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Stark’s conjecture in multi-quadratic
extensions, revisited

par DAVID S. DUMMIT*, JONATHAN W. SANDS*
et BRETT TANGEDAL

RÉSUMÉ. Les conjectures de Stark relient les unités spéciales dans
les corps de nombres à certaines valeurs des fonctions L attachées
à ces corps. Nous considérons le cas d’une extension abélienne,
et nous établissons la relation fondamentale de la conjecture de
Stark lorsque son groupe de Galois est d’exposant 2. Nous mon-
trons que la conjecture est entièrement vérifiée pour les extensions
biquadratiques ainsi que dans de nombreux autres cas.

ABSTRACT. Stark’s conjectures connect special units in number
fields with special values of L-functions attached to these fields.
We consider the fundamental equality of Stark’s refined conjec-
ture for the case of an abelian Galois group, and prove it when
this group has exponent 2. For biquadratic extensions and most
others, we prove more, establishing the conjecture in full.

1. The elements of Stark’s refined abelian conjecture
Units. Let:

o L/F be an abelian extension of number fields in which a distinguished
(finite or infinite) prime of F denoted by to splits completely. These
and all number fields will be assumed to lie in a fixed algebraic closure
of the field Q of rational numbers.

. 11m be the normalized absolute value at a fixed prime tv of L above t3.

. wL be the order of the group p L of roots of unity in L.

. uiu) be the group of elements of L having absolute value equal to 1 at
each (finite or infinite) absolute value of L except for those associated
with primes above b, in other words, those which are conjugates of I IM.
We sometimes refer to U(") as the o-units of L.

Manuscrit regu le 3 decembre 2001.
* Research supported by NSF grant DMS 9624057 and NSA grant MDA 904-00-1-0024.
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L-functions. Let:

o G be the abelian Galois group of the extension L/F.
. G be the character group of G.
. S’ be a fixed finite set of primes of F of cardinality &#x3E; 3, and as-
sume that ~5‘ contains n, all finite primes which ramify in L/F, and all
infinite primes. The Stark conjecture we are concerned with must be
formulated differently when = 2, and is known to be true in this
case by [4] and [5].
so = S - ftil.
. Sfin = the set of finite primes in S.
· ~ run through the finite primes of F not in S.
. a run through integral ideals of F, prime to the elements of S.
. Na denote the absolute norm of the ideal a.
. a a E G be the well-defined automorphism attached to a via the Artin
map.

For each X E G, we have the Artin L-function with Euler factors at the
primes in S’ removed:

It is known that has an analytic continuation and a functional
equation relating it to s, 7). The order of its zero at s = 0 is

q splits completely in the field
fixed by the kernel of I

depending on whether or not X is the trivial character xo . See [5] for further
background and references.

The conjecture. We first single out the key equality in Stark’s refined
abelian conjecture for first derivatives of L-functions which posits the exis-
tence of a special to-unit e serving as an "L-function evaluator."

Conjecture There exists an elerraent (often called a "Stark
unit ") E E uin) such that

Remark 1. The conditions on E specify all of its absolute values and thus
determine E up to a root of unity in L. This ambiguity still remains when
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we impose Stark’s additional condition below. Nevertheless, we sometimes
refer to - as "the" Stark unit.

The full Stark conjecture in this setting (cf. [4], [5]) says more.

Conjecture St(L/F,S). St’ (L/ F,S) holds, and furthermore L(e1/WL)/ F
is an abelian Galois extension.

2. Statements of the results

We assume from now on that there are at least 2 infinite primes ool, 002
in S. Otherwise St(L/F,S) is known to be true by [4] (see also [5,IV.3.9]).
We may then assume that o02 ~ b. Also assume from now on that G =

Gal(L/F) is isomorphic to (Z/2z)m for some positive integer m. We then
call L/F a multiquadratic extension of rank m.

Our aim in this paper is to prove the following theorems.

Theorem 1. Let C S consist of the finite primes in S, and let rF(S)
denote the 2-rank of the Sfin-class group of F. If ISI &#x3E; m + 1 - rF(S),
then St(L/F,S) holds for the multiquadratic extension L/F.
Theorem 2. St’(L/F,S) holds for the multiquadratic extension LIF,
hence for an arbitrary multiquadratic extension.

Theorem 3. St(L/F, S) holds for the multiquadratic extension L/F if 0
is a real infinite prime or a finite prime, except possibly when L is the
maximal multiquadratic extension of F which is unramified outside of S
and in which to splits completely.
Theorem 4. St(L/F, S) holds for the multiquadratic extercsion L/F when
the rank of this extension is m = 2, i. e. L/F is biquadratic. Thus it holds
for an arbitrary biquadratic extensions.

Remark 2. St(L/F, S) was proved for the multiquadratic extension L/F
in [2] and [3] under the assumption that either ~S~ &#x3E; m + 1, or that no
prime above 2 (i.e. no dyadic prime) is ramified in L/F.

3. The relative quadratic case

Assume K/F is a relative quadratic extension. This section summarizes
some basic results from [3] and [5] on St(K/F,S).
We set:

o Gal(K/ F) = (T) of order 2.
* 77K = 1 if S contains two split primes of K/ F.
. 77K = generator of the infinite cyclic group with  1,

otherwise. Note that since 002 does not split in this case, we may also
describe as the S-units u of K such that ul+T=l. If ro is a real
infinite prime, choose qK to be positive in the embedding induced by
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m. Since 17k+’T = 1, this then implies that 17K is positive at both of the
primes above 0.

. CLF(S) = = Sfin-ideal class group of F, the quotient of the
ideal class group Cl(F) of F by the subgroup generated by the ideal
classes of the primes in 

. SK = the set of primes of K lying above those in S.

. ClK(S) = SK-ideal class group of K.
~ HK = HK(S) = ClK(S)/c(C1F(S)), the cokernel of the map c induced
by extension of ideals.

. MK = MK(S) _ IHKI, the order of this group.
Theorem (Stark-Tate, cf. [Ta, IV.5.4]). St(K/F,S) holds with Stark unit

and abelian.

Remark 3. The extra factor e+ in [5, IV.5.4] equals 1 when 1 as
this implies that the infinite prime 002 of F does not split in K.

4. Passage to the multiquadratic case via L-function properties
We have assumed that L/F is multiquadratic with the distinguished

prime b of F splitting completely in L, and that o02 ~ b is an infinite

prime of F. From now on, we also assume that:
. 002 does not split completely in L/F. (Otherwise St (L/F) is trivially

true with 6; = 1.)
Let:

o T = complex conjugation at 002 in L/F.
. Ki for i = 1, 2, ... , 2~"2-1~ be the relative quadratic extensions of F in
L which are not fixed by T. (These generate L.)

- ! Ka a
. Mi = MKi.
. Wi 

Proposition 1. If

lies in L, then it is the Stark unit eL satisfying St/(L/F,S).

Proof. (This is a straightforward adaptation of the proof of Theorem 2.6
of [3].) Clearly e E Uib) because each rli E ui;l In particular,L - Ki L

= 1 because this represents the absolute value of e above 002. We
now show that E is an L-function evaluator.
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Fix an arbitrary character X E G. If X(T) = 1, then rs(X) &#x3E; 1 by the
formula for this quantity, and therefore 0) = 0. At the same time,

by the observation in the last paragraph. So E is an L-function evaluator
for this type of X.
Now suppose that x(T) _ -1. The fixed field of the kernel of X must

then be one of the Ki for some i = i(X). Letting Gi = Gal(L/Ki), we
observe that

We use the definition of c, the fact that ~(r) = 20131, and the fact that
Gi fixes along with the evaluation of the last sum and finally the Stark-
Tate theorem for relative quadratic extensions and the inflation property
of Artin L-functions to see that

So c is an L-function evaluator for this type of X as well, and the proof is
complete. 0

5. Class field theory
Recall that HK = CIK(S)lt(CIF(S)).
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Proposition 2. Let K be any of the Ki for which ~7Z =1= 1.
Then rank2(HK) &#x3E; rank2(Clp(S)) = rF(S), with equality holding if ISI =
3.

Proof. We will show that the norm map induces a surjective homomorphism
HK/HK e CIF(S) /CIF(S)2 which is an isomorphism when = 3.

The assumption that "Ii =1= 1 implies that 002 and the other primes of So
do not split in K/F. Thus the complex conjugation T at 002 restricts to a
generator of Gal(K/F’).

Let IK denote the group of fractional ideals of K, PK denote the sub-
group of principal fractional ideals, and IF denote the subgroup of fractional
ideals of K which are extended from fractional ideals of F. Also let Sfin(K)
denote the set of ideals of K which lie above those in Sgn. This contains
all of the ideals of K which are ramified over F. From the factorization of
ideals into primes, we see that IF(Sfin(K)) = IIK+-JK(Sfi.(K)), where JK
denotes the group generated by the prime ideals of K which are inert over
F. Then

Under the Artin map of class field theory, IK/PK (= CIK) corresponds
to the maximal unramified abelian extension (Hilbert Class Field) H of
K, in the sense that this map induces an isomorphism of IK/PK with

From this it is clear that IKIPK12K corresponds to the maximal
abelian unramified elementary 2-extension of K in the same way. Similarly,

corresponds to the maximal abelian unramified elementary
2-extension T of K having the property that T acts (by conjugation) triv-
ially on Gal(.F/K). By maximality, :FjF is Galois.

Let Gllp = Gal(0/F) and N~ = Then is normal of index
2 in Gjr, and T acts trivially on Nr. So and any lift of T commute with

which suffices to show that NF lies in the center of G~. Now 
is cyclic of order 2, so that G, modulo its center is cyclic. This implies
that G:F is abelian. Hence in fact is an abelian extension.
We now know that corresponds to the maximal unramified

elementary 2-extension .~’ of K which is abelian over F. So the extension
corresponds to the maximal such extension GK of

K in which all primes of Sfin(K) split completely.
For each finite or infinite prime PESo, let Dp denote its decomposition

group in the abelian extension LKIF. Under our assumptions, such a prime
p does not split in the quadratic extension K/F, while the prime q3 above
it in K splits completely in £K / K. Thus Dp = (7p) has order 2. Let D be
the subgroup of Gal(GK/F) generated by all the Dp for finite and infinite
primes p E S° except o02. Hence D is an elementary abelian 2-group with
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2-rank rank2(D)  1 Sl - 2. Let L’p be the fixed field of D. Since GF eLK,
no primes ramify Also, only primes in So can ramify in K/F. So
only primes in S° can ramify in L’ F IF. The definition of L’p requires that
the primes in S° other than 002 split completely in Hence 
can ramify only at 002. Thus L’p is contained in the ray class field modulo
002 for F. But the ray classes modulo 002 are the same as the ray classes
modulo 1, due to the presence of the unit -1. Thus £h /F is unramified
at 002 as well, and is therefore everywhere unramified, with all primes in S
splitting completely.
The fact that 002 splits in L’p/ F but not in the quadratic extension

K / F implies that Lp fl K = F. Thus the elementary abelian 2-group
Nc = Gal(£K/K) and the elementary abelian 2-group D = 
generate the abelian group Gal(LK / F), which is therefore also an elemen-
tary abelian 2-group. Hence if q is any prime of F which is inert in K, we
may consider the Frobenius of the extended prime il of K in the extension
£K / K and use the properties of the Frobenius in relative extensions (see
[1, 111.2.4]): a(q,£K/F)2 = 1. This shows that JK has
trivial image in Gal(£K / K) under the Artin map.
We return now to the isomorphism from to N~ _

which is induced by the Artin map as described above. Since
the image of JK lies in the kernel of this isomorphism, we conclude that

Now we observe that GF has an intrinsic definition in terms of F. Since

GF/F is an unramified elementary abelian 2-extension in which all primes
of S split completely, it is contained in the maximal such extension, which
we denote by GF. Then K is an unramified elementary abelian 2-
extension of K in which all primes of Sfin(K) (indeed S(K), as unramified
is the same as split for the infinite primes) split completely, and is abelian
over F. But GK was defined to be the maximal such extension, so £K D
GF. As all primes in S split completely in LFIF, Gp must be fixed by
the decomposition groups generating D. This means that GF C We

conclude that GF = GF.
Finally define Do = GF)), which has index 2 in D =

Gal(GK/GF). Thus Do is an elementary abelian 2-group with rank2(Do) 
181 - 3. Then we have an exact sequence:

This simply comes from the natural restriction map identifying 
Gal((K - LF)IK) with 

Interpreting Gal(GF/F) via the class field theory of F, we have



90

Thus in terms of class groups (using (1) and (3)), the exact sequence(2)
becomes

where the kernel Co is an elementary abelian 2-group of 3 and
the map on the right is induced by the norm map on ideals. The conclusion
of the theorem follows. 0

Corollary 1. The integers 2TF(S) divides Mi when 1.

Proof. This is clear since rF(S) = rank2(HK) for K =
0

6. Proof of Theorem 1

The assumption is that m + 2 - rF(S). In view of Proposition 1,
we consider 

-- , ,  , I I. - , ....

where the product may clearly be taken over i for which qj # 1. For such i,
the expression ei = M, - is an integer multiple of 
by Corollary 1, and this in turn is integral by assumption. Thus ei is

integral and so 
.. ~

does in fact lie in L, since each qi lies in Ki C L. Then St’ ~L/F,,S) holds
by Proposition 1. Furthermore

and lies in an abelian extension of ~’, by the Stark-Tate theorem.
As the composite of abelian extensions is abelian, we conclude that -l/WL
lies in an abelian extension of F. This completes the proof of Theorem 1.

7. Kummer theory

Let:

· G = GS be the composite of all quadratic extensions of F in Q with
relative discriminant dividing 4ms.

. C~F be the ring of integers of F.

. be the ring of S¡in-integers of OF.
Lemma 1. Suppose (K : F] = 2. Then K = for some 1 E F which
generates a fractional ideal of F of the forra (7) = a26 with b supported in
8fin if and only if the relative discriminants 8(K/F) of K over F divides
4ms. In particular, if K/F is unramified outside S, then 8(K/F)14ms.
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Proof. First suppose that K = with (-y) = and b supported in
6’fin. The relative discriminant may be computed locally, so we reduce to
the case of an extension of local fields KTIFP by passing to the completions
at a fixed arbitrary prime p of F and a prime T over p in K. That is, the
p-part of the relative discriminant of K/F equals the relative
discriminant of KTIFP, and it suffices to show that this divides 4tns for
each p. Let 7r be a uniformizing parameter for the ring of integers Op of F~ .
Then -Y = where u is a unit of Op and a equals 0 or 1. So KT
Fp(..j7) = We treat the two possibilities for a individually.
When a = 0 we have Then the relative discriminant

J(Kq3/Fp) divides the discriminant of the polynomial x2 -u which is (4u) =
(4), and this clearly divides 4ms.
When a = 1, it evidently must be the case that p divides b, and therefore

p divides my - We have = where ~r’ is another uni-

formizing parameter. Thus KTIFP is an Eisenstein extension for which it
is known that Oq3 = Therefore equals the discriminant
of ~2 - x’, namely (4~r’) = 4~. Again this divides as p divides ms.
This completes the first half of the proof.

Next assume that the relative discriminant J(KIF) of K over F divides
4tns . Since K / F is a relative quadratic extension, we know that K =
F(..j7) for some q E F. Write (q) = and b a square free fractional
ideal. If a prime p appears in the factorization of b, let q3 be a prime above
p in K. Then we are in the situation appearing in the first half of the
proof where a = 1 and Kq3lFp is an Eisenstein extension. In this case we
saw that 6(Kqg /Fp) = 4p. We are assuming that this divides so may

clearly conclude that p divides mis and thus p is in S’fin. This shows that b
is supported in ,S’fin, and concludes the proof. 0

Proposition 3. The field L = ,CS contains i = 1 ..., 2~"~}).
Proof. We show that ,C contains i = 1... 2"z-1 ~ ) by showing that
,C contains L and each V1ii. First, each is a quadratic extension, so
Ki = We may write = ab with b square free. Then is
ramified at the divisors of b, by Kummer theory. Since is unramified
outside ,S’, we conclude that b is supported in Sfin. It now follows from the
Lemma that Ki is a quadratic extension of F with relative discriminant
dividing 4ms . But ,C was defined to be the composite of all such extensions.
Thus L contains the composite of all the which is L, as we observed in
the beginning of section III.

Having shown that L contains L, we proceed to show that ,C contains
each This is trivial if 1}i = 1, so we may assume that we are not
in this situation. Then the image of qj generates the infinite cyclic group

Thus qj is not a square in K2, and qj does not lie in F. Sos
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is an extension of degree 4 over F. We know that qi = so

the conjugates of over F Thus is

a Galois extension of degree 4. It is in fact the composite of the relative
quadratic extension Ki F(?7i) in which 002 ramifies, and the relative
quadratic extension Ki = + 1/ r~Z) in which 002 splits. We have
already seen that I~2 lies in ,C, so we now show that lies in ,~. This will

imply that the composite lies inC, as desired.
Above we saw In since this

extension is unramified at v. Since qi lies in UJ;!, the Lemma yieldsxs
Hence 

’

which divides 16n28(Ki/F)2. Similarly, S(Ki/F)2 divides 
and thus divides We conclude that 
We examine this divisibility statement one prime at a time and show

that it implies b(Ki/F)p~4ms for each p. Observe that is unramified
outside of S, so b(Ki/F)p = (1) for p not dividing ms. Consequently

which divides 4ms in this case.
Now for p dividing ms, the lemma applied to Ki/F implies that 

divides 4p which in turn divides 4ms. This shows that 6 (K§ /F) divides 4ms.
Hence Ki’ lies in G, by its very definition. 0

Proposition 4. [,C,g : F] = 2TF(S)+!SI

Proof. Let = l, ... , t} be a minimal set of generators for the 2-
torsion subgroup of the Sfin-class group CIF(Sfin)- So t =

rank2(CIF(Sfin)) = rF(S). We view Clp(Sfin) as the group of invertible
ideals modulo principal fractional ideals of the ring of elements of
F which are integral at all finite primes not in Sfin. Using Chebatorev’s den-
sity theorem, we choose the representatives ; to be prime ideals of 
The units of this ring are denoted UF(Sfin) and called the Sfin-units. Now
a? = aiOp(Sfin) for some ai. Let A = ({ai : i = l, ... , tl) UF (Sfin) -
We begin by noting that A = ({ai}) x UF(Sfin). For a non-trivial element

of generates an ideal which is a non-trivial product of the prime ideals
a-¿, while each element of UF(Sfin) generates the unit ideal. Thus by the
Dirichlet-Chevalley-Hasse unit theorem,

rank2(A) = + rank2(UF(Sfin)) = t + = rF(S) + 
We will establish a one-to-one correspondence between the non-trivial

elements of A/A2 and the relative quadratic extensions K/F contained in
G. This implies that rank2(Gal(G/F)) = rank2(A/A2), which combined
with the displayed equality yields the statement of the proposition.
Now observe that A fl (Fx)2 = A2 as follows. If _y2 E (FX)2 lies in A,
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and therefore ni a(. The fact that this is a principal ideal
generated by the ai implies by their definition that all of the exponents are
even, ci = 2bi. We now have 72 = and this shows that u = v2 is
a square. Clearly v E UF(Sfin), so 7 = after choosing the correct
sign for v. From this we see that y2 E A2, which was to be proved.

Given a y representing a non-trivial class in A/A2, this will correspond
to the field K = ~(~7). According to the last paxagraph, K will in fact be
a relative quadratic extension of F. We check that K lies in G by showing
that the relative discriminant 6(K/F) divides 4ms. The fact that y E A
means that 7 for some integers ei and some u E IJF(,Sfin). Then
the principal OF-ideal generated by y is (~y) = ab, where
b = (v), and âi is the (prime) ideal of OF supported outside of Sfin such
that = ai. Since b = (v) is supported in Sfin, Lemma 1 allows
us to conclude that 6(K/F) divides 4ms, as desired.

Conversely, given a relative quadratic extension K/F contained in G,
we will produce the corresponding -y E A. First we note that the relative
discriminant of a relative quadratic extension is equal to the finite part of
its conductor, by the conductor-discriminant theorem. Thus every relative
quadratic extension of F with discriminant dividing 4ms is contained in
the ray class field of F with conductor equal to 4ms multiplied by all of
the infinite primes. Hence the field G generated by all of these relative
quadratic extensions is also contained in this ray class field. Then any
quadratic extension of F contained in G will have conductor dividing the
product of 4ms with all of the infinite primes, so that its discriminant also
divides 4ms. We can conclude that the discriminant of our given K divides
4ms. Lemma 1 now implies that K = where (Y) = a2b and b
is supported in Son. Hence (aCJp(Sfin))2, so that aOF(Sfin)
represents an element of ClF(Sfin)[2]. But this group is generated by the
images of the a2. Thus for some /3 E F. Then

1’IOp(Sfin) = nar,82CJp(Sfin). Let, = We

clearly have K = = F(~), while 
Thus y = u 11 ai for some u E UF(Sfin) and therefore

11

Corollary 2. 1. We have [L: L] = 
2. Let (i be a generator of ItKi. Wlaen is not equal to 1, the exportent

Mi - 27G. If it is not in Z, then either L = G or
(G:L~=2 

Proof. 1. From the fact that [L : F] = 2’" and Propositions 3 and 4, we
conclude that (G : L] = and thus this rational number is
in fact an integer.
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2. Now we can see that [,C : LI /4 lies in 4 ~. By Corol-
lary 1, it follows that M, - is in 47~, and that if it does not
lie in 2 ~, we must have L = ,C. In this case, note that the ambiguity
up to a root of unity in the choice of qj allows us to conclude from
Proposition 3 that L = ,C contains both V1ii and vl-(i7-7i and there-
fore ae E L. Thus is even and Mi . lies in

2 7~. Finally, since [£ : L] is a power of 2, the only other situation in
which = ~~C : L]/4 is not integral clearly occurs when
C,C : L] = 2 and it is half-integral. Then Mi - is in 2 7~, so
Mi - 2ISB-m-2(WL/Wi) is integral unless WL/Wi is odd, i.e. L.

0

8. Proofs of Theorems 2 and 3

Under our standing assumptions that L/F’ is multiquadratic, and that
in order to avoid special cases of the conjecture which have already been
proved, S’ contains at least two infinite primes and one other finite or infinite
prime, we now have:

by Proposition 1.
* The exponent Mi is either integral or half-integral
when 1Ji =1= 1, by Corollary 2.

o If it is half-integral for some i, then either ,C = L or we have both
[£ : L] = 2 and ae ~ L , also by Corollary 2.

If L = L, then E L for all i, since E ,C, by Proposition 3. If

[L : L] = 2 and JG E L for some i, notice that both and Ý(i1Ji lie in £
by Proposition 3 again and the ambiguity in 1Ji. If neither of them lie in L,
then = jC = L ( ~) . This implies that ae E L, which is not the
case. Hence either E L or Ý(i’’Ii E L. By renaming we may again
assume JK E L.
Thus in all cases, Theorem 2 follows from Proposition 1.
Turning to the proof of Theorem 3, we now assume that D is either real

or finite. When L is not the maximal multiquadratic extension M of F
which is unramified outside of ,S’ and in which v splits completely, we claim
that 4 [ ~.C : L] . Then by Corollary 2, rF ( S) + [ S[ - m - 2 &#x3E; 0, and the result
will follow from Theorem 1.
To establish the claim, we first show that v is not split completely in

,CS/F. When tJ is real, this is clear since the definition of £s implies
that E ~CS and thus £s is totally imaginary. When t) is finite, we
proceed by contradiction. Suppose to splits completely in CSIF. Then l1

is unramified in .cs, so clearly £s _ From Corollary 2, we then get
so that

so the class [u]
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of l1 must be non-trivial in this group. By class field theory, l1 is then
not split completely in the maximal unramified multiquadratic extension
of F in which every finite prime of S° splits completely. However, this
extension is contained in £s, by Lemma 1, and we have assumed that n
splits completely in Gs, a contradiction.

Let £’5 denote the splitting field of n in £s. By the claim we have just
established, 21[£8 : ,Cs . Since to splits completely in L C ,rCs, we also have

L and 2)[jC~ : L] unless L = Thus 4~ ~,~5 : L] unless L = £:8.
From the definitions and Lemma 1 again, it follows that L C M c £’5.
Thus in the exceptional case of L = we have L = ,/l~t, the maximal
multiquadratic extension of F which is unramified outside of ,S and in
which to splits completely.

9. The biquadratic case: proof of Theorem 4

We now assume that m = 2 and turn to the proof of Theorem 4. Since
3, Theorem 1 reduces us to the case where 181 = 3 and rF ( S) - 0.

By Remark 2, we may assume that some prime P2 over 2 ramifies in L/F,
so that S = tOO1, 002, P2}, and we must have v = ool splitting in L/F.
(This is the only time we will make use of [3].) Then by Proposition 2, we
have that Mi is odd for ni ~ 1. Thus

with both Mi odd.

By Theorem 2, e E L satisfies St’(L/F) and indeed the proof shows that
we may take /-i) E L for i = 1, 2.

Temporarily fix i = 1 or 2. Notice that 002 ramifies in K2, and only
one other prime (namely p2) is allowed to ramify over F. But some other
prime must ramify, for otherwise Ki is contained in the ray class field for
F modulo 002. But the ray class group modulo 002 is the same as the ray
class group modulo 1, due to the presence of the unlit -1. This would imply
that Ki is unramified at 002, a contradiction. Thusqi =,4 1.

It remains to check that L(e1/WL) is abelian over F. For this we use a
standard lemma (see [5, p. 83, Prop. 1.2]).
Lemma 2. Suppose L/F is a finite abelian extension of number fields with
Galois group G. Let A be the annihilator ideal of the group of roots of unity
iLL considered as a module over the group ring 7G(G. Let T be a set of 
generators for A. Then an element u in the multiplicative group L* has the
property that L(ul/WL)/F is abelian, if and only if there exists a collection
of aa E L*, indexed by a E T such that both of the following conditions
hold:
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Recall that T E G is the complex conjugation in L over 002. Also let T1
be the element of order 2 in G which fixes Kl. Thus T and Tl generate G.

First consider the number of roots of unity z,vL in L. Suppose WL &#x3E; 2.
Then L has no real embeddings, and the split prime ool of F must be
complex, while 002 is real. Hence F is a non-Galois cubic extension of Q
and [L : Q] = 12.

If L contains a pth root of unity (p for some odd prime p, then L/F
must ramify at some prime over p, because F«(p)/ F does. But the only
finite prime which can ramify in L/F is P2 E s. If L contains a 16th root
of unity, then [L : Q] = 12 must be divisible by cP(16) = 8, a contradiction.
Thus the number of roots of unity in L is =2, 4, or 8.

Case 1: wL - 2. When WL = 2, the above arguments show that we may
take = L = K(vr¡2). Since T is a complex conjugation and r~Z +T =~
1 for i = 1, 2; we conclude that = 1 for i = 1, 2. Using this, one can
verify that the conditions of Lemma 2 hold for E = vfijïMl vr¡2M2 E L upon
setting e, a1+T = 1, and Thus St (L/F, S) holds in
this case.
Now if 4~~vL, then L contains F(B/~I), which must be either K1 or .K2.

By renumbering, we may assume that it is K2. Thus wl = 2e

Case 2: 4. Now w, = 2, W2 = 4, and - = r¡1 Ml vr¡2M2 E L. We
have noticed above that ,~ contains the square roots of all the roots of

unity in the Ki. Thus ,~C contains an 8th root of unity (8. Put El

a,+l = 1, and The argument above shows
that and (8 lie in £, but not L, although their squares lie in L. Thus

(8vfijïM¡ E L, since M~1 is odd. Also ý9i2 E L, so we have confirmed that
aTl-3 E L. Again the conditions of Lemma 2 hold and St(L/F,,S’) is proved
in this case.

Case 3: 8. Now 2, W2 = 4, and e = 1112Ml172M2 E L. Put

aWL e, aT+1 - 1, and aTl-3 = We know that 1
and ~/~2 lie in ~C, but not in L, although their squares lie in L. Thus

aTl -3 E L, since M1 and M2 are odd. Again the conditions of Lemma 2
hold and St(L/ F,S) is proved in this case.
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