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Logarithmic density of a sequence of

integers and density of its ratio set

par LADISLAV MI0160ÍK et JÁNOS T. TÓTH

RÉSUMÉ. Nous donnons des conditions suffisantes pour que l’en-
semble R(A) des fractions d’un ensemble d’entiers A soit dense
dans R+, en termes des densités logarithmiques de A. Ces condi-
tions different sensiblement de celles précédemment obtenues en
termes des densités asymptotiques.

ABSTRACT. In the paper sufficient conditions for the (R)-density
of a set of positive integers in terms of logarithmic densities are
given. They differ substantially from those derived previously in
terms of asymptotic densities.

1. Preliminaries

Denote by N and the set of all positive integers and positive real
numbers, respectively. For A C N and x E let A(x) = f a E A; a  ~}.
Denote by R(~4) ={~ a E A, b E ~4} the ratio set of A and say that a
set A is (R)-dense if R(A) is (topologically) dense in the set (see [3]).
Let us notice that the (R)-density of a set A is equivalent to the density of
R(A) in the set (1, oo).
Define

. , i , . i . i ’II.

the lower asymptotic density, upper asymptotic density, and asymptotic
density (if defined), respectively.
Similarly, define

- , .......... 1

the lower logarithmic density, upper logarithmic density, and logarithmic
density (if defined), respectively.
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The following relations between asymptotic density and (R)-density are
known

(S2) 
If d(A) &#x3E; 2 then A is (R)-dense and for all b E (0, 2 ~ there is a(S2) set B such that d(B) = b and B is not (R)-dense (see [2], [5] ).

(S3) If d(A) = 1 then A is (R)-dense and for all b E (0,1) there is a
’ ’ 

set B such that d(B) = b and B is not (R)-dense (see [3], [4] ).
Notice that the results (Sl), (S2) and (S3) can be formulated in a com-
mon way as results about maximal sets (with respect to the correspond-
ing density) which are not (R)-dense as follows. Denote by D = {~4 c
N; A is not (R) - dense}. Then we have

The aim of this paper is to prove corresponding relations for logarith-
mic density. It appears (see Theorem 2 and Corollary 1) that they differ
substantially from the above ones for asymptotic density.

2. Logarithmic density and (R)-density

First, let us introduce a useful technique for calculation densities. It
can be easily seen that in practical calculation of densities of a set A, the
following method can be used.

Write the set A as

... are integers. Then

and

In practice the bounds pn, qn of intervals determining the set A are often
real numbers instead of integers. Then it may be convenient to use the

following lemma. In fact, we will use it in later calculations.

Lemma 1. Let 0  PI  ql ::; p2  q2 ::; ... be real numbers such

that  oo and let d, Ibnl  d for each n E N and somen=1
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Proof. For all n E N let an, bn be such that

2. both pn + an and qn + bn are integers,
00

First, let us notice that it is known that if for an increasing sequence of
00

positive integers the series E 1 converges then lim Pn = 0 ([1], 80.
n=l 

n n

Theorem, p.124) and trivially also lim n - 0 for any fixed r E II~.n-+oo Pn r
Now a simple analysis shows that for each n E N

and, using Lemma 1,

or, rewritten,
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As both lim and lim pn d equal 0 an application of the Sand-n
wich Theorem completes the proof for d(A). In a very similar way one can
prove the corresponding statement for d (A) .

Let s be the first positive integer i such that p2 - d &#x3E; 0. The following
inequalities hold for every i = s, s -~- 1, ....

and

Again, a simple analysis shows that

and, using (I) and (II),

n

As the series 2: 1 is convergent and lim 1 an application
n-too 

of the Sandwich Theorem completes the proof for 6(A). In a very similar
way one can prove the corresponding statement for 6(A). 0

The following simple lemma will be used in later calculations.

Lemma 2. Let and such that 1  =



313

Proof. The statement of the Lemma is a straightforward consequence of
the following relations

The following class of sets plays an important role in our consideration.

where s = minfn E N; -~-1  

Theorem 1. Let 1  a  b and A = A(a, b) E A. Then

Proof. (i) Let x E A, y E A and x  y. First, let there be a n E N such
that both x and y belong to the block (anbn + 1, an+1bn). Then

On the other hand, let
Then

In both cases ~ does not belong to (a, b) .
(ii) Calculate, using Lemma 1,

The corresponding value of d(A) can be calculated in a very similar
way.
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(iii) Again, using Lemma 1, we have

Remark 1. A simple analysis of equalities (ii) in Theorem 1 in comparison
to the results (Sl), (S2), (S3) shows

A similar analysis of equality (iii) in Theorem 1 leads to the following.

Conjecture. The following equalities hold

The purpose of the rest of this paper is to prove this conjecture. All the
corresponding results will be corollaries to the following.
Theorem 2. Let 1  a  b and A = A(a, b) E A. Then the set A is
rraaximal element in the set IX C N‘; R(X) n (a, b) = 0} with respect to the
partial order induced by any 3, J.

Proof. Let X C N be an infinite set such that R(X) n (a, b) = 0. Then X
can be written in the form

are integers.

For the proof it is sufficient to show (taking into account Theorem 1 (iii))

Thus we can also suppose

The proof will be carried in several steps.

Step 1. In this step we will prove
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Proof of (1). S u ose &#x3E; + 1). Then a and also 9  af f ( ) PP ’n _ p + 1 . Then P,., +1 - P,+l

and, as rl (a, b) = 0, there exists m E + 1, qn) n N such that

  a and 1+1 &#x3E; b. p +1 &#x3E; b - a which implies
a contradiction.

Step 2. In this step we will prove

Proo, f of (2). Let Then also and, by the previous step,
qn  +1)’ Suppose on the contrary that there exists x E X f1 +

Then ~1 = ~ ~ = b and, as R {X ) n (~6) ==
0, there exists m E n N such that ji &#x3E; b and 2013y  a.

Consequently

which implies p.  a contradiction.

Step ~. In this step we will introduce some useful notation. Denote by I~o the
smallest integer I~ such that Pk &#x3E; b and let Ko = ~o + 1, ~o+2, ... }.
From (2) we have for every k E Ko

and so we can define a function Ko -+ Ko by

The range of this function {~i  l ~  ... ) is infinite, denote
00

Kn = for each n E N. Evidently and for every
n=1

m  n, x e Km and y E Kn it is x  y. Let us call a big gap in X any
interval of the form + 1) where k e Kn for n E N. Finally,
let us introduce two sequences by

The above definitions imply that both a(un + 1) and bvn belong to the same
big gap in X and, consequently,

Step .4. In this step we will present and prove (if necessary) some simple
relations and statement which will be used in the final calculation.
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An easy analysis proves

for all positive integers p  q.

From Lemma 1 and (0) it can be seen that

(7) the series is divergent.

As a(ui+1 + 1) belongs to the big gap next to the big gap in which b(ui +1)
lies we have ui+l + 1 &#x3E; a (u~ + 1) for every i E N. Therefore the series

1 is convergent and, consequently,Ui

Step 5. For the rest of proof suppose that m is a sufficiently large fixed
positive integer and denote by n the greatest (fixed from this moment)
positive integer k for which bvk  m. Thus, using (5), we have

The considerations in Step 3 imply that the intervals (pi + for i =

1, 2, ... , max Kn and ~a (u~ -~-1 ), bvj) for j = 1, 2, ... , n are mutually disjoint
and, by definition of numbers m and n, they are all contained in the interval
~ l, m~ . Thus, by Lemma 2, we have

For similar reason we have

The last inequality together with (5) imply
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Step 6. Denote c . Now we are able to estimate

Step 7. In this step we will complete the proof by limit process. Let m -+ o0
(and consequently n e oo). Then, using (7) and (8), we have

The following corollary is a direct consequence of the previous theorem
and it shows that the relations between (R)-density and logarithmic densi-
ties are completely different from those between (R)-density and asymptotic
densities.
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Corollary. The following relations hold

References

[1] K. KNOPP, Theory and Application of Infinite Series. Blackie &#x26; Son Limited, London and
Glasgow, 2-nd English Edition, 1957.

[2] O. STRAUCH, J. T. TÓTH, Asymptotic density of A C N and density of the ratio set R(A).
Acta Arith. 87 (1998), 67-78. Corrigendum in Acta Arith. 103 (2002), 191-200.

[3] T. 0160ALÁT, On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 173-278.
[4] T. 0160ALÁT, Quotientbasen und (R)-dichte mengen. Acta Arith. 19 (1971), 63-78.
[5] J. T. TÓTH, Relation between (R)-density and the lower asymptotic density. Acta Math.

Constantine the Philosopher University Nitra 3 (1998), 39-44.

Ladislav Janos T. T6TH

Department of Mathematics
University of Ostrava
30. dubna 22
701 03 Ostrava
Czech Republic
E-mail : ladislav.misik4losu.cz, tothoosu.cz


