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Representation of prime powers in arithmetical

progressions by binary quadratic forms

par FRANZ HALTER-KOCH

RÉSUMÉ. Soit 0393 une famille de formes quadratiques à deux va-
riables de même discriminant, 0394 un ensemble de progressions
arithmétiques et m un entier strictement positif. Nous nous inté-
ressons au problème de la représentation des puissances de nom-
bres premiers pm appartenant à une progression de 0394 par une
forme quadratique de r.

ABSTRACT. Let r be a set of binary quadratic forms of the same
discriminant, 0394 a set of arithmetical progressions and m a positive
integer. We investigate the representability of prime powers pm
lying in some progression from 0394 by some form from 0393.

1. Introduction and notations

By a form cp we always mean a primitive integral non-degenerated
binary quadratic form, that is, cp = aX2 + bXY + Cy2 E where

gcd(a, b, c) = 1, d = b2 - 4ac is not a square, and a &#x3E; 0 if d  0. We
call d the discriminant of cp. More generally, any non-square integer
d E Z with d - 0 mod 4 or d - 1 mod 4 will be called a discriminant.
Two forms E 7G(X, Y] are called (properly) equivalent if cp(X, Y) =
0 (aX + + JY) for some a, /3, 7, b E Z such that a6 - 3-y = 1.

For any discriminant d, we denote by H(d) the (finite) set of equivalence
classes of forms with discriminant d. If cp = aX2 + bXY + Cy2 is a form
with discriminant d, we denote by (~p~ = [a, b, c] E the equivalence
class of p. For any discriminant d, we call

the principal class of 

A form cp is said to represent (properly) an integer q E Z,
if q = cp(x, y) for some x, y E Z such that gcd (x, y) = 1. Equivalent forms
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represent the same integers, and we write C ~ q if C = [p] for some form
cp representing q.

This paper is addressed to the representation of prime powers in arith-
metical progressions. To be precise, we shall derive criteria for a form cp (or
its class to represent all prime powers (of fixed exponent) pm E b + aZ
for given coprime positive integers a and b. If m = 1 and if genera are
considered instead of individual forms or classes, the problem is solved by
Gauss’ genus theory. A first result for individual classes was proved by
A. Meyer [9] using Dirichlet’s theorem. A complete solution for m = 1
and fundamental discriminants was presented by T. Kusaba [8] (using class
field theory). The case of arbitrary discriminants (for m = 1 and 2)
was settled by P. Kaplan and K. S. Williams [7] (using elementary methods
and Meyer’s theorem).

In fact, in this paper we shall consider more generally a set r c 1-l(d)
(for some discriminant d E Z) and a set A C of arithmetical

progressions (for some distance a &#x3E; 2), and we shall deal with the problem
whether every prime power p’~ (with fixed exponent m) satisfying E

A is represented by some class C E r. We shall throughout make use of
class field theory, and in order to do so, we will also formulate Gauss’ genus
theory in a class field theoretic setting.

In section 2, we gather the necessary facts from genus theory and class
field theory in a form which is suitable for our purposes. In section 3, we
formulate and prove the main results of this paper.

2. Class field theory and genus theory

The main references for this section are [2] and [1], but see also [3] and
[4]. For a discriminant d, we set

Let C+ (Rd) be the Picard group of Rd in the narrow sense (that is, the group
of invertible fractional ideals modulo fractional principal ideals generated
by totally positive elements). If cp = aX2 +bXY+cY2 E Z[X, Y] is a form
with discriminant d and a &#x3E; 0, then

is a primitive invertible ideal with norm (Rd : c~) = a. Every
class C E 1-l(d) contains a form p = + bX Y + Cy2 with a &#x3E; 0, and the
assignment cp t-t c~ induces a bijective map
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For an invertible ideal a of Rd we denote by [a] E C+ (Rd) its class (in the
narrow sense). Gauss’ composition is the group structure on 1-l(d) for which
0d is an isomorphism, and Id = is the unit element of 71 (d).

For a class C E 1-l(d) and q E N, we have C -3 q if and only if q = N(a)
for some primitive ideal a E For a form cp = aX2 + bXY + Cy2 E
Z[X, Y], we denote by §3 = aX2 - bXY + Cy2 its conjugate (or opposite)
form, and for a quadratic surd a = u + vU2 E we denote by
a = v, - vU2 its (algebraic) conjugate. Conjugation induces inversion,
both on H (d) and G+(Rd) (that means, [cp] = for every form cp, and

~a~ = [a]-’ for every invertible ideal a).
For every class C E 3-l(d), C and C-1 represent the same integers. A

prime power p"’~ with p f d is represented by some class C E 1-l(d) if and

only if (~) = 1. In this case, pRd = pp for some prime ideal p of Rd such
that p, and if C = then C and C-1 are precisely the classes
from 1-£ (d) representing p"’~. e

Associated with a discriminant d, there is an abelian field extension

together with an isomorphism

having the following properties:

1’ Kd/Q is a Galois extension which is unramified at all primes p ~ doo
and whose Galois group is given by the splitting group extension

where and T acts on by

2. For a class C E 1-l(d) and a prime p with p j’ d, we have C - p if and
only if ad(C) is the Frobenius automorphism of some prime divisor of p in
Kd.

Let Ka be the maximal absolutely abelian subfield of Kd. Then

Gal(Kd /K) ) = and there is an isomorphism

The field Kd is called the ring class field, the field K~ is called the genus
fields, the cosets C1-l(d)2 are called the genera and 1-l(d)2 is called
the principal genus of discriminant d.
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An explicit generation of Kd was given in [5] as follows: Let p1, ... , pt
be the distinct odd prime divisors of d, set

Then we obtain

we define the reduced discriminant d* associated with d by

For a E N, we denote by the field of a-th roots of unity and by

the Artin isomorphism for oa) /Q, that is, for a prime p t a, 8a(p + aZ) is
the Frobenius automorphism of the prime divisors of p in 

If d is a discriminant, then d* I d, hence ~~~~ , and d* is the
smallest positive integer divisible by all prime divisors of d and satisfying
K~ C Qt~* ~ . If m E Z and gcd(m, d) = 1, we consider the Kronecker
symbol, defined by

if m = where e E {0,1}, {3 E No, is odd and (d ) is the

Jacobi symbol (for details see [6], Ch. 5.5). The Kronecker symbol (~)
depends only on the residue class m + d*Z E (Z /d*Z)  , and

is a quadratic character with the following property:
If C E ~-l (d), k E Z, gcd(k, d) = 1 and C - k, then (~) = 1. Indeed,

observe that C --~ 1~ implies C = ~k, b, c~ for some b, c E 7~, and since
d = b~ - 4kc, it follows that (~) = (-r) = 1.
We define

"

by
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If d* - 0 mod 4, we define

and if d* - 0 mod 8, we define

Then the vector of genus characters

is defined by its components as follows.

By its very definition, for a prime p ~’ d the Frobenius automorphism /3d* (p+
d*Z) I Kd is uniquely determined by its genus character values cpd(p +
d*Z) E We have

and

From the class field theoretic description of Kd, Kd and Q(d.) we derive
immediately the following two assertions 3. and 4. which are usually
quoted as the main theorems of Gauss’ genus theory.

3. The group

consists of all residue classes p + d*Z E generated by primes p
such that p f d and C -~ p for some C E 1-l(d).

4. The map : (71ld*71)X -~ 1-l(d)/1-l(d)2, defined by

is a group epimorphism, and Ker(wd) = Ker(cpd). In particular,
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If p is a prime, p f d and C E 1-l(d) with C - p, then = 

Consequently, the genus representing p depends only on the residue class
p + d*Z.

Meyer [9] proved that if a class C E 1i(d) represents some prime p { d in a
coprime arithmetical progression, then it represents infinitely many primes
from this progression. We shall need the following refinement of this result.

Proposition 1. Let d be a discriminant, a, b E gcd(a, b) = 1. Let

Co E 1-l(d) be a class representing some prime po E b -f- a7G with po ~’ d.
1. The set of all primes p E b+aZ represented by Co has positive Dirichlet

density.
2. Let S2 C 1í(d) be the set of all classes representing primes p E b + aZ

with p ~’ d. Then f21-l(d)2 = S2 (that means, S2 consists of full genera).
Proof. We may assume that d* a, gcd(d, b) = 1 and (4) = 1 (otherwise we
replace a by ad* and consider all residue classes + ad*Z, where (§) = 1
and - b mod a). Since we have

For a prime p E b + aZ, we have Co 2013~ p if and only if is the

Frobenius automorphism for a prime divisor of p in Kd. By Cebotarev’s
theorem, this set has positive Dirichlet density.
A class C E 1l ( d) represents some prime p E b + aZ if and only if

Qd(C)IKd = ad(Co)IKJ., and since Gal(Kd/Ka) = ad(1l(d)2), this is equiv-
alent to C E Co1-l(d)2. Hence we obtain Q = = fl1i(d)2. p

3. The main results

For a discriminant d, we denote by H2 (d) the 2-Sylow subgroup and by
the odd part of 3-L(d), so that 1-l(d) = 1£2 (d) x 1-l’(d).

Theorem 1. Let d be a discriminants, m an odd positive integer and Q C
1-l(d)m a set of classes satisfying n1-l(d)2m = Q. Then there is a subset
A c Xd such that, for every prime p { d, if p"L + d*Z E 0 then C - P"’’ for
some C E S2.

Proof. Suppose Q = no, where Sto C and set A = C

Xd. Let p be a prime such that p { d and p"z + d*Z E A. Since m is odd, we
obtain p + E Xd and wd(p + d*Z) = cvd(p"’’ + d*Z) = for some
class Co E S2o. Hence there exists some A E 1-l(d) such that COA2 --7 p, and
if C = then C - and C E = SZ. D

The assumption nll(d)2m = S2 made in Theorem 1 is very restrictive.
But as we shall see in Theorem 2, it is necessary. We investigate its effect in
the special case Q = ~C,C-1} for some C E H(d). Note that the following
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(simple) Proposition 2 remains true if we replace 1-l(d) by any finite abelian
group.

Proposition 2. Let d be a discriminant, m an odd positive integer and
C E 1-l(d) a class satisfying {C,C-1~~-l(d)2"~ _ {C,C-1}. Then we have

~’(d)"’~ _ (I), and either ?-C2(d)2 = {1} or C~ = I and 3~2(d) _ (C) x
~-l2(d), where ~L2(l.~)2 = {1}.
Proof. By assumption,

and since = 1-l2(d)2 x ~-l’(d)"’~, we obtain tl’(d)m = {1} and
~3-l2(d)2~  2. Suppose that 1í2(d)2 = (A 2) for some A E ~-l2(d) with
A4 = I, A2 ~ I. Then CA2 = CA 2m E {C, C-1}, hence CA2 = C-’ and
therefore C4 = I. 0

Now we formulate our main results (Theorems 2, 3 and 4) which will be
proved in a uniform way later on.

Theorem 2. Let d be a discriminant, let a and m be positive integers, and
let r C H(d) and A C be any subsets. Suppose that for every
prime p (except possibly a set of Dirichlet density zero) the following holds:
If (~) = 1 and p"z + E ~, then C -~ pm for some C E r.

Let S2 be the set of all classes C E representing some prime power
pm such that p f d and P"’W- a7G E A, and assume that r C f2. Then

where r-1 = {C E 3-l(d) I c-1 E r}. In particular, S2 consists of full cosets
modulo 1-£ ( d) 2m .
From a qualitative point of view, Theorem 2 asserts that either r is

large or 1-l(d)2m is small. This will become plain in Theorem 4, when we
will consider the case irl = 1. The subsequent Theorem 3 generalizes [7],
Theorem 1.

Theorem 3. Let assumptions be as in Theorems 2. Let K E and
k E 7G be such that K ~ k and gcd(k, ad) = 1.

Then for every prime p satisfying (~) = 1 and + aZ E there

exists some C E 1"2 such that 

Theorem 4. Let assumptions be as in Theorem 2, and suppose in addition
that r f Cl consists of a single class. Then the following holds.
1. I n I = 11£ ( d) 2m I  2.
2. Suppose that m = 2tm’, where t &#x3E; 0 and rrt’ E ~‘I is odd, and let 

be of type (2tl, 2t2, ... , 2ts ), where s &#x3E; 0 and t1 2:: t2 &#x3E; ... &#x3E; ts &#x3E; 1.
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3. Suppose in addition that m = 1, and let A’ be the set of all residue
classes p + d*Z E Xd of primes p such that p -I- aZ E 0. Then we have

= 1 and C 

Remark. Kaplan and Williams [7] considered the case m = 1, r = {C}
and A = {b + a7G} for some b E Z such that gcd(a, b) = 1. They assumed
moreover that a is even and that every prime p E b + aZ with p { d is
represented by C. Then every prime p E b + aZ with p f d satisfies (~) = 1.
Therefore it follows that C Q(a) , hence Q(d*) C Q(a) and d* I a,
since a is even.

Proof of the Theorems. Let Ao C (Z/aZ) ’ be the set of all residue classes
p + aZ of primes P such that (4) = 1 and p’n + aZ E ~. We may assume that
A = Am C (Z / aZ) x (the other residue classes of A are of no interest). Let
ro be the set of all classes C E such that C’"L E I~e Since r c 

by assumption, we have r rm. For the same reason, S2 = 00’, where S2o
is the set of all classes C E 1£ (d) representing some prime p satisfying p f d
and E Do. Now S2o = consists of full genera by Proposition
1, and therefore S2 = no = flo1-l(d)2m = n1£(d)2m.

If C E S2, then C = Co for some Co E S2o and (by Proposition 1)
the set of all primes p such that p + aZ E Ao and Co -+ p has positive
Dirichlet density. Hence the set of all primes p such that pm + aZ E 0
and C -3 p has positive Dirichlet density, too. Therefore there exists some
C’ E r representing a prime power which is also represented by C, hence
C E {C’, C’-i} c r U r - 1, and Q c r u r-1 follows. The other inclusion is
obvious, since r and r-1 represent the same prime powers. This argument
completes the proof of Theorem 2.

For the proof of Theorem 3, let p be a prime satisfying (~) = 1 and
pm + aZ E Let po be a prime satisfying p - kpo mod ad. Then

and pm - k’p’ mod a implies po + aZ E Ao, whence Co - Po for some
Co E ro. Let Ci E 71(d) be such that p. Then Cm pm,

and therefore C1 = KCOA2for some A E N (d) 2, which implies Or = Kmc,
where C = E Q.



149

It remains to prove Theorem 4. Suppose that r = and C = Cr.
Then

and therefore

2~~ts-t-1~~), where ((r)) = ma,x{r, 0}, the assertions 1. and 2. of Theorem 4
follow.

If in addition m = 1, then clearly IWd(Â’)1 = 1. Also, for every prime p
with (~) = 1, the residue class p + d*Z is uniquely determined by p + aZ.
Therefore Cebotarev’s theorem implies C Q(a) 0
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