=1, a_{2}=2\right) \\
& p(n ; W)=\int_{1}^{n} 1^{2} 21^{2} 32^{a_{2}-1} 32^{a_{3}-1} 32^{a_{4}-1} 32^{a_{5}-1} \ldots\left(a_{1}=1, a_{2}=3\right)
\end{aligned}
$$

We write $f(n) \asymp g(n)$ if $f(n)=O(g(n))$ and $g(n)=O(f(n))$.
Theorem 4.3. Let W be a word given by (4.1) with $0 \leq a_{1}<a_{2}<\cdots$ and $a_{n} \asymp n^{\alpha}(\alpha \geq 1)$. Then $p(n ; W) \asymp n^{1+1 / \alpha}$.

Proof. We suppose $c_{1} n^{\alpha} \leq a_{n} \leq c_{2} n^{\alpha}$. (4.8) implies

$$
\begin{aligned}
p(n ; W) & \leq \sum_{i=1}^{r(n)}\left(a_{i-1}+1\right)+n+1 \\
& \leq \sum_{a_{i}<n} a_{i}+O(n) \\
& \leq \sum_{c_{1} i^{\alpha}<n} c_{2} i^{\alpha}+O(n) \\
& \leq c_{2} \int_{0}^{\left(\frac{n}{c_{1}}\right)^{1 / \alpha}} x^{\alpha} d x+O(n) \\
& =\frac{c_{2}}{(\alpha+1) c_{1}^{1+1 / \alpha}} n^{1+1 / \alpha}+O(n)
\end{aligned}
$$

and

$$
\begin{aligned}
p(n ; W) & \geq \sum_{a_{i}+a_{i-1} \leq n-2}\left(a_{i-1}+1\right)+O(n) \\
& \geq \sum_{2 a_{i} \leq n-2} a_{i-1}+O(n) \\
& \geq \sum_{c_{2} i^{\alpha} \leq(n-2) / 2} c_{1} i^{\alpha}+O(n) \\
& \geq c_{1} \int_{0}^{\left(\frac{n-2}{\left.2 c_{2}\right)^{1 / \alpha}} x^{\alpha} d x+O(n)\right.} \\
& =\frac{c_{1}}{\alpha+1}\left(\frac{n-2}{2 c_{2}}\right)^{1+1 / \alpha}+O(n) .
\end{aligned}
$$

Therefore $p(n ; W) \asymp n^{1+1 / \alpha}$ holds.
Theorem 4.4. Let $k \geq 2$ be an integer, and $\left\{b_{n}\right\}_{n=1}^{\infty}$ a linear recurrence sequence with $x^{k}-x-1$ as its characteristic polynomial, defined by the initial condition:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 0 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 2 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \ddots & 1 \\
\vdots & \vdots & \vdots & & 2 & 1 \\
1 & 1 & 2 & \cdots & 2 & 2
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
\vdots \\
\vdots \\
t_{k}
\end{array}\right),\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in \boldsymbol{N}^{k}
$$

Let W be the word defined by

$$
W:=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \cdots, \quad a_{n}:=b_{n}-1
$$

Then $p(n ; W)$ is given by the following, so that

$$
p(n ; W)=k n+c \quad \text { for all } n \geq b_{k}+1, c \leq 0
$$

where c is a non-positive constant, and $c=0$ only if $k=2, t_{1}=t_{2}=1$.

$$
p(n ; W)=\left\{\begin{array}{lr}
n+1 & \left(0 \leq n \leq b_{1}\right) \\
n+2 & \left(b_{1}+1 \leq n \leq b_{2}\right) \\
2 n-b_{2}+2 & \left(b_{2}+1 \leq n \leq b_{3}\right) \\
3 n-b_{2}-b_{3}+2 & \left(b_{3}+1 \leq n \leq b_{4}\right) \\
\cdots & \cdots \\
j n-b_{2}-b_{3}-\cdots-b_{j}+2 & \left(b_{j}+1 \leq n \leq b_{j+1}\right) \\
\cdots & \cdots \\
k n-b_{2}-b_{3}-\cdots-b_{k}+2 & \left(n \geq b_{k}+1\right)
\end{array}\right.
$$

Proof. By definition

$$
b_{n+k}=b_{n+1}+b_{n} \quad(n \geq 1)
$$

Noting $1 \leq b_{1}<b_{2}<\cdots<b_{k}$, and $b_{k+1}-b_{k}=b_{1}+b_{2}-b_{k}=t_{1}>0$, we get $b_{n}<b_{n+1} \quad(n \geq 1)$ inductively, so that

$$
a_{n}<a_{n+1} \quad(n \geq 1), \quad a_{1} \geq 0
$$

Hence the word W satisfies the condition in Theorem 4.1. We denote by $[p, q)$ the interval $\{m \in N ; p \leq m<q\}$. In view of Theorem 4.1, we have

$$
\begin{align*}
d_{n}=d_{n}(W) & :=p(n ; W)-p(n-1 ; W) \\
& =1+\sharp\left\{(i, j) \in N^{2} ; j \leq a_{i-1}+1, a_{i}+j=n-1\right\} \\
& =1+\sharp\left\{i \in N ; a_{i}+2 \leq n \leq a_{i}+a_{i-1}+2\right\} \tag{4.10}\\
& =1+\sharp\left\{J_{i} ; J_{i} \ni n, i \geq 1\right\} \quad\left(n \geq 1, a_{0}:=0\right),
\end{align*}
$$

where

$$
\begin{aligned}
J_{i} & =\left[a_{i}+2, a_{i}+a_{i-1}+3\right) \\
& =\left[b_{i}+1, b_{i}+b_{i-1}+1\right) \\
& =\left[b_{i}+1, b_{i+k-1}+1\right) \quad(i \geq 2) \\
J_{1} & =\left[b_{1}+1, b_{1}+2\right)
\end{aligned}
$$

Hence, $J_{i+1} \cap J_{i+k}=\emptyset, \overline{J_{i+1}} \cap \overline{J_{i+k}}=\left\{b_{i+k-1}+1\right\}$, where \bar{X} denotes the closure of a set $X \subset \mathbf{R}$, cf. Fig. 2.

Fig. 2.
Thus, it is clear that the number of intervals J_{i} containing n is equal to $k-1$ for all $n \geq b_{k}+1$, which together with (4.10) implies $d_{n}=k$ ($n \geq b_{k}+1$). Counting the number of intervals J_{i} that contain n with $1 \leq n \leq b_{k}$, we get

$$
\begin{array}{ll}
d_{n}=1 & \left(1 \leq n \leq b_{1}\right) \\
d_{n}=2 & \left(n=b_{1}+1\right) \\
d_{n}=1 & \left(b_{1}+2 \leq n \leq b_{2}\right), \\
d_{n}=j & \left(b_{j}+1 \leq n \leq b_{j+1}, 2 \leq j \leq k-1\right)
\end{array}
$$

Hence, we obtain $p(n ; W)=n+1\left(0 \leq n \leq b_{1}\right), p(n ; W)=n+2\left(b_{1}+1 \leq\right.$ $n \leq b_{2}$), so that the assertion

$$
p(n ; W)=j n-b_{2}-b_{3}-\cdots-b_{j}+2 \quad\left(b_{j}+1 \leq n \leq b_{j+1}\right)
$$

holds for $j=1$. By induction on j, we can easily show that the assertion holds for all $j, 1 \leq j \leq k-1$. Recalling $d_{n}=k\left(n \geq b_{k}+1\right)$, we obtain

$$
\begin{aligned}
p(n ; W) & =k n+c \quad\left(n \geq b_{k}+1\right) \\
c & =-b_{2}-b_{3}-\cdots-b_{k}+2,
\end{aligned}
$$

so that $c \leq 0$, and $c=0$ implies $k=2, t_{1}=t_{2}=1$, which completes the proof.

Example 4.3. Let $W=W\left(k ; t_{1}, \ldots, t_{k}\right)$ be as in Theorem 4.4. Then $p(n ; W(2 ; 1,1))=2 n(n \geq 1), p(n ; W(2 ; 1,2))=2 n-1(n \geq 3)$, $p(n ; W(2 ; 2,1))=2 n-1(n \geq 2), p(n ; W(3 ; 3,1,1))=3(n-3)(n \geq 6)$. Related to linear complexity $p(n)=a n+b$, there are some results. S. Ferenczi considered a class of words generated by a locally catenative formula $B_{n+1}=B_{n}^{r_{n}} 1 B_{n}^{s_{n}}\left(n \geq 0, B_{0}:=0\right)$, and considered the complexity of the word $\lim B_{n}$, cf. [6]. P. Arnoux and G. Rauzy investigated a class of words, having $p(n)=2 n+1$ as their complexity, given by an interval exchange of some intervals; G. Rote showed that a word $\beta_{1} \beta_{2} \cdots$ defined by $\beta_{n}=\chi_{[0, \phi]}(\{n \theta+c\})$ always has complexity $p(n)=2 n$, where $\{\cdot\}$ denotes
the fractional part of a real number, and $\chi_{J}(x)$ the characteristic function equal to 1 (resp. 0) for $x \in J$ (resp. $x \notin J$), cf. [2], [12].

Let us consider the word given by (4.1). If a_{n} is bounded, then W is an ultimately periodic word, which is not an interesting case. If a_{n} is unbounded, then without loss of generality, we can write

$$
\begin{align*}
& W=\left(10^{a_{1}}\right)^{e_{1}}\left(10^{a_{2}}\right)^{e_{2}}\left(10^{a_{3}}\right)^{e_{3}} \cdots \tag{4.11}\\
& \quad\left(a_{0}:=0\right) \leq a_{1}<a_{2}<\cdots, \quad e_{n} \geq 1
\end{align*}
$$

Theorem 4.5. Let W be the word given by (4.11). Then

$$
\begin{aligned}
p(n ; W)= & n+1 \\
& +\sharp\left\{(i, j, k) \in \mathbf{N}^{3} ; j \leq a_{i}+1, k \leq e_{i}-1, k\left(a_{i}+1\right)+j \leq n\right\} \\
& +\sharp\left\{(i, j) \in \mathbf{N}^{2} ; j \leq a_{i-1}+1, e_{i}\left(a_{i}+1\right)+j \leq n\right\} \quad(n \geq 0) .
\end{aligned}
$$

Proof. For the set $B_{n}(W)$ defined by (4.2), we have the identity (4.3). We write $u \prec v$ (resp. $u \prec_{s} v$) if u is a subword (resp. a suffix) of v for $u, v \in D(W)$. Let $v \in D(W)$ with

$$
10^{a_{i-1}} 10^{a_{i}} \prec v \quad(i \geq 2) \text { or }\left(10^{a_{i}}\right)^{e_{i}} 1 \prec v \quad(i \geq 1) .
$$

Then, v occurs only once in W, so that $v \notin B(W)$, where $B(W)$ is the set given by (4.2). Hence $w \in B(W)$ implies $w \prec 0^{a_{i-1}}\left(10^{a_{i}}\right)^{e_{i}}$ for some $i \geq 1$. In addition, if $w \in B(W)$ with $|w|_{1} \geq 1$, then $10^{a_{i}} \prec_{s} w$ for some $i \geq 1$. Hence,

$$
w \in B(W), \quad|w|_{1} \neq 0 \Rightarrow w \prec_{s} 0^{a_{i-1}}\left(10^{a_{i}}\right)^{e_{i}} \quad \text { for some } i \geq 1
$$

which implies

$$
\left\{w \in B(W) ;|w|_{1} \neq 0\right\} \subset B^{(1)} \cup B^{(2)}
$$

where

$$
\begin{aligned}
& B^{(1)}=B^{(1)}(W):=\left\{0^{j-1}\left(10^{a_{i}}\right)^{k} ; 1 \leq i, 1 \leq j \leq a_{i}+1,1 \leq k \leq e_{i}-1\right\} \\
& B^{(2)}=B^{(2)}(W):=\left\{0^{j-1}\left(10^{a_{i}}\right)^{e_{i}} ; 1 \leq i, 1 \leq j \leq a_{i-1}+1\right\}
\end{aligned}
$$

It is easy to check $\left\{w \in B(W) ;|w|_{1} \neq 0\right\} \supset B^{(1)} \cup B^{(2)}$. Hence we have $\left\{w \in B(W) ;|w|_{1} \neq 0\right\}=B^{(1)} \cup B^{(2)}$. Since $0^{n} \in B(W)(n \geq 0)$, we get

$$
B(W)=\left\{0^{n} ; n \geq 0\right\} \cup B^{(1)}(W) \cup B^{(2)}(W)
$$

Noting that the right-hand side of the above equality is a disjoint union, we obtain by (4.3)

$$
\begin{aligned}
& p(n)=n+1 \\
& \quad+\sharp\left\{w=0^{j-1}\left(10^{a_{i}}\right)^{k} ; 1 \leq i, 1 \leq j \leq a_{i}+1,1 \leq k \leq e_{i}-1,|w| \leq n-1\right\} \\
& +\sharp\left\{w=0^{j-1}\left(10^{a_{i}}\right)^{e_{i}} ; 1 \leq i, 1 \leq j \leq a_{i-1}+1,|w| \leq n-1\right\},
\end{aligned}
$$

which implies the theorem.
In view of Theorem 4.5, for $d_{n}(W):=p(n ; W)-p(n-1 ; W)$, we have

$$
\begin{gather*}
d_{n}(W)=1+\sharp\left\{(i, j, k) \in \mathbf{N}^{3} ; j \leq a_{i}+1, k \leq e_{i}-1, k\left(a_{i}+1\right)+j=n\right\} \\
4.12) \quad+\sharp\left\{(i, j) \in \mathbf{N}^{2} ; j \leq a_{i-1}+1, e_{i}\left(a_{i}+1\right)+j=n\right\} \tag{4.12}\\
=1+\sharp\left\{(i, k) \in N^{2} ; 1 \leq n-k\left(a_{i}+1\right) \leq a_{i}+1, k \leq e_{i}-1\right\} \\
\\
\quad+\sharp\left\{i \in N ; 1 \leq n-e_{i}\left(a_{i}+1\right) \leq a_{i-1}+1\right\} \quad(n \geq 1) .
\end{gather*}
$$

If $e_{n}=2$ for all $n \geq 2$, then we get by (4.12), (4.10)

$$
d_{n}(W)=d_{n}\left(W^{\prime}\right)+t_{n}+u_{n} \quad(n \geq 1)
$$

where $W^{\prime}=10^{a_{1}} 10^{a_{2}} 10^{a_{3}} \cdots$, and

$$
\begin{aligned}
& t_{n}=t_{n}(W):=\sharp\left\{i \in \mathbf{N} ; a_{i-1}+2 \leq n-a_{i}-1 \leq a_{i}+1\right\} \\
& u_{n}=u_{n}(W):=\sharp\left\{i \in \mathbf{N} ; 1 \leq n-2 a_{i}-2 \leq a_{i-1}+1\right\} .
\end{aligned}
$$

Example 4.4.

(i) W is the word (4.1) with $a_{n}=n-1, e_{n}=2$ for all $n \geq 1$. Then,

$$
\begin{aligned}
t_{1} t_{2} t_{3} \ldots= & 0^{3} 101010 \cdots \quad\left(t_{n}=1(n: \text { even }), t_{n}=0(n: \text { odd }), n \geq 3\right), \\
u_{1} u_{2} u_{3} \ldots= & 0^{2} 10101^{4} 212^{4} 323^{4} \cdots\left(u_{n}=\lfloor(n-1 / 2)\rfloor-\lceil(n+1) / 3\rceil+1,\right. \\
& n \geq 6) .
\end{aligned}
$$

From (4.7),

$$
d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime}=12^{3} 3^{2} 4^{2} 5^{2} \cdots
$$

follows, where $d_{n}^{\prime}=d_{n}\left(W^{\prime}\right)$. Hence, we get

$$
p(n ; W)=\int_{1}^{n} 123^{2} 4^{2} 56^{2} 78^{2} 9 \cdots
$$

(ii) Let W be the word (4.1) with $e_{n}=2(n \geq 1)$ and a_{n} as in Example 4.2.(iii) such that $a_{1}=1, a_{2}=2$. Then

$$
\begin{aligned}
t_{1} t_{2} t_{3} \cdots & =0^{3} 1010^{a_{1}} 1^{a_{1}} 0^{a_{2}} 1^{a_{3}} 0^{a_{3}} \cdots, \\
u_{1} u_{2} u_{3} \cdots & =0^{4} 101^{2} 1^{a_{2}+1} 0^{a_{2}-1} 1^{a_{3}-1} 1^{a_{4}+1} 0^{a_{4}-1} \cdots,
\end{aligned}
$$

so that

$$
p(n ; W)=\int_{1}^{n} 1^{2} 23434^{2} 3^{a_{3}-2} 4^{2} 3^{a_{4}-2} 4^{2} 3^{a_{5}-2} \cdots
$$

5. Estimate of the complexity function of *-Sturmian words

Related to the bounds of the usual complexity of *-Sturmian words, we can show the following Theorems 5.1, 5.2.

Theorem 5.1. Any *-Sturmian word W is deterministic, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{\log (p(n ; W))}{n}=0
$$

Proof. If W is ultimately periodic, then $p(n)$ is bounded, so that we obtain the theorem. We suppose that W is not ultimately periodic. Then, Theorem 2.6 implies that there exists an infinite sequence $\left\{k_{n}\right\}_{n=1,2, \ldots .}$ such that

$$
W=u_{0} u_{1} \cdots u_{m} \cdots,
$$

see the notation in (iii), Theorem 2.6. We put

$$
W_{k}^{\prime}:=u_{k} u_{k+1} \cdots \in L^{N}(k \in N) .
$$

Since u_{m} is a finite word strictly over $\left\{A_{m}, B_{m}\right\}$ for $m \geq k$, we can write

$$
W_{k}^{\prime}=P_{0} P_{1} P_{2} \cdots,
$$

where $P_{0}, P_{1}, \cdots \in\left\{A_{k}, B_{k}\right\}$. We suppose that $\left|B_{k}\right| \geq\left|A_{k}\right|$. (If $\left|B_{k}\right| \leq\left|A_{k}\right|$, we will have a similar proof.) We denote by Ψ the set of all finite sets of integers. Let n be a positive integer. We define a map $\Delta: D\left(n ; W^{\prime}\right) \rightarrow$ $\mathbf{N} \times \Psi$ as follows. For $A \in D\left(n ; W^{\prime}\right)$, we denote by $\tau(A)$ the set

$$
\tau(A):=\left\{(j, l) \in \mathbf{N}^{2} ; A \text { is a subword of } P_{j} \cdots P_{l}\right\}
$$

We choose a $\left(j^{\prime}, l^{\prime}\right) \in \tau(A)$ such that

$$
\begin{aligned}
j^{\prime} & =\min \{j ;(j, l) \in \tau(A)\} \\
l^{\prime} & =\min \left\{l ;\left(j^{\prime}, l\right) \in \tau(A)\right\}
\end{aligned}
$$

and we put $h:=\min \left\{|P| ; P_{j^{\prime}} \cdots P_{l^{\prime}}=P A P^{\prime}\right\}$. We define $\Delta(A)$ by

$$
\Delta(A):=\left(h,\left\{1+\sum_{s=j^{\prime}}^{t}\left|P_{s}\right| ; P_{t+1}=B_{k}, j^{\prime} \leq t \leq l^{\prime}-1\right\} \cup\left\{\sum_{s=j^{\prime}}^{l^{\prime}}\left|P_{s}\right|\right\} \cup \iota\right)
$$

where

$$
\iota=\left\{\begin{array}{cl}
\{1\} & \text { if } P_{j^{\prime}}=B_{k}, \\
\emptyset & \text { if } P_{j^{\prime}}=A_{k} .
\end{array}\right.
$$

It is not difficult to show that the map Δ is injective and

$$
\Delta\left(D\left(n ; W^{\prime}\right)\right) \subset\left\{0,1, \ldots,\left|B_{k}\right|\right\} \times \Psi^{\prime}
$$

where

$$
\Psi^{\prime}:=\left\{\psi \in \Psi \left\lvert\, \begin{array}{l|l}
\max _{x \in \psi} x \leq n+2\left|B_{k}\right|, \\
t-s \geq\left|B_{k}\right| \text { for } s, t \in \psi \text { with } s<t \text { and } t \neq \max _{x \in \psi} x .
\end{array}\right.\right\}
$$

The condition in the definition of Ψ^{\prime} implies that

$$
\sharp \Psi^{\prime} \leq\left(\left|B_{k}\right|+1\right)^{\left(\frac{n}{\left|B_{k}\right|}+4\right)} .
$$

Therefore, we have

$$
p\left(n ; W^{\prime}\right) \leq\left(\left|B_{k}\right|+1\right)^{\left(\frac{n}{\left|B_{k}\right|}+5\right)}
$$

which implies

$$
\frac{\log p\left(n ; W^{\prime}\right)}{n} \leq\left(\frac{1}{\left|B_{k}\right|}+\frac{5}{n}\right) \log \left(\left|B_{k}\right|+1\right)
$$

On the other hand, we get

$$
\frac{\log p(n ; W)}{n} \leq \frac{\log \left(p\left(n ; W^{\prime}\right)+\left|u_{0} u_{1} \cdots u_{k-1}\right|\right)}{n}
$$

For $n \geq 2, k \geq 2, p\left(n ; W^{\prime}\right) \geq 2$ and $\left|u_{0} u_{1} \cdots u_{k-1}\right| \geq 2$ hold, so that

$$
\begin{aligned}
\frac{\log p(n ; W)}{n} & \leq \frac{\log \left(p\left(n ; W^{\prime}\right)\right.}{n}+\frac{\log \left(\left|u_{0} u_{1} \cdots u_{k-1}\right|\right)}{n} \\
& \leq\left(\frac{1}{\left|B_{k}\right|}+\frac{5}{n}\right) \log \left(\left|B_{k}\right|+1\right)+\frac{\log \left(\left|u_{0} u_{1} \cdots u_{k-1}\right|\right)}{n}
\end{aligned}
$$

Noting $\max \left\{\left|A_{k}\right|,\left|B_{k}\right|\right\} \rightarrow \infty,(k \rightarrow \infty)$, we obtain the theorem.
Theorem 5.2. For any small positive number ϵ there exists a*-Sturmian word U such that $p(U ; n)>2^{n^{1-\epsilon}}$ holds for all sufficiently large integer n.

We need a lemma for the proof of Theorem 5.2.
Lemma 5.1. Let $k_{1}, k_{2}, \ldots, k_{n} \in\{0,1\}$, and A_{n}, B_{n} be as in Definition 2.4. If $k_{n}=1$, then there exist words P, Q such that $A_{n}=P 0 Q, B_{n}=P 1$, i.e., $A_{n} \not \varliminf_{p} B_{n}$ and $B_{n} \not \varliminf_{p} A_{n}$.

Proof. The first letter of A_{n} is 0 and the last letter of B_{n} is 1 . We shall prove the lemma by induction on n. When $n=1$, we have $A_{1}=01, B_{1}=1$, so that the lemma holds with $P=\lambda, Q=1$. Let $A^{\prime}=\delta_{k_{2}} \circ \cdots \circ \delta_{k_{n}}(0), B^{\prime}=$
$\delta_{k_{2}} \circ \cdots \circ \delta_{k_{n}}(1)$. By the induction hypothesis, there exist words P^{\prime}, Q^{\prime} so that $A^{\prime}=P^{\prime} 0 Q^{\prime}, B^{\prime}=P^{\prime} 1$. If $k_{1}=0$, then

$$
A_{n}=\delta_{0}\left(A^{\prime}\right)=\delta_{0}\left(P^{\prime}\right) 0 \delta_{0}\left(Q^{\prime}\right), \quad B_{n}=\delta_{0}\left(B^{\prime}\right)=\delta_{0}\left(P^{\prime}\right) 01 .
$$

Since the first letter of $\delta_{0}\left(Q^{\prime}\right)$ is 0 , setting $P=\delta_{0}\left(P^{\prime}\right) 0$, we get the lemma. If $k_{1}=1$, then

$$
A_{n}=\delta_{1}\left(A^{\prime}\right)=\delta_{1}\left(P^{\prime}\right) 01 \delta_{1}\left(Q^{\prime}\right), \quad B_{n}=\delta_{1}\left(B^{\prime}\right)=\delta_{1}\left(P^{\prime}\right) 1 .
$$

Setting $P=\delta_{1}\left(P^{\prime}\right)$, we get the lemma.
Proof of Theorem 5.2. Let $w_{1}=0 \cdots 0, w_{2}=0 \cdots 01, \ldots, w_{2^{n}}=1 \cdots 1$ be all elements of L^{n} ordered in lexicographic order. We put $W(n)=$ $w_{1} w_{2} \cdots w_{2^{n}}$. Let $k_{1}, k_{2}, \ldots, k_{m}, \ldots \in\{0,1\}$ and $k_{m}=1$ for infinitely many m. We set

$$
U=\delta_{k_{1}}\left(W\left(N_{1}\right)\right) \delta_{k_{1}} \circ \delta_{k_{2}}\left(W\left(N_{2}\right)\right) \cdots \delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}\left(W\left(N_{m}\right)\right) \cdots,
$$

where $N_{m} \in \boldsymbol{N}(m \geq 1)$. By virtue of Theorem 2.6, U is a $*$-Sturmian word. We suppose $k_{m}=1$. Since $\left|\delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}(1)\right|<\left|\delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}(0)\right|=\left|A_{m}\right|$,

$$
\left|\delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}(w)\right| \leq N_{m}\left|A_{m}\right|
$$

for any $w \in L^{N_{m}}$. By Lemma 5.1, for any $w_{i}, w_{j} \in L^{N_{m}}, \delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}\left(w_{i}\right) \not \varliminf_{p}$ $\delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}\left(w_{j}\right)$ and $\delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}\left(w_{j}\right) \not_{p} \delta_{k_{1}} \circ \cdots \circ \delta_{k_{m}}\left(w_{i}\right)$. Thus, we have shown that $k_{m}=1$ implies $p\left(U ; N_{m}\left|A_{m}\right|\right) \geq 2^{N_{m}}$. Taking a sufficiently large integer m with $k_{m}=1$, we can choose integers $N=N_{m}$ and $n=n(m)$ such that $2^{1-\frac{e}{4}}\left|A_{m}\right|^{\frac{1}{e}-1}>N>2^{1-\frac{e}{2}}\left|A_{m}\right|^{\frac{1}{e}-1}, 2\left|A_{m}\right|^{\frac{1}{e}}>n>N\left|A_{m}\right|$; then $n^{1-\epsilon}<2^{1-\epsilon}\left|A_{m}\right|^{\frac{1}{\epsilon}-1}<N$. We get

$$
p(U ; n)>p\left(U ; N\left|A_{m}\right|\right)>2^{N}>2^{n^{1-e}} .
$$

Since $k_{i}=1$ for infinitely many $i, p(U ; n)>2^{n^{1-\epsilon}}$ holds for infinitely many n. In particular, if $k_{i}=1$ for all i, then $\left|A_{m}\right|=m+1$ for all m and $p(U ; n)>2^{n^{1-\epsilon}}$ for n satisfying $2(m+1)^{\frac{2}{\epsilon}}>n>2^{1-\frac{\epsilon}{4}}(m+1)^{\frac{1}{\epsilon}}$. If $m>\left(2^{1+\epsilon+\epsilon^{2} / 4}-2^{\epsilon}\right) /\left(2^{\epsilon}-2^{\epsilon-\epsilon^{2} / 4}\right)$, then $2^{1-\frac{\epsilon}{4}}(m+2)^{\frac{1}{\epsilon}}<2(m+1)^{\frac{1}{\epsilon}}$ and $\left(2(m+1)^{\frac{2}{e}}, 2^{1-\frac{\varepsilon}{4}}(m+1)^{\frac{1}{\epsilon}}\right) \cap\left(2(m+2)^{\frac{2}{e}}, 2^{1-\frac{\epsilon}{4}}(m+2)^{\frac{1}{\epsilon}}\right) \neq \emptyset$, where (p, q) denotes the interval $\{x \in N ; p<x<q\}$. Therefore, there exists m such that $2(m+1)^{\frac{2}{\epsilon}}>n>2^{1-\frac{c}{4}}(m+1)^{\frac{1}{\epsilon}}$ for any sufficiently large n, which implies the theorem.

References

[1] P. Arnoux, C. Mauduit, I. Shiokawa, J.-I. Tamura, Complexity of sequences defined by billiards in the cube. Bull. Soc. Math. France 122 (1994), 1-12.
[2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité $2 n+1$. Bull. Soc. Math. France 119 (1991), 199-215.
[3] Y. Baryshnikov, Complexity of trajectories in rectangular billiards. Comm. Math. Phys. 174 (1995), 43-56.
[4] T. C. Brown, Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull. 36 (1993), 15-21.
[5] E. M. Coven, G. A. Hedlund, Sequences with minimal block growth. Math. Systems Theory 7 (1973), 138-153.
[6] S. Ferenczi, Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité $2 n+1$. Bull. Soc. Math. France 123 (1995), 271-292.
[7] S. Ito, S.-I. Yasutomi, On continued fraction, substitutions and characteristic sequences $[n x+y]-[(n-1) x+y]$. Japan. J. Math. 16 (1990), 287-306.
[8] W. F. Lunnon, P. A. B. Pleasants, Characterization of two-distance sequences. J. Austral. Math. Soc. (Ser. A) 53 (1992), 198-218.
[9] M. Morse, G. A. Hedlund, Symbolic dynamics. Amer. J. Math. 60 (1938), 815-866.
[10] M. Morse, G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 1-42.
[11] I. Nakashima, J.-I. Tamura, S.-I. Yasutomi, Modified complexity and *-Sturmian word. Proc. Japan Acad. (Ser. A) Math. Sci. 75 (1999), 26-28.
[12] G. Rote, Sequences with subword complexity $2 n$. J. Number Theory. 46 (1994), 196-213.
[13] S.-I. Yasutomi, The continued fraction expansion of α with $\mu(\alpha)=3$. Acta Arith. 84 (1998), 337-374.

Izumi Nakashima
General Education
Gifu National College of Technology
Kamimakuwa Shinsei-cho Motosu-gun Gifu 501-0495, Japan
E-mail : nakasimalgifu-nct.ac.jp
Jun-ichi Tamura
3-3-7-307 Azamino Aoba-ku
Yokohama 225-0011, Japan
E-mail: jtamuractsuda.ac.jp
Shin-ichi Yasutomi
General Education
Suzuka National College of Technology
Shiroko Suzuka Mie 510-0294, Japan
E-mail : yasutomiegenl.suzuka-ct.ac.jp

[^0]: Manuscrit reçu le 27 juillet 1999.

