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Arithmetic Gevrey series and transcendence.
A survey

par YVES ANDRE

RÉSUMÉ. Nous passons en revue les principaux résultats de la
théorie des séries Gevrey de type arithmétique introduite dans
[3] [4], leurs applications à la transcendance, ainsi que quelques
conjectures diophantiennes sur la sommation de séries divergentes.

ABSTRACT. We review the main results of the theory of arith-
metic Gevrey series introduced in [3] [4], their applications to
transcendence, and a few diophantine conjectures on the sum-
mation of divergent series.

1. Introduction: ubiquity of Gevrey series in complex analysis
1.1. Let us begin with a classical definition.

~.1.1. I3efiniti®n. Let s be a rational number. A formal power series

with complex coefHcients is Gevrey of order s if and only if the associated
series

has a non-zero radius of convergence, i. e. if and only if

It is Gevrey of precise order s if and only if fhl has a finite non-zero
radius of convergence.

1.1.2. Remarks. i) for s = 0, a Gevrey series is just a convergent series.
ii) Gevrey series of order s &#x3E; 0 are in general divergent.
iii) For s  0, Gevrey series define entire functions. More precisely, it is

not diff.cult to see that f is Gevrey of order s if and only if it is entire. of
exponential ord er  1/lsl.

Manuscrit reru Ie 11 septembre 2001.
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1.2. At the begining of the 20th century, it was discovered that Gevrey
series are remarkably ubiquitous in complex analysis. This was emphasized
by M. Gevrey [8].

For instance, it turns out that any formal power series arising in the
asympotic expansion of any solution of a linear or non-lineax analytic dif-
ferential equation is Gevreyl of precise order s for some rational number s.

Gevrey series also occur in the context of singular perturbations, differ-
ence equations ...

Besides their ubiquity, divergent Gevrey series have the remarkable prop-
erty, in many natural analytic contexts, of being summable in an essentially
canonical way, in suitable sectors. This is the starting point (cf. [14]) of
the extensive theory of summability/ multisummability/ resurgence. We
refer to [11] for an inspiring overview.

1.2.1. Examples. i) The Airy function is

Its Taylor expansion at the origin is

Here both formal power series in x are Gevrey of precise order -2/3.

Its asymptotic expansion at c~ca, in a suitable sector bissected by the positive
real axis, is given by

Here both formal power series in 1/~ are Gevrey of precise order ~-~/~.

(The Pochhammer symbol (~z) ~ stands for a (a + 1 ) ... (rz + n - 1)).

ii) The Barnes generalized hypergeometric series pFq-1 (xT) are Gevrey
of precise order s = ~-~.

ithe fact that any formal power solution of a non-linear analytic differential equation is always
Gevrey was already known in 1903 (9; and, for the precise order - in the algebraic linear case -
by O. Perron in 1910 [10].
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2. Arithmetic Gevrey series

2.1. The idea of arithmetic Gevrey series came out from an empirical obser-
vation : leafing through the classical treatises on special functions, one re-
marks that the Gevrey series occurring in Taylor or asymptotic expansions
of classical special functions have algebraic or even rational coefficients,
and that the growth of the denominators of these coefficients is inversely
proportional to the archimedean growth.

This observation led to the following definition:

2.1.1. Definition. Let s be a rational number. A formal power series

is an arithmetic Gevrey series of order s if and only if

3C &#x3E; 0, dn &#x3E; 0, Maxleonjugates I

2.1.2. Remarks. i) Since s E Q, one has n!s E Q, so that the conjugates
and common denominators of finitely many 1’n ’s are well-defined.
ii) Infinite2 arithmetic Gevrey series of order s give rise to Gevrey series of
precise order s for any embedding Q ~ C.
iii) The arithmetic Gevrey series of order s form a subalgebra 
stable under derivation and integration.

2.2. The above observation (about growth of denominators, 2.1) becomes
less surprising if one remarks that the coefficients of the Gevrey series in
question are generally expressed in terms of Pochhammer symbols with
rational parameters. One can then apply the following lemma which goes
back to Mayer and Siegel [13]:
2.2.1. Lemma. Let al, ... , ap, b1 ... , bq be rational numbers (dnd not neg-
ative integer.). Then

2.2.2. Examples. i) By the lemma, the series occurring in the expansion
of Ai(x) at 0, namely

2== non-polynomial
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are arithmetic Gevrey of order -2/3. The series occurring in its asympotic
expansion at +oo, namely

are arithmetic Gevrey of order +2/3.

ii) The Barnes generalized hypergeometric series with rational

parametes are arithmetic Gevrey of order s = 7.

iii) Any series which is algebraic over is arithmetic Gevrey of order
0 (Eisenstein). More generally, Siegel’s G-functions [13] are nothing but
holonomic arithmetic Gevrey series of order 0.

Here and in the sequel, holonomic means: solution of a linear differential
equation with coefficients in C(x).

3. Structure of differential operators annihilating arithmetic
Gevrey series

3.1. Let us consider a linear differential operator

At every point ~ which is not a singularity i. e. not a pole of any cp
admits a basis of analytic solutions at ~. The converse is not always true,
but when it holds, the singularity is called trivial3.
On the other hand, if ~ E C is any singularity of cp, it is known that there
exists a basis of "formal solutions" which are finite linear combinations

where ai E C, ki is a non-negative integer, Qi is a polynomial, and ui is a
Gevrey series of (some) precise order s E Q.
When no non-zero polynomial ~72 occurs4, one says that ~ is a regular
singularity. In that case, the ui’s are Gevrey series of order  0, i. e.

convergent (Frobenius’ theorem).

3traditionally, the expression "apparent singularity" is reserves for a point ~ where there is a
basis of meromorphic, not necessarily homolomorphic, solutions.

4such finite linear combinations y are sometimes called Nilsson functions.
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3.2. The presence of Gevrey series of certain orders among the solutions
of cp gives some information about the "formal structure" of cp at the given
point ~, but nothing beyond.
We shall see, in strong contrast, that the presence of arithmetic Gevrey

series in the solutions of cp at some point determines somehow the global
behaviour of cp. In particular, together with the remark at the beginning
of §2, this provides an "arithmetic explanation" for another elementary
observation which can be made when leafing through the treatises on special
functions: namely, that the classical linear differential operators occurring
there are of two types: either fuchsian (the "non-confluent type"), or with
two singularities, 0 and oo, one of them being regular (the "confluent type"
or "Hamburger type" ) .
3.3. To express our main result in the most economic way, it is conve-

nient to consider, besides arithmetic Gevrey series, finite ramifications,
logarithms, and transcendental constants. This leads to the following
3.3.1. Definition. An arithmetic Nilsson-Gevrey series of order s E Q is
a finite linear combination

where Xi E C, ei E Q, ki E N, and ui is an arithmetic Gevrey series of
order s.

They form a C(x)-algebra (stable by derivation and integration) denoted
by NGAIXI, in [3].
3.3.2. Example. The Taylor expansion at 0 of the Airy function belongs
to The factor of exp(-2/3x3/2) in the asymptotic expansion
at +oo belongs to 

3.4. Let y be a holonomic arithmetic Nilsson-Gevrey series of order s (we
assume for simplicity that y is not a polynomial). Let Dy be a non-zero-
element of C(x)[lxJ of minimal degree in d such that

Dy (y) = 0

(such a differential operator is unique up to left multiplication by an element
of
3.4.1. Theorem. 1) Assume s = 0. Then Dy is fuchsian, i.e. has only
regular singularities (even at oo).
Moreover, for any ~’ E (a, Dy has a basis of solutions in NGAIX - fl)o
and a basis of solutions in 

2) Assume s  0. Then Dy has only two non-trivial singularities: 0 and 00
(in other words: Dy has a basis of analytic solutions at any point 0 0, (0).
Moreover:
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i) 0 is a regular singularzty with rational exponents, and Dy has a basis
of solutions in NGAfxl,,

ii) oo is an irregular singularity, and Dy has a basis of solutions of the
form fi.exp«(ix-1/S) with fi E ~’i E Q.
3) Assume s &#x3E; 0. Then Dy has only two non-trivial singularities: 0 and
00 . Moreover:

i) 0 is an irregular singularity, and Dy has a basis of solutions of the
form fi. exp«(ix-l/S) with fi E NGAIXI, , (i E Q,

ii) oo is a regular szngularity with rational exponents, and Dy has a basis
of solutions in 

The theorem is proved in [3]. The proof involves an arithmetic study of
the Fourier-Laplace transform (which reduces 2) and 3) to 1) ).

The main feature of this theorem is that an arithmetic property of one
solution at one point accounts for the global behaviour the operator. In

particular, whenever arithmetic Gevrey series of order s occur at 0, then
arithmetic Gevrey series of order -s occur at oo, and conversely. The Airy
differential operator = d2 / dx2 - x offers a typical illustration of this
phenomenon, yvith s = -2/3.

4. On special values of arithmetic Gevrey series

4.1. Let K be a number field, and let f E xJ be a holonomic arithmetic
Gevrey series of order s E Q. We may assume that D f E d/dx].
We shall study separately the cases s  0, s &#x3E; 0 and s = 0.

4.2. The case s  0. Recall that for any embedding v : K y. C, f ~,
defines an entire function of exponential order -1/s. In particular, it can
be evaluated at any point ~ E I~* .

4.2.1. Corollary. Assume that for every complex embedding v, f~, (~) = 0.
Then ~ is a singularity of D f.

Proof. Let us write := and show that g is
also a holonomic arithmetic Gevrey series of order s.
We have  - - n -’ ’t rs which shows that g satisfies likevve ave nis e 0 ( ki ) k!s W IC sows a 9 satls es, e

f , the denominator condition in the definition of arithmetic Gevrey series
of order s . To prove that g is arithmetic Gevrey of order s, it remains to

prove that for any complex embedding v, gv is Gevrey of order s in the
ordinary sense. Since s  0, this amounts to being entire of exponential

(like f). Since gv = ~2013 has no pole at ~ by assumption, this
is clear. The holonomicity of g is also clear: D9 = D f o (x - ~).
We can therefore apply the theorem to g. We get that Dg has a basis of

analytic solutions at any point # 0, oo, in particular at ~. But this implies
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that D j has a basis of solutions in (x - ç)K[[x - 6]], hence that 6 is a

(trivial) singularity of 0

4.3. This corollary is in fact a transcendence theorem in disguise.
Let us first indicate how it easily implies the Lindemann- Weierstrass the-
orem. We embed K in C. Let ~i,..., am be distinct elements of K and

,(31, ... , be non-zero elements of K. Let us show that

Let L be the Galois closure of in C. We set

It is enough to show that f (1) # 0. Note that f is an exponential polyno-
mial with constant coefficient, hence an arithmetic Gevrey series of order
-l, with D f E (constant coefficients). In particular, 1 is not a

singularity of D f, and the corollary shows that f (1) ~ 0 as wanted. 0

4.4. A modification of this argument - replacing the fact that D f has
constant coefficients by a zero lemma for solutions of linear differential
operators - leads to a new and qualitative proof of the Siegel-Shidlovsky
theorem, which can be expressed as follows:

4.4.1. Theorem. Let f be a holonomic arithmetic Gevrey series of order
s  0. Let p be the order of Df.
Then for E Q* distinct from the singularities of D f, the transcendence
degree of f (~), f’(ç), ... f ~~-1~ (ç) over Q equals the transcendence degree
~f f, f ~, ... , f ~~‘-1~ over 

cf. [4] (and also [5] for details about the zero lemma).
The theorem applies to confluent hypergeometric series PFq_1 (x) with

rational parameters and p  q.

4.5. Actually, although theorem 3.4.1 deals with arithmetic Nilsson-Gevrey
series and not only with arithmetic Gevrey series, we have not been able
to generalize the above corollary to that more general case, hence to derive
transcendence results for arithmetic Nilsson-Gevrey series. We nevertheless
propose the following
4.5.1. Conjecture. Let y be a holonorraic arithmetic Nilsson-Gevrey series
of order s  0. Let ~c be the order of Dy. Assume that y, y’, ... , y~~‘-l are
algebraically independent over 
Then for any ~ E Q* distinct from the singularities of Dy, with finitely
many exceptions, y(~~, y~(~), ... , y~~-1~ (~~ are algebraically independent
over Q.
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The necessity to allow some exceptions is already patent on the example
y = exp x - e. The conjecture would imply for instance that the Airy
function takes transcendental values at almost every algebraic point.

4.6. The case s &#x3E; 0. A prototype is the Euler series Eval-
uations at points ç i= 0 diverge but one can turn the difficulty in two ways:
either by evaluating such series p-adically for almost all p, or by using some
canonical process of (archimedean) resummation in a sector bissected by
~ 5 .
We concentrate on the second viewpoint, which is actually much older

than the first one: L. Euler already proposed four methods for summing
the series and gave some evidence that they lead to the same
result [7].
4.6.1. Conjecture. The prevzous conjecture should also hold if s &#x3E; 0, pro-
vided y(~), y’(~), ... , (ç) are interpreted as canonical resummations.

4.6.2. Proposition. Conjecture 4.5.1 implies 4.6.1.

This follows from theorem 3.4.1, part 3ii). 0

By symmetry, the Siegel-Shidlovsky theorem suggests the following
4.fi.3. Conjecture. The statement should also hold if s &#x3E; 0, pro-
vided f (~), f’ (~), ... , f ~~‘-1~ (~) are interpreted as canonical resummations.
A proof of this conjecture would be of considerable interest because spe-

cial values of resummations of arithmetic Gevrey series of positive order
(such as the Euler series) involve the Euler constant, the values of Riemann
( function at integers, and more generally the derivatives of Euler’s r func-
tion at rational poms In fact, if we had restricted the definition of arith-
metic Nilsson-Gevrey series by allowing only constants Ai in Q (r(n) (p/q) ),
theorem 3.4.1 would still hold, cf. [3] (remark at the end of 6.2).

This might be a way of investigating the arithmetic nature of those mys-
terious constants, via arithmetic Gevrey series of order # 0, whereas the
usual approach involves arithmetic Gevrey series of order 0 (variants of
polylogarithms) . A lot of work remains to be done in this direction.

4.’T. The case s = 0. This case is more delicate than the case s  0,
because there do exist infinite "exceptional sets" of points 6 E Q in general
where such transcendental series take algebraic values 6

5if this is a singular (= anti-Stokes) direction, one has to use the middle summation of Écalle-
Ramis-Martinet.

6nevertheless, under a strong assumption of simultaneous uniformization imposed on the
series under consideration, a statement analogous to the Siegel-Shidlovsky theorem is proven in
[2] in the case s = 0.
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A striking example, due to F. Beukers and J. Wolfart involves

2F~ ( 12 , 2 , ~ ; x), which takes algebraic values at infinitely many algebraic
points, e.g.

In fact, these "accidental relations" have nice geometric interpretations,
even in a very general setting. Indeed, it is expected that for any G-
function (i. e. holonomic arithmetic Gevrey series of order 0), D f "comes
from geometry" , i. e. is a product of factors of Picard-Fuchs differential
operators (conjecture of Bombieri-Dwork). This is certainly the case for
any G-function of generalized hypergeometric type.

In such a situation, special values of G-fonctions can be interpreted as
rational functions in periods of smooth projective algebraic varieties de-
fined over Q. A transcendence conjecture of Grothendieck then predicts
that any relation between such periods should come from algebraic cycles
over suitable powers of these varieties - or, if one prefers, should have an
interpretation in terms of isomorphisms of motives. We refer to [1] for a
detailed discussion of this topic. This motivic interpretation also leads to
the following prediction: whenever an "accidental relation" occurs between
special values of G-functions, one should expect a similar relations between
the p-adic evaluations of the same series at the same point for every prime
p for which the evaluation makes sense (this can be justified, relying upon
some "standard conjectures" in the theory of motives in characteristic zero
and p, see [1] for det ails ) .
As an illustration, one gets in the above example

7-adically (note that 1323 = 33.72), as was checked by Beukers [6].
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