
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

KEN YAMAMURA
Maximal unramified extensions of imaginary quadratic
number fields of small conductors, II
Journal de Théorie des Nombres de Bordeaux, tome 13, no 2 (2001),
p. 633-649
<http://www.numdam.org/item?id=JTNB_2001__13_2_633_0>

© Université Bordeaux 1, 2001, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2001__13_2_633_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


633-6

Maximal unramified extensions of imaginary
quadratic number fields of small conductors, II

par KEN YAMAMURA

RÉSUMÉ. Dans l’article [15], nous donnions dans une table la
structure des groupes de Galois Gal(Kur/K) des extensions maxi-
males non ramifiées Kur des corps de nombres quadratiques ima-
ginaires K de conducteur ~ 1000 sous l’Hypothèse de Riemann
Généralisée, sauf pour 23 d’entre eux (tous de conducteur ~ 723).
Ici nous mettons à jour cette table, en précisant, pour 19 de ces
corps exceptionnels, la structure de Gal(Kur/K). En particulier
pour K = Q(~-856), nous obtenons Gal(Kur/K) ~ x C5 et
Kur = K4, le quatrième corps de classes de Hilbert de K. C’est
le premier exemple d’un corps de nombres dont la tour de corps
de classes est de longueur 4.

ABSTRACT. In the previous paper [15], we determined the struc-
ture of the Galois groups Gal(Kur/K) of the maximal unramified
extensions Kur of imaginary quadratic number fields K of conduc-
tors ~ 1000 under the Generalized Riemann Hypothesis (GRH)
except for 23 fields (these are of conductors ~ 723) and give a
table of Gal(Kur/K). We update the table (under GRH). For
19 exceptional fields K of them, we determine Gal(Kur/K). In

particular, for K = Q(~-856), we obtain Gal(Kur/K) ~ x C5
and Kur = K4, the fourth Hilbert class field of K. This is the
first example of a number field whose class field tower has length
four.

1. Introduction

In the previous paper [15], we determined the structure of the Galois
groups Cal(K,,,IK) of the maximal unramified extensions Kur of imaginary
quadratic number fields K of conductors ~ 1000 under the Generalized
Riemann Hypothesis (GRH) except for 23 fields (these are of conductors
&#x3E; 723) and give a table of (The results are unconditional for
conductors  420.)

Manuscrit requ le 7 avril 2000.
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We update the table (under GRH). For 19 exceptional fields ,K of them,
we determine In [15], we verified 1 = 1 for 15 fields of 23
exceptional fields and l _&#x3E; 2 and = Ki for the other 8 fields, where I is
the length of the class field tower Kl+l =
... (Ki+l is the Hilbert class field of Ki). For 12 of 15 fields with 1 = 1, we
show = Kl, the Hilbert class field of K, that is, we show that Kl has no

TABLE 1. Table of Gal(Kur/K) for 23 exceptional fields
(not complete)

Supplements. For d = -883, -907, -947. If Kl,
x 

For K = Q(~996). D3 x C6. K2 has an unramified
v4-extension L which is an S4 x C6-extension of K. If L,

L] = 2,4, or 8. (Supplemental data in the previous paper [15] are
wrong.)
As in the previous paper, we use KANT (KASH) for class number
calculations with the aid of pari-gp.
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unramified nonsolvable Galois extension. Since we have Ki]  168 =

I for these 12 fields by (conditional) discriminant bounds [10],
this is to show that Kl does not have an unramified A5-extension (which is
normal over Q). By using a general fact on the structure of group extensions
of A5 and S5 by finite abelian groups, we reduce it to the nonexistence
of some quintic number fields and available data suffice for this. This
idea also enables us to check that the results in [15] are unconditional for
Idl  463 except for d = -427, where d is the discriminant of K. On
the other hand, we show Kur = K2 for d = -952, -987, Kur = K3 for
d = -731, -771, -916, -984, and Kur = K4 for d = -856. Among updated
results, the following are especially remarkable. The field Q(ý-856) is the
first imaginary quadratic number field whose class field tower has length
(at least) four. Even though we assume GRH, this is the first example of a
number field whose class field tower has length four. The field Q ( -984)
is a field of a new type: As we remarked in [15], for many K = Q( Vd) with
Idl _ 1000, Kur coincides with the Hilbert class field of the genus
field Kg of K, and for each field K for which we verified in

[15], there exists an S4-extension M of Q such that the compositum KM is
an unramified extension of K not contained in (Kg),. For K = Q(B/2013984),
no such 54-extension of Q exists, however, there exists a dihedral octic
CM-field F such that the compositum KFl is an unramified extension of
K not contained in From this fact we can easily deduce a new way to
construct imaginary quadratic number fields whose class field towers have
length at least three. From each real quadratic number field satisfying some
conditions we obtain a family of infinite such imaginary quadratic number
fields. We also note that the degree of (~( -984)ur is 864. Thus, we also
update the largest known degree of number fields with class number one
(under GRH).

Thus, we obtain Table 1 for 23 exceptional fields. (Notations are as in
[15]. Note that 94 is the double cover of S4 with S4 ^--’ GL(2,3). This is

used in §7 in [15].)

2. Group extensions of groups with trivial center

As described in the Introduction, we use a fact on the structure of group
extensions of A5 and S5 by finite abelian groups to reduce the nonexistence
of unramified A5-extension of Kl to that of unramified A5 and S5-extensions
of its subfields. For this, we consider group extensions of general groups
with trivial center. First, we quote some basic result, and then apply it to
the groups sn, An, PGL(2,p) and PSL(2,p).

Let H and F be groups and G a group extension of H by F:
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Then as is well known, F acts on H by conjugation and this action induces
a group homomorphism 7/Ja : F - Out H, which depends only on G.

Lemma 1 ([12], (7.11)). Let the situation be as above. Suppose that H has
trivial center (Z (H) = {I}). Then the structure of G is uniquely determined
by the homomorphism 7/JG. For any group homomorphism 0 from F into
Out H, there exists an extension G of H by F such that 1/1G = Moreover,
the isomorphism class of G is uniquely determined by 1/1. (In particular, the
class of F x H is determined by 7/J with = l.) All the extensions are
realized as a subgroup U of the direct product F x Aut H satisfying the two
conditions U fl Aut H = InnH and 7r(U) = F, where 7r is the projection
fromFxAutH toF.

From this, we immediately obtain the following.

Proposition 1. Let H be a group with trivial center.
(i) If H has trivial outer automorphism group (Out H = ~ 1 } ), then for any
groups F, any extension of H by F is (isomorphic to) the direct product
F x H.

(ii) If Out H * C2, then for any group F without quotient group of order
two, any extension of H by F is (isomorphic to) the direct product F x H.
In particnlar, for any finite group F with odd order, any group extension
of H byF is F x H.

As is well known, the symmetric group Sn of degree n &#x3E;_ 4 has trivial
center and its outer automorphism group is trivial if n # 6 [12, (2.18)]. The
alternating group An of degree n &#x3E;__ 4 has trivial center and Out An * C2

[12, (2.17)]. Therefore, if we apply Proposition 1 to these groups,
then we obtain the following.

Proposition 2. Let n be a natural numbers with n &#x3E;_ 4 and n 54 6.
(i) For any groups F, any extension of Sn by F is F x Sn.
(ii) For any group F without quotient group of order two, any extension of
An by F is F x An - In particular, for any finite group F with odd order,
an y extension o f An b y F is F x An . Moreover, an extension of An b y C2
is isomorphic to C2 x An or Sn. Furthermore, an extension of An by C2m,
m ~ 2 is isomorphic to C2m x An or C2. k Sn, where C2m A Sn is the pull
back o f the epimorphisms C2m -t C2 and Sn -+ C2 .

By using this proposition (repeatedly), we can reduce the nonexistence
of an unramified A5-extension of Kl which is normal over Q to that of
unramified A5 and S5-extensions of K, and then this is reduced to that of
some quintic number fields.

Let p be an prime number ~ 5. Then Z(PGL(2, p)) = Z(PSL(2, p)) _
Ill and OutPGL(2,p) = {1}, OutPSL(2,p) ~ C2. Therefore we have the
following similar assertions.
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Proposition 3. Let p be an prime 5.

(i) For any group F, any extension of PGL(2, p) by F is F x PGL(2, p).
(ii) For any group F without quotients group of order two, any extension of
PSL(2, p) by F is F x PSL(2,p). In particular, for any finite group F with
odd order, any extension of PSL(2, p) by Fis F x PSL(2,p). Moreover, an
extension of PSL(2, p) by C2 is isomorphic to C2 x PSL(2, p) or PGL(2, p).
Furthermore, a group extension of PSL(2, p) by rn &#x3E;_ 2 is isomorphic
to C2m x PSL(2,p) or C2m A PGL(2,p).

This will be useful for the study of unramified PSL(2, 7)-extensions in
future (see the next section).

3. Determination

Fields with 1 = 1. We first treat the fields with -d = 723, 763, 772, 787,
808,843, 904, 932, 939, 964, 971, 979. For these K, we have [Kur : Kl]  168

by discriminant bounds. Thus, our task is to show that Kl does not have
an unramified A5-extension which is normal over Q. For this we use the

following proved in [15].

Proposition 4 ([15], Proposition 8). The field Q( 1507) is the first
imaginary quadratic number field having an unramified As-extension which
is normal over Q in the sense that none of of discriminant d with
0 &#x3E; d &#x3E; -1507 has such an extension.

By Propositions 2 and 4, we easily see = Kl for K with odd class
number. In fact, suppose Kl has an unramified A5-extension L. Then
L is normal over Q and Gal(L/K) = Gal(Kl/K) x A5 by Proposition 2.
Therefore K has an unramified A5-extension, which is normal over Q. This
contradicts Proposition 4.

For the fields with even class number, we use also data for quintic number
fields of type S5 (fields whose normal closure have Galois group isomorphic
to S5). We show = Kl only for d = -964 = (-4) ’ 241. (The other
fields are treated similarly.) For this K, Cl(K) = C12. Suppose Kl has
an unramified A5-extension L which is normal over Q. Then by Proposi-
tion 2, we have C12 A 55 E£ C3 x (C4 A 85). Therefore, the
genus field Kg of K, which is the unique unramified quadratic extension
of K, has an unramified A5-extension M, and this is also normal over Q.
Then by Propositions 2 and 4, we have Gal(M/K) = S5 and therefore by
Proposition 2, S5 x C2. Consequently by Proposition 4, M
is the compositum of K and an S5-extension N of Q. For the unrami-
fiedness of M/K, a quintic subfield of N must have discriminant -4, 241,
(-4) . 2412 = -232324, or (-4)2 - 241 = 3856. Such a quintic number
field does not exist. This is a contradiction. Thus, Kl does not have an
unramified A5-extension which is normal over Q and Kur = Kl.
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The same argument works also for other fields K and even if we cannot
obtain [Kur : Ki]  168 but  3600, we may conclude that
Kl does not have an unramified A5-extension which is normal over Q.
By applying it to -d = 424, 436, 443, 451, 456, we can make the result in
[15] unconditional for 463 except for d = -427. Similarly we can
show that for d = -883, -907, -947, Kl does not have an unramified A5-
extension which is normal over Q. However, for these fields, we obtain only

Kl J  2 . 168  360 = ( by (conditional) discriminant bounds.
Therefore, in order to conclude = Kl, we must show that Kl does
not have an unramified PSL(2, 7)-extension (which is normal over C~). At
present, we do not have sufficient data for number fields for this. Probably,
in future we will be able to show Kur = Kr by Proposition 3 and data for
septic and octic number fields. Still we do not have the result for unramified
PSL(2, 7)-extension corresponding to Proposition 4. Recently we found the
following example.

Example 1. The imaginary quadratic number field (~( -3983) have an
unramified PSL(2, 7)-extension. Such an extension of K = C~( -3983) is
given by the composite field of K with the splitting field M of the septic
polynomial X7 - X6 - 3X5 - X4 + 2X3 +4X2 + 4X + 1, which is a PSL (2, 7)-
extension of Q. We verify the unramifiedness of KM/K as follows. Let E
be a septic field defined by the above polynomial. Then the discriminant
of E is 39832 = 7~’ 5692 and the factorizations of the rational primes 7 and
569 in E are 7 = PIP2P3P¡ and 569 = where 
are primes of degree one and P4, q4 are of degree two. These are checked
by using pari-gp version 1.39 (the functions ’galois’, ’discf’ and ‘primedec’).
Therefore KE/K is unramified and so is KM/K. In view of the size of
the discriminant, the author expects that Q ( -3983) is the first imaginary
quadratic number field having an unramified PSL (2, 7)-extension.

For search for PSL(2, 7)-extensions of Q yielding unramified PSL(2,7)-
extensions of quadratic number fields, we used the septic polynomial with
parameters a and A whose Galois group over Q(a, A) is PSL(2,7) con-
structed by LaMacchia [4]. We found many other such extensions. The
field C~( -3983) has minimal conductor among imaginary quadratic num-
ber fields having an unramified PSL(2, 7)-extension we found.
Now we treat the other fields, for which l &#x3E; 2, except for d = -984 and

d = -996, that is, we treat the fields with -d = 731, 771, 856, 916, 952, 987.
(Q ( -984) is treated in Example 3 in the next section and we have not
succeeded in determining the degree KJ for K = C~( -996).) For
these fields most techniques are as in [15]. We apply computer calculation
of class numbers to more octic number fields than in the previous paper.
We use class number relations and results for class number divisibility to
obtain class numbers of fields of higher degrees. For simplicity, we often
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omit to describe calculations of class numbers of fields of low degrees below.
As in the previous paper, we denote by B(n) the lower bounds for root
discriminants of totally imaginary number fields of degrees n and use
Odlyzko’s (conditional, i.e., GRH) bounds for [10].

d = -731 = 17. (-43). We have C12. Let E be a quartic
number field defined by X4 _ X3 + 2X2 - 1. Then the discriminant dE
equals d and therefore by [15, Proposition 6] the normal closure M of E is
an unramified A4-extension of K. The compositum Kl M is an unramified
A4 x C4-extension of K and of degree 96. We will show that is its

quadratic extension.
First, we show [Kur : = 2. For this we consider an octic subfield

KE of M. Put N = KE. By computer calculation we have Cl(N) = C24.
We easily see that the Hilbert class field Nl of N is an unramified quadratic
extension of Since rdK = 731 = 27.0370 ~ ~ ~  B(96 . 2 ~ 3) ([10]),
we have [Kur : Nl~ _ 2. By [15, Lemma 9] the Hilbert 2-class field of

N has odd class number. Since NiIN1 (2), is cyclic cubic, by [15, Lemma 5]
we have 2 { h(Nl). Hence Kur = Nl.

Next, we show = K3, that is, is nonabelian. Since [Kur :
= 8, this is equal to showing by [15, Lemma 9]. For this

we calculate the class number of Ki2~. By calculations of class numbers of
subfields of and by using [15, Lemma 4] we have h(Kí2)) = 3. Since

is cyclic cubic, by [15, Lemma 5] we have CI(KI) Y4. Therefore
K2 = Kl M and Kur = Nl = K3 ~
Now we determine the structure of G - Since

A4 and Kur is also the third Hilbert

class field of Ki2~, we have A4. Therefore G =

A4 x C4. This is not the direct product: Since M = Ni3~, 1 we have
C8. Obviously the unique unramified quadratic extension of

M is KgM and A4 x C2. Hence K does not have an

unramified A4-extension. More precisely, A4 Y Cg (cen-
tral product). In fact, A4 = SL(2, 3) and its center
is Moreover, C8 and n

Gal(Kur/M)= (Note that Kí2) M = K, M).
d = -771 = (-3).257. We have C6. Let E be a quartic number

field defined by X4 + X2 - X + 1 and F = (a( 257). Then dE = 257
and therefore by [15, Proposition 6] the normal closure M of E is an A4-
extension of F unramified at all finite primes. Therefore the compositum
Kl M is an unramified S4 x C3-extension of K and of degree 144. We will
show Kur = KIM. Put L = KIM. Since rdK = = 27.7668 ~ ~ ~ 
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B(144 ~ 5) ([10]), we have [Kur, : L] ~ 4. Therefore Kur is the Hilbert class
field of L and our task is to show 2,3 f h(L).

First, we show 3. For this we first calculate We have

Kl = K(~, a95) and is a D3-extension. By [15, Lemma 3]
we obtain Fe(Kl) = 3 from the class numbers of the intermediate fields of
Ki/Q(-,/--3). Therefore K2 = KiF, (note that h(F) = 3) and 3 t h(K2)
by [15, Lemma 9]. Assume h(L) = 3. Then the action of A4
on C3 induces a group homomorphism A4 -~ Aut (C3 ) E£ C2 . This
is trivial. Since ~4? the same argument as in the proof of [15,
Proposition 2] shows 3 h(Kz). This is a contradiction. Hence h(L) =1= 3.

Next, we show that the 2-class group Cl(2) (KM) of KM is trivial. This
implies h(KM) = 3, which implies Cl(L) is trivial or Cl(L) ££ V4 by [15,
Lemma 5]. First, in order to show that Cl(2) (KM) is cyclic, we calcu-
late h(KFI). Since KFl/K is a D3-extension, we obtain h(KFl) = 12
by using [15, Lemma 3]. Since KM/KFl is an unramified V4-extension,
consequently we have x C3. Therefore KM is the Hilbert

2-class field of KFI. Hence we conclude that Cl(2)(KM) is cyclic by [15,
Lemma 9~. Next, to show that the 2-rank of Cl(2) (KM) is even, we calcu-
late h(KE). By computer calculation we have h(KE) = 6. Obviously the
Hilbert 2-class field of KE is KgE. Then by [15, Lemma 9] KgE has odd
class number. Since KMIKGE is cyclic cubic, the 2-rank of Cl(2) (KM) is
even by [15, Lemma 5] Hence Cl(2)(KM) is trivial.
Assume Cl(L) ££ V4. Then L is the Hilbert class field of KM and Kur

is the Hilbert class field of L. Therefore A4. Since

Gal(L/M) ~ D3, we have 84. Hence by
Proposition 2 we have ?4 x 84. This implies that there
exists an S4-extension N of Q such that NM = L and Nnm=Q. We
can easily check that such an S4-extension of Q does not exist by using
available data for quartic number fields: Assume that such an S4-extension
of Q exists. If N contains K, then N is an unramified A4-extension of K,
and therefore N must be an unramified Y4-extension of Ki3~ . However, by
computer calculation we have = 2. This is a contradiction. Hence
the unique quadratic subfield of N is Q(~). Therefore the discriminant
of a quartic subfield N must be (-3) . 2572. Such a quartic number fields
does not exist. Hence Cl(L) is trivial and = L.

d = -856 = 8 - (-107). We have Cl(K) ’"’J C6. Let E be a quartic
number field defined by X 4 - 2X3 + 5X2 - 2X - 1 and M its normal closure.
As explained in the previous paper [15, §7], KM/K is an unramified S4-
extension. The compositum K1M is an unramified S4 x C3-extension of K
and of degree 144. We will show that Kur, is its quadratic extension.
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First, we show 2 For this we consider an octic subfield KE of
KM. Put N = KE. By computer calculation we have Cl(N) ~ C12. Since
KM/N is an unramified S3-extension, is an unramified quadratic
extension of KM. Therefore Kl Nl is an unramified quadratic extension of

Hence 2 1 h(KIM).
Next, we show Kur = Put L = KiNl. Since rdK = 856 =

29.2574 ~ ~ ~  B(144. 2 ~ 4) ([10]), we have L] ~ 3. Since 

is a C3-extension and 2 f by [15, Lemma 9], we have 2 f h(L) by
[15, Lemma 5~. Before showing 3 t h(L), we show L = K4. By computer
calculation we have h(Kl) = 3. Therefore the unique cyclic cubic subex-
tension of is K2 and 3 f h(K2) by [15, Lemma 9]. Next to see

= K3, we show 3 f h(K,M). Assume 3 ~ 1 h(K,M). Then the action
of A4 on C3 induces a group homomor-
phism A4 -&#x3E; Aut (C3) = C2. This is trivial. Since U4,
the same argument as in the proof of [15, Proposition 2] shows 3 ~ 1 h(K2).
This is a contradiction. Thus, 3 t h(K1M). Since h(Kl) = 3 and 2 f h(L),
we conclude Y4 by [15, Lemma 5], and therefore K1M = K3,
h(K3) = 2, and L = K4. Then we have A4 ’= SL(2, 3). Now
we show 3 t h(K4). Assume 3 h(K4). Then the action of Gal(K4/Kl) on
Cl(K4) = C3 induces a group homomorphism SL(2, 3) -~ Aut(C3) ~ C2.
This is trivial. Since Gal(K4/K2) = Q8, the same argument as in the proof
of [15, Proposition 2] shows 3 1 h(K2). This is a contradiction. Hence

Kur = L = K4.
Finally, we determine G = Gal(Kur/ K). Put T = N12~M. We see that

T is an unramified quadratic extension of KM. Since = is a

cyclic sextic extension of KM, we have C6 and T is the Hilbert
2-class field of KM. Therefore T is normal over K. Since, as is easily seen,
Kur = Ki3T and (3 = K, we have G = x K
Since Gal(Kur/T) ^--’ C3, it remains to determine the

structure of H = Since Gal(M/Q) ~ S4,
H is a central extension of S4:

We can determine the structure of H from the one of its Sylow 2-subgroups.
For a central extension of S4 by C2 is isomorphic to 64 x C2, GL(2,3),
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S’4 ~ C4, or the group 64 given by

[11] and the Sylow 2-subgroups of each group are isomorphic to D4 x C2,
SD16, D4 k C4, and Q16, respectively. Since Gal(K4/K2) ^--’ Q8 and

S4, any Sylow 2-subgroup of H has a maximal subgroup
isomorphic to Q8 and a maximal quotient subgroup isomorphic to D4, and
therefore is isomorphic to SD16. Hence we conclude H ^-_’ GL(2,3). Thus,

84 X ~ig.
d = -916 = (-4) ~229. We have CI(K) ’-- Clo. Let E be a quartic number

field defined by X4-X+1 and F = Q ( y’229). Then dE = 229 and therefore
by [15, Proposition 6] the normal closure M of E is an A4-extension of
F unramified at all finite primes. Therefore the compositum K1M is an
unramified S4 x C5-extension of K and of degree 240. We will show 
KIM. Put L = KIM. Since rdK = 916 = 30.2654 ~ ~ ~  B(240 ~ 7) ([10]),
we have L~ _ 6. Hence our task is to show 2, 3, 5 f h(L).

First we show P ~ h(L) for p = 3 and 5. By computer calculation we have
h(Kl) = 3. Therefore K,Fl = K2 (note that h(F) = 3) and 3 t h(K2) by
[15, Lemma 9]. We have also 5 ~ h(K2), because by [15, Lemma 5] the 5-rank
of Cl(K2) is even. Assume p ~ I h(L). Then the action of A4
on CI(P) (L) induces a group homomorphism A4 ~ Aut (Cp) CP_1. This
is trivial. Since Y4, the same argument as in the proof of [15,
Proposition 2] shows p ~ This is a contradiction. Hence p { h(L).

It remains to show 2 ~’ h(L). First we show Cl(L) is cyclic and isomorphic
to Since h(Kl) = 3, by [15, lemma 5] Cl(K2) ££ V4, C§, or
C4. Assume Y4. Then Cl(L) ££ V4. Then by considering the
action of Gal(L/KM) ^--’ C5 on Cl(L), we have T~4. On the
other hand, by computer calculation V4 x C5. Therefore by
[15, Lemma 9] the 2-class group of KM is cyclic. This is a contradiction.
Hence and therefore again by [15, Lemma 9] Cl(L) is cyclic
and isomorphic to Cl(2)(KM). Next to conclude Cl(2)(KM) is trivial, we
calculate h(KgE). KgE/E is a V4-extension and its intermediate fields are
EF, E(~/~I), and KE. By computer calculation h(E) = 1, h(EF) = 3,

= 1, and h(KE) = 10. Since KGEIKE is unramified, KgE is
the Hilbert 2-class field of KE and therefore 2 f h(KgE) by [15, Lemma 9].
Hence by class number relation for V4-extensions we have h(KgE) = 15.
Since KM/KgE is an unramified cyclic cubic extension, KM is the Hilbert
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3-class field of KgE. Therefore by [15, Lemma 5J the 2-rank of Cl(KM) is
even. Hence Cl(2)(KM) is trivial. Thus, h(L) = 1 and L = Kur.

d = -952 = 8 . (-7). 17. We have CI(K) c---- C4 x C2, Kg = 7,
17), and Cl(Kg) = C20 x C2. Put L = We will show = L.

Since rdK = 952 = 30.8544... and rdK  B(2.4.40.6) ([10]), we
have L~ _ 5. By the result in [1], is cyclic (and therefore
the 2-class field tower of K terminates with K22~), and 
rl2 ~ 32r3e. (This implies K2z~ _ (K9)1~~, because ~K22~ : KI = 32 =

K].) Therefore, 2 f and since L~K22~ is cyclic
quintic, 2 ~ h(L) by [15, Lemma 5]. Since 3 { h(L) by [15, Proposition 2], it
remains to show h(L) # 5.

Assume h(L) = 5. Since by the result in [1] D4YC4,
and CI(K(y’2)) ~ V4 x Cio, we have D4 Y C4.
We put this Galois group H. The action of H on Cl(L) induces a

group homomorphism p : H - Aut(Cl(L)) ~ Aut(C5) = C4. Since
(D4 Y C4),b C2, we have 2 and if we let F be the field corre-

sponding to Ker(p), then 5 h(F). Since 5 f by [15, Lemma 9],
IIm(p) I = 2 and F is an unramified quadratic extension of K ( y’2) is)).
Hence F is obtained by adjoining -y4 to an unramified quadratic extension
of There exist exactly seven unramified quadratic extensions of

Three are contained in Kl and the other four are not. Three

obtain from [15, Lemma 4] that 5 11 h(K(~l(-7)(-9 + 10~))). Hence for
the three unramified quadratic extensions of contained in Kl, the
class numbers of the fields obtained by adjoining y4 are not divisible by five.
Since the Hilbert class field of the field

is an unramified quadratic extension of K(~/2) not con-

are pairwise conjugate and their class group are iso-
morphic to C2o x C2 and Clo, respectively. Hence for any unramified qua-
dratic extension E of 5 f h(E(~y4)). This is a contradiction. Hence
h(L) ~ 5 and therefore h(L) = 1. Thus, we have Kur = L = (Kg)l = K2

. - -. -m ~ ~ ¿ ~ ~... -
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, _ 
- - 

i7’’’’ ,

is a V4-extension, and its intermediate fields are

culation, all these fields have class number ten and therefore h(Ki ) = 5 by
[15, Lemmas 2 and 9]. Hence K2 = (Kg),.
Now we show h(K2) = 1 and conclude = K2. Since h(Kl) = 5 and

K2 = (Kg)l, 5, 11 f h(K2) by [15, Lemma 9 and Proposition 2]. Therefore
by [15, Lemma 5] CI(K2) is trivial, or Cl(K2) = C§. For simplicity, we
put F = Q( -47). Then h(F) = 5, h(Fl) = 1, and K2 = To

eliminate C2, we show C1~2~(KFl) = U4. If so, K2 is the Hilbert
2-class field of KFI and therefore C1~2~(K2) is cyclic by [15, Lemma 9].
Since KFl/KF = K( 47) is cyclic quintic, we can conclude the 2-rank
of is 2 or 6 by a generalization of [15, Lemma 5]:

Lemma 2. Let L/K be a finite cyclic extension of degree n of alge-
braic number fields. Let p be a prime number with p f n and assume

for any intermediate field E of L/K. Then for each
positive integer a, rpa(CI(P)(K)) = 0 (mod f ), where rpa
denotes the pa-rank and f is the order of p modulo n.

In the situation of the lemma, the natural map is

injective, the norm map NL/K : ~ is surjective, and its
restriction on (the image of) is a bijection. Therefore we obtain
the direct decomposition CI(P) (K). Thus, by con-
sidering the pa-rank of Ker(NL/K) instead of that of Cl(p) (L), we get the
desired result.
Now it remains to show the 2-rank of is 2. Since Fl has class

number one, any ideal class of order 2 of its quadratic extension KFl is am-
biguous. Therefore we consider the ramification of the quadratic extension
KFl /Fl. The primes which are ramified in this extension are the prime
divisors of 3 and 7. Both the rational primes 3 and 7 split in F and remain
prime in (note that Fl = F (,1) ) . Therefore they have two prime
divisors in F1 and the number of the primes which are ramified in 
are four. Hence the 2-rank of Cl(2) (KFI) cannot be 6.
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4. Families of imaginary quadratic number fields whose class
field towers are of length at least three

We explain here that from each real quadratic number field satisfying
some conditions we can construct a family of infinite imaginary quadratic
number fields whose class field towers are of length at least three.

Let F be a real real quadratic number field with Cl(2)(F) ~ C2m and
Cl~(F) ~ C2mH for some m ~ 1, where CI(2) (F) denotes the 2-part of
the narrow class group Cl+(F) of F. Then the narrow Hilbert 2-class field

F(2) of F is a dihedral CM-field: (2) /Q) E£ For simplicity,of F is a dihedral CM-field: For simplicity,
/(2)B /(2)B

we put M = and M+ = Now we assume that

(*) the relative class number h-(M) of M is greater than one.

Then from F we can construct a family of infinite imaginary quadratic
number fields whose class field towers are of length at least three. In fact,
let d’ be any negative fundamental discriminant prime to d(F) and put
d = d’ .d(F). Then K = is an imaginary quadratic number field and
the length of the class field tower of K is at least three: Now the Hilbert
class field Ml of M is normal over Q and if we put H = Gal(Mi/Q),
then H is a solvable group with H" ~ 111. This implies K2, be-
cause the compositum KMl is an unramified Galois extension of K with

H. For since H’ corresponds (by Galois theory) to the
maximal abelian subfield of Ml and since Ml/F is unramified at all fi-

nite primes, this field is the genus field Fg of F (in the narrow sense). By
the assumption on F, we have F C Fg 9 M+. On the other hand, since
2 f h(M) by [15, Lemma 9], we have Cl+(M+) = C2 x Cl(M+). Hence the
condition (*) h-(M) &#x3E; 1 implies that Ml/M+ is not abelian, neither is
Ml /F9. Thus, H" # 111 and K2.
Now we describe characterization of such a real real quadratic number

field F in detail. For C1~2~ (F) = CZm and Cl~+~ (F) = C2m+1 for some

m ~ 1, it is necessary and sufficient that d(F) is of the form 8p or pq,
where p and q are distinct prime numbers with p =- q 1 (mod 4), and
the norm of the fundamental unit E of F is 1: NF/Q(E) = 1. For m = 1,
by R6dei-Reichardt theory = 1 can be rewritten arithmetically as
(2/p) = 1 and (p~2)4~2~P)4 = -1, or (q/p) = 1 and (P~4’)4~q~T~)4 = -1.
We know that there exist only finitely many normal CM-fields with rel-

ative class number one [9] and all dihedral CM-fields with relative class
number one have already determined by S. Louboutin et al. [5, 7, 8].

For m = 1, we can summarize the above as follows.

Proposition 5. Let p and q are distinct prime numbers satisfying the fol-
lowing conditions:
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(i) p - 1, q ~ 3 (mod 4) and (q/p) = 1. (Note that if q = 2, these are
equivalent to p - 1 (mod 8).)

(ii) (p/q)4(q/P)4 = -1.
(iii) 17,73,89,233,281. Otherwise, {5, 41}, {5, 61},

{5,109}, {5,149}, {5, 269}, {5, 389}, {13,17}, {13, 29}, {13,157}, {13,
181}, {17,137}, {17, 257}, {29, 53}, {73, 97}.

Then for any negative discrirrainant d’ prime to pq, the imaginary quadratic
number field has class field tower of length at least three.
Remark 1. For the pairs excluded in (iii), is a dihedral oc-
tic CM-field with relative class number one. (See [8].) The condition

Cl~+~ (F) ^--’ C2mH implies 2 f h(M). In particular, if m = 1 and h(Ff2») = 1,
then CI(E)2 = Cl(E) x Cl(E), where E is any nonnormal quartic
subfield of M, and therefore D4 x Cl(E)2.
By taking d’ = -r, (r a prime number - 3 (mod 4)) and imposing some

arithmetic conditions on r, we obtain K = whose 2-class field
tower is of length two. For example, by [3, (iv), (a)], such conditions are
(r/p) = (r/q) = -1. (See also [1].) Thus, we can conclude that there
exist infinitely many imaginary quadratic number fields with 1~2~ = 2 and
~3, where 1 (resp. 1~2~) is the length of the class field tower (resp. 2-class
field tower). We note that by using [15, Proposition 6] we can show the
infiniteness of K with 1~2~ = 1 and 1 &#x3E;_ 3.

Example 2. Let F = Q( 2 ~ 97). Then Cl(F) E3£ C2, Cl+(F) ^--’ C4, and
Cl(M) ~ C32. We take d’ = -3, that is, let K = Q(~/(-3).2.97).
Then d(K) = -2388 and Cl(K) ££ C8 x C2. By the results of Benjamin-
Lemmermeyer-Snyder in (1], we have = K22 and r4 2,
where r 2, is presented by 

- -a - - .,. n .....11.......... - _ _ .

and r4,2 ~ = 128. Thus, the length of the 2-class field tower of K is two, the
length of the 1-class field tower of K is zero for any odd l, but the length
of the class field tower of K is at least three. We have 
2 2C3.

For KMi K2, the conditions C1~2~ (F) ^-_’ and C1~2~ (F) ^--’ 
are not essential. For F such that M = F (2) is a nonabelian CM-fieldl ,rtar
with h-(M) &#x3E; 1, we may expect the same. For almost all cases, we have

h- (M) &#x3E; 1. Therefore = 1 and that Cl(2)(F) is not elementary
are essential.

Also from some real quadratic number fields whose fundamental units
have norm - l, we can obtain families of infinite imaginary quadratic num-
ber fields whose class field towers have length at least three.
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Let F be a real real quadratic number field with Clk’) (F) ~ C2m (m &#x3E;_ 2)
and NFIQ (e) _ -l. Then the Hilbert 2-class field of F is a real dihedral

number field: D2m . Let d’ be any negative fundamental
discriminant prime to d(F) and put d = d’ . d(F) and K = Then

the compositum is a normal CM-field with D2m x

C2. Let E be the C2m-l-subextension of Then KF12) /E is a V4-
extension and and KE are its two intermediate fields. Let M be the
other intermediate field. Then M is also a dihedral CM-field. Now we
assume that

the odd part hodd(M) of h-(M) is greater than one.
Then by the same reason as in the case NFIQ (e) = 1 the class field tower

of K has length at least three. (If we do not assume tLOdd (M) &#x3E; 1, then it

is possible that Ml = K22~: F = and d’ = -3 is the case.)
For Cl(2)(F) ~ C2m for some m ~ 2 and _ -1, it is necessary

that d(F) is of the form pq, where p and q are distinct prime numbers with
p - 1, q ~ 3 (mod 4) and (q/p) = 1. For general m, it seems not easy to
see that there exist infinitely many d’ with from now on we
assume m = 2. Then by R6dei-Reichardt theory (p/q)4 = (q/p)4 = -1.
Now we assume moreover that d’ is an odd prime discriminant: d’ = -r,
r - 3 (mod 4) a prime, and that the rational prime r remains prime in
the field (a(~): (p/r) _ -1. Let E be a nonnormal quartic subfield of M
containing Then E is a CM-field and the finite primes ramified in

are r and q, where q is one of the prime divisors of q in 

(Note that q splits in Q(,fp-).) Therefore the 2-rank of Cl(2) (E) is one.

The 4-rank of Cl(2) (E) is zero or one, according as the Hilbert symbol
(r, a)q = (r/q) = - 1, or 1, where a is a totally positive generator of a
principal ideal q h(,Q(V,’p-)). (See [14].) Thus, if (r/q) _ -1, then 2 11 h-(E).
We know that there exist only finitely many nonnormal quartic CM-fields
with relative class number two [12] and all such fields has been determined
by H.-S. Yang and S.-H. Kwon [17]. We also note that in this case by [3,
(iv), (a)] the 2-class field tower of K has length two and IK) C-- Q2n
(n &#x3E;_ 4).
We can summarize the above as follows.

Proposition 6. Let p and q are distinct prime numbers satisfying the fol-
lowing conditions:

(i) p - 1, q ~ 3 (mod 4) and (q/p) = 1. (Note that if q = 2, these are

equivalent to p = 1 (mod 8).~
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Then for any prime nurrtber r with r - 3 (mod 4) , (p/r) = (q/r) = -1
and lp, q, rl 0 {5, 29, 3}, {5,101, 3}, the imaginary quadratic number field
K = Q( pqr) has class field tower of length at least three. Moreover, the
2-class field tower of K has length two and Q2n (n 4).
Remark 2. In the excluded cases where {p, q, r} _ {5, 29, 3}, {5,101, 3},
we have h-(M) = 2. In the former case, K = Q( (-3) - 5 - 29) has
class field tower of length two (this is unconditional). The relative class
numbers of M and E are related by h-(M) = QMh-(E)2/2, where QM
is Hasse’s unit index of M. If (the norm of) the relative discriminant
d(M/M+) has odd prime divisor, then QM = 1, where M+ is the maximal
real subfield of M [5, Theorem 1, (i), 1]. Now M+ = Fg = and

r2 ~ 1 Therefore h-(M) = h-(E)2/2, hence Cl-(M) ^--’
C2 x Cl-(E)2.

Example 3. Let F = Q(J2:"4I). Then C4, NFIQ(,E) = -1, and
C6. We take d’ = -3, that is, let K = Q( ý( -3) 2. 41). Then

d(K) = -984 and C6 x C2. By the result of Kisilevsky in [3],
we have K,(,,,2,) = K22~ and Q16. But the length of the class
field tower of K is at least three. 

__

We have = K3 = K,Ml (under GRH). Since rdK = v/9-8-4 =
31.1126...  B(216-393), Since Kl M, IK 2 (2) is a C33
extension, the 2-rank of CI(K,Ml) is even and therefore = KlMl = K3
and (Q16 x x C3. This is conditional, however, we can
verify K2 = (Kg)1 by computer calculation unconditionally.

Correction to the previous paper
There are some errors in the previous paper [15].
On page 407 line 14, Q( -423) should read Q(~/-424).
In the table on page 414, for d = -943, K2 = Ki (ai ) (not Kl(a4)), and

squareroot. )
On page 430 we write that there had been a gap in the proof of R. Schoof

communicated to J. Martinet. This is author’s misunderstanding. There
was not a gap. The author appologizes Prof. Schoof.
On page 434, line 9, B (2 - 8 - 4 - 11 ) should read B (2 - 8 - 4 - 16) .
On page 442. The constant term of u(X) is misprinted. The second term

in parenthesis should read p 1 4 1 4 .
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