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On low-complexity bi-infinite words
and their factors

par ALEX HEINIS

RÉSUMÉ. Dans cet article on étudie des mots bi-infinis sur deux
symboles. On dit qu’un tel mot est de rigidité k si le nombre de
facteurs différents de longueur n est egal à pour n grand. Un
tel mot est appelé k-balancé si le nombre d’occurrences du sym-
bole a dans deux facteurs quelconques de même longueur peuvent
différer au plus de k. Dans cet article on donne une description
complète de la classe des mots bi-infinis de rigidité k et on montre
que le nombre de facteurs de longueur n de cette classe est de
l’ordre de n3. Dans le cas k = 1 on donne une formule exacte. On
considère aussi la classe des mots bi-infinis k-balancés. Il est bien
connu que le nombre de facteurs de longueur n est de l’ordre de
n3 si k = 1. En revanche, on montre que ce nombre est ~ 2n/2 si

ABSTRACT. In this paper we study bi-infinite words on two let-
ters. We say that such a word has stiffness k if the number of
different subwords of length n equals n + k for all n sufficiently
large. The word is called k-balanced if the numbers of occurrences
of the symbol a in any two subwords of the same length differ by
at most k. In the present paper we give a complete description
of the class of bi-infinite words of stiffness k and show that the
number of subwords of length n from this class has growth order
n3. In the case k = 1 we give an exact formula. We also consider
the class of k-balanced bi-infinite words. It is well-known that the
number of subwords of length n from this class has growth order
n3 if k = 1. In contrast, we show that the number is &#x3E; 2n/2 when
k&#x3E;2.

1. Introduction: structure theorems.

In general, a word is defined to be a mapping w : I -~ ~ where I is an
interval of integers and where E is a finite alphabet of symbols. In this

paper we only consider words over the alphabet la, bl. A subword of w is

Manuscrit reru le 2 f6vrier 1999.
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the restriction of zu to some interval J C I. By abuse of notation we will
write x C w if x is a subword of w. We identify words which are translations
of each other.
A Z-word is a word w with domain Z. It is called recurrent if every finite

subword appears more than once in w. It then appears infinitely often, but
not a priori infinitely often in both directions. The word w is called periodic
if there exists a p E N+, the positive integers, such that wi = for all
i and then p is called a periods. The minimal such p is called the period of
w. Two finite words are called conjugate if they are cyclic permutations
of each other and we write z - y. Now if p is the period for w then the
conjugacy class of any subword of w of length p is called a period cycle.
The word w is called left periodic if there exist numbers p E N+, N E Z
such that wi = wi-p if i  N. The minimal possible value for p is called
the left period for w. A similar definition can be given with left replaced
by right.

If a word w is finite we define the content of zv as the number of a’s in

it, i.e., Ili E = all [ and we write c(w). A word iu is called k-balanced
if I c(A) - c(B)~  k for every pair of subwords A, B of the same length. If
k = 1 then w is called balanced.

For n &#x3E; 0 we define 13(w, n) as the collection of subwords of length n and
we write P(w, n) := n) I for its cardinality. It is called the complexity
function of w. The word w is called k-stiff if + k for all n. If
k = 1 we will just write stiff. It is well-known, see [C, Theorems 2.06, 2.11,
2.14~ that the following statements concerning a Z-word w are equivalent:
(1) P(w, n + 1) = P(w, n) for some n &#x3E; 1; (2) P(w, n) is bounded; (3)
P(w, n)  n for some n &#x3E; 1; (4) w is periodic. Hence, if w is k-stifi and not
periodic, then P(w, n) is strictly increasing in n and it follows that there
exist integers N &#x3E; 0, k’ &#x3E; 1 such that P(w, n) = n + k’ for n &#x3E; N. Coven

[C] uses the term minimale block growth to describe this and we will adopt
this term. We call k’ the stiffness of w and we write it as k(w). In Section 3
we will recall some well-known facts about balanced and stiff words which
we will need further on in the article.
The following two theorems describe the structure of non-recurrent k-stiff
Z-words. Proofs can be found in [C, Section 3]. We note, however, that
Theorem 3.10 in [C] is not entirely correct. To avoid confusion we will

give our own proofs in Section 4 and afterwards we indicate what (minor)
changes have to be made in Theorem 3.10 in order for it to be true.

Theorem A. Let w be k-stiff (k &#x3E; 1) and not recurrent. Then w is left
periodic and right periodic.
Now let iv be an arbitrary Z-word which is left periodic and right periodic

but not periodic, for instance w = ... We denote the
left and right period by s, r respectively and the corresponding maximal
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periodic domains by (-oo, A], [p, oo). We define the overlap of w to be
g = A - p + 1 (this overlap can be 0 or negative). Also we define X = r = s
if the period cycles are equal and X = s + r otherwise.

Theorem B. Let w be a Z-word which is left periodic and right periodic
but not periodic. Then w is not recurrent, it has minimal block growth and
k

Important for the recurrent case is the notion of a substitution,. A substi-
tution is a mapping from words on {a, b} to words on {a, b} which replaces
every a by a finite word X and every b by a finite word Y. We write (X, Y)
for this transformation. In this article we always assume that X begins
with a and that Y begins with b. Let T be such a substitution. It might
happen that T is of the form (X, ZX) or of the form (ZY,Y). Of course
these cases are incompatible since X # Y. In the first case we define the
reduction of T as (X, Z) and in the second case as (Z, Y). If neither of
these cases apply we call T irreducible and we just define Tred = T. Now let
T be any substitution. After a finite number of reductions one obtains an
irreducible substitution and we denote the result by T RED . For example,
if T = (abba, bba) then T RED = (a, bb). Note that an irreducible substi-
tution T is of the form (AaC, BQC) with uniquely determined A, B, C, a.
Conversely, every substitution of this form such that AQ, BQ have initial
symbols a, b, respectively, is irreducible. Here Q is a symbol and a its nega-
tion, i.e., the other member of the alphabet. We define the stiffness k(T)
of an irreducible substitution T = (AaC, BaC) by k(T) = IABCI -I- 1.

If T is reducible then we define k(T) = k(TRED). The term "stiffness"
will become clear from the next theorem and Lemma 7. Concerning the
next theorem we note that recurrent, stiff, non-periodic Z-words are called
Sturrnian Z-words. See also Section 3.

Theorem 1. Let w be a recurrent Z-word. Then there exist a

recurrent still Z-word Q and a substitution. T such that Ta = w. Con-

versely, if a is Sturmian, then Ta is recurrent, has minimal block growth
and k(Ta) = k(T).
The first assertion can be found in [A, Chapitre 3] for words with domain

N+ over any finite alphabet E. The formula for the stiffness in the second
assertion is new. Related results on recurrent k-stiff words can be found
in Didier [D], Paul [P] and Coven [C]. The proof of Theorem 1 is given in
Section 5.

In Theorem 2 we study the finite subwords of k-stiff Z-words. Let S~ be
the collection of Z-words w such that P(w, n)  n + k for all n and such
that P(w, n) = n + k for at least one n. We define

- {tc E skl,w is periodic},
- SknP = {w E is recurrent but not periodic},
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- Skr = (w E is non-recurrent}.
It is obvious that Sk is the disjoint union of these three sets. Theorems 2a
and 2b deal with the finite factors of these classes.

Theorem 2a. The classes Srer and contain the same n-words and
all these n-words are contained in Skr.
Theorem 2b. If w E Skr has the same period cycle in both directions,
then its n-factors are contained in 

Theorem 3. If w is a and recurrent Z-word then w is k-balanced.
The second k cannot be repl aced b y k - 1.

Remarks. Let k &#x3E; 1 and consider the word w = (If x is a
finite word then the notation XOO will be used to denote the left-infinite word
... xxx, the right-infinite word and the bi-infinite word ’’’ xxx - - - ) .
If confusion is possible we will state the precise meaning, but this is not
the case here. This word is in Skr (apply Theorem B) and the factor
ak+2bkab is contained in no element by Theorem 3. This shows that
the inclusion in Theorem 2a is strict. At the same time it shows that the

recurrency condition in Theorem 3 is necessary: in fact w is not k’-balanced
for any k’. Finally we note that the k = 1 case from Theorems 2 and 3
could be derived directly from the classification of stiff Z-words, as given
in Section 3. The proofs of Theorems 2a, 2b and 3 are given in Section 6.

2. Introduction: counting theorems.

First we discuss formulas for bal(n) and st (n), the number of balanced
and stiff words of length n, respectively. In [D/GB, Conj. 6.4] it was

conjectured that
n

This formula was afterwards proved in a number of ways, see [B/Po],
[dL/Mi, Th. 7], [Mi]. We note that many of the authors above count

finite factors of Sturmian words, rather than finite balanced words. As we
will see in Section 3 this makes no difference. In this paper we prove a

similar formula for the number of stiff, non-balanced words of length n.

With the asymptotic formula 

[H/W, Theorem 330]), Mignosi shows that bal(n) = §© + for any
6 &#x3E; 0. In a similar way it will follow that st(n) = ~ + O(n2+a) for any
J&#x3E;0. 
As we have seen in Theorem 1 every w E is of the form w = T a

where a is stiff and recurrent. Of course a is not periodic, hence it is
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Sturmian and k(T) = k. With the fact, to be shown in Lemma 10, that
there exist only finitely many irreducible substitutions with given k(T), we
estimate from above the number of n-words in If S is a collection of

words, we denote by Fn (S) the collection of all n-factors of elements of S.
Theorem 5a. For every k E N+ there exists a constant Ck such that

Ckn3.
The next theorem estimates the number of words of length n which

appear in a non-recurrent k-stiff Z-word, but not in a recurrent Z-word of
stiffness at most k.

. --- . -

Theorem

Corollary.
Remark. As shown in [H/T, Th. 4] there exist for every k &#x3E; 2 finite
k-stiff words which are not factors of k-stiff Z-words. Such words are not
counted in the above estimates.
The properties stiff and k-stiff do not seem to lie far apart. The situation

is very different for balanced and k-balanced since balk (n), the number of
k-balanced words of length n, is exponentially large in n when k &#x3E; 2. We
prove the following theorem.

Theorem 6. For every k &#x3E; 2 there exzst positive constants c, d, Ck, Dk
with 313  Ck  Dk  2 such that c. balk (n)  d . Dn for all n andk k
such that limk_oo Ck = 2.
The proofs of Theorems 4-6 can be found in Section 7.

3. Prerequisites on balanced and stiff words

A. Every balanced word is stiff. See (C/H~, Theorem 3.14, for a short proof.
From Theorems 5 and 6 it follows that k-balanced does not imply k-stiff
when k &#x3E; 2.

B. Every finite k-balanced word is contained in some k-balanced Z-word.
The statement remains true when k-balanced is replaced by stiff but not
when stiff is replaced by 2. See [H/T].
We now classify all stiff Z-words; references for proofs can be found at

the end of this section. Sometimes we describe a Z-word w by the subset
W C Z, defined by i E W 4==* wi = a.

C. The stiff Z-words, defined modulo shift, are given by:
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c) W W = where ( &#x3E; 1 is irrational and 0  ~  (.
d) w = aooboo, w = 

and W = °

Here k, l, r, s are integers with 0  l  s, 0  k  r and lr - ks = 1 in
the first case and lr - ks = -1 in the second case.

Remarks. Let w be a Z-word and x = be a sequence of subwords

of w where zn has length n. If limn_oo ~~~ exists for all x and is indepen-
dent of x then the common value a is called the density of w. It turns out
that (from the list above) only elements from a), b), c) have a well-defined
density and that these classes exactly describe the balanced Z-words. We
elaborate a little on each of the classes.

a) describes the periodic balanced Z-words. The periods are 1,1, n, respec-
tively and the corresponding densities are 1~0,~. This class equals Sper.
b) In this case a = ~ and one verifies that w contains a unique n-word
with c(x) i= k. The word w is called skew. If c(x) = k - 1 then w is called
skew of min-type and if c(x) = k + 1 then w is called skew of max-type.
The subword x is called its exceptional block. The reader may verify that
the exceptional block in the last two cases of b) is situated at [0, n - 1].
The classes b) and d) together constitute Sïr.
c) These Z-words are called irrational Beatty sequences (the rational ones
are given in a)) or Sturmian words. Given w, the number ( is unique
(( = 1 ) and w has at most one representation of each type. In the spe-c’

cial case that 4&#x3E; E Z 0 (Z one speaks of standard Sturmian words and
only in this case the type of the representation is fixed. The words with
4&#x3E; E ~ + Z E) (Z are known as Bernoulli words. Since Sturmian words have
irrational density they are recurrent by Theorem A. The class of Sturmian
Z-words equals Sir .
d) It is easily seen that every word zu in d) is left periodic with left period s,
left density § and right periodic with right period r, right density ~. Since
the fractions ~ and § are irreducible and unequal it follows that s, r are
actually the minimal periods and that the period cycles are unequal. For
the maximal periodic domains one finds (-oo, r + s - 2~ and [1, too). Hence
g = r + s - 2 and X - 1 - g = 1, in accordance with Theorem B. Words
from class d) are called infinite Hedlund words and we write PER(s, 
for the word with period pair (s, r) and lr - ks = A E {:f:1}. We call A the
signature of w and the maximal overlap B of the periodic parts of w will
be called its associated finite Hedlund word. We denote the class of finite
Hedlund words by ’U. Note that In terms of the parameters k, l, r, s
one has IBI I = r + s - 2, c(B) = k + l - 1 as can be verified directly from
the formulas above. We summarize some well-known facts about B in the

following two lemmata.
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Lemma 1. Let w = PER(s, r, A) and B its associated finite Hedlund word.
Then (a) B is a palindrome (invariant Under reversal), (b) there is a unique
symbol a such that oBa’ C w, (c) the word a B7J appears only once in w,
namely surrounding the overlap and finally we have (d) a = a ~ ~ = 1.

Proof. All statements but (d) are contained in [C/H], Theorem 4.12. We
note that from the statements (3) (p), (A) in that theorem it follows that the
B appearing there is indeed our finite Hedlund word. Part (d) of our lemma
is obtained by substituting i = 0, k + l in the appropriate formulas. 0

Lemma 2. Let B E 7-l and A E Then there is exactly one infinite
Hedlund word with signature A inducing B.

Proof. Suppose first that two Hedlund words with period pairs (s, r), (s’, r’)
and the same A induce B. Writing IBI + 2 = a, c(B) + 1 = {3 we have
r
Then
Hence a"Q are coprime and (I - l’)a = (s - s’)~3. Since s, s’  a we have
8 = s’, r = r’, 1 = l’, k = k’ and the infinite Hedlund words are indeed
equal. Suppose now that B E 1-£, then some PER(s, r, A) induces B by
definition. The word PER(r, s, -0) is obtained from the previous one by
mirroring and since B is a palindrome it follows that PER(r, s, -0) also
induces B. 0

Literature. The classification of balanced words already appeared in
[M/H], although their terminology is slightly different from ours. A con-
struction of the infinite Hedlund words, completing the classification of stiff
words, is given in [C/H]. A more recent discussion of the formulas above
can be found in [T]. There is a vast literature on Sturmian words. It is not
hard to show (using Theorems 2a,2b or explicitly with the formulas above)
that the three classes of balanced Z-words as described in a), b), c) induce
the same collection of finite factors. In particular a finite word is balanced
if and only if it is contained in a Sturmian word. For this reason finite
balanced words are also known as finite Sturmian words and this is the
name most often used. For relations with continued fractions, Christoffel
words, Lyndon words and more we refer the reader to [B/dL], [Bo/L], [Br],
[dL/Mi], ~5~. In [S] a more detailed bibliography can be found.

4. The non-recurrent case

Proof of Theorem A. Assume that the subword w with domain 
does not occur elsewhere in w. Then every subword containing this one
does not occur elsewhere in w either. Let w’ = w2w3 ~ ~ . For N &#x3E; n there
exist N - n + 1 intervals of length N containing [1, n~. Hence P(w’, N) 
(N + k) - (N - n + 1) = k + n - 1. Since P(w’, N) is bounded it follows
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that w’ and also w are right periodic. By a symmetry argument w is left
periodic. 0

Proof of Theorem B. First we deal with g  0. Hence we can write
iu = A°°BC°° where IAI = s, -g, = r, A and C are primitive (not
powers of a smaller 0, A and B have different initial symbols
and B, C have different terminal symbols. If B starts with Q and ends in T,
then AQ does not appear in A°° and TC does not appear in C°°. It follows
that ABC = Aa... TC appears only once in w, say in position (1, n~. In

particular w is not recurrent.
Now let D be any subinterval of Z of length N and x the subword of w

with domain D. We say that x has property (*) if x has period cycle (A)
after deleting the last 1 symbols and we say that x has property
(**) if x has period cycle (C) after deleting the first lAB I - 1 symbols.
If D C (-oo, n - 1] then x has property (*) and if D C ~2, oo) then x
has property (**). The remaining intervals D are exactly those containing
[1, n].
Now suppose that x satisfies (*) and (**) simultaneously where

Performing both deletions we find a word x’ with Ix’l [ &#x3E; JAI - ICI such that
~’ is contained in A°° and Coo. Let x" be a subword of length 
Then = = where Ã rv A, C ~ C. So the Z-words 
are equal, hence A°° = Coo and by primitivity we have A - C. Now
x is obtained by extending x" with period [A[ = ICI in both directions.
Therefore, if ICI + JABBCI - 2 then every word x satisfying (*)
and (**) is contained in both periodic parts of w.
We note that for N large exactly X words of length N are contained in

some periodic part of w and that exactly N - n + 1 subwords of w contain
ABC. We will now count the subwords x which do not contain ABC
and are not contained in any of the two periodic parts. By the previous
paragraph these subwords satisfy exactly one of the conditions (*) and (**).
First suppose that x satisfies only (*). Then any domain D of x satisfies
D c (-oo, n - 1], D ct (-oo, and there exist ~BC~ - 1 such intervals
of length N. If D is such an interval, then the corresponding word x is not
contained in the left periodic part (x contains AQ), not contained in the
right periodic part (then x would satisfy (*),(**) simultaneously, hence be
contained in the left periodic part), and does not contain ABC. Moreover,
all such D yield different x, since the ~’s can be distinguished by the first
appearance of AQ. Hence the number of words not contained in a periodic
part, not containing ABC and satisfying only (*) equals Similarly
the number of such x satisfying only (**) equals IABI- 1. Hence
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Now we consider the case g &#x3E; 0. Then we can write w = A°°BC°° where
IAI = s, = g, = r where A, C are primitive and where the maximal
periodic parts are given by Aoo Band BC°°. In analogy with the previous
argument we find that ABC appears only once in w and that P(w, N) =

0

Remark. A formula for k(w) in Theorem B already appears in [C, The-
orem 3.10]. Coven defines, in our terminology, that X = r = s if w is
asymptotically symmetric and X = r + s otherwise. Here a Z-word w is
called asymptotically symmetric if there exist i, j such that = Wj+k
for all k &#x3E; 0. The reader should be aware that the condition of asymptotic
symmetry appearing in [C] is not equivalent to our condition of equal pe-
riod cycles on either side as the example w = (aababb)°°(baabab)°° shows.
If Coven’s condition is replaced by ours, then the proof in [C] is correct.
Remark. Let w be as in Theorem B. Since w is not periodic we have
P(w, n) &#x3E; n for all n, hence k &#x3E; 1. This implies g  X - 2. The extreme
cases with g = X - 2 correspond to the subclasses b), d) of the classification
C, depending on whether or not the left and right period cycles coincide.

5. The recurrent case

Let T = (X, Y) be a substitution. We associate with T a directed graph
G(T) each edge of which is labelled with a or b. The graph consists of two
directed cycles a,/3 of lengths I whose only intersection is a vertex
0, the origin. Also, if one follows a from 0 to itself the labels read X
and if one follows # from 0 to itself the labels read Y. We call G(T) the
representing graph for T. An acceptable path in G(T) is a directed path
whose labels form the initial segment of a right-infinite word on {X,Y~.
In other words, an acceptable path is a path whose labels can be obtained
starting from O. If an acceptable path has label x, then there is a unique
~ of minimal length such that x is a left-factor of T~. We call ~ the coding
for x. It indicates the order in which X, Y appear following the path. The
choice is unique because X, Y start with different symbols.
Lemma 3. Let T be an irreducible substitutions and G its representing
graph. From every vertex P ~ 0 there is at most one acceptable path of
given length. Moreover, there exist positive integers M, N such that every
acceptable path with starting vertex 0 0 has a coding with period M after
deleting the first N symbols.

Proof. Let P # 0 and first assume that there is an infinite acceptable
path from P. The first symbol of the coding is fixed and following X, Y
respectively in G(T) we find a path P - Q. The direction to take at 0 is
completely determined by the next symbol. Suppose Q = 0 and without
loss of generality that the final edge of the path P - Q lies in a. Apparently
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the word you followed was Y, since otherwise P = O. If ~X~ then
X = ZY for some Z and if IXI  IYI then Y = ZX. Both are impossible
because T was irreducible. Hence 0 and repeating the procedure we
find a path P -&#x3E; Q - R -~ ~ ~ ~ where each arrow has label X or Y. Since
G has only 2 vertices different from 0, the first IXYI - 1 elements
of the sequence P, Q, R, ... cannot be distinct. Hence some vertex appears
twice in the sequence and since every point in the sequence determines
its successor uniquely it follows that the sequence, hence also the path, is
eventually periodic. Let N be the maximal preperiodic part of the paths
(taken over all P) and M the least common multiple of all the periods.
These M, N will do. If there exist only finite acceptable paths from P then
the uniqueness is shown as above and enlarging N sufficiently the second
part of the Lemma becomes trivial for all such P. D

We recall that a finite word x is called primitive if x is not a power of a
strictly smaller word. Every finite word can be written uniquely as power
of a primitive word. See [B/P, Proposition 3.1] for a proof.
Lemma 4. Let T be dn irreducible substitution. Then there exist only
finitely many ,finite primitive words x such that Tx is not primitive.

Proof. Suppose x is primitive and Tx = ~" with q primitive and n &#x3E; 2.

Trace out q in G(T), starting in 0 and find a path O - P. If P = 0

then ?7 = T(~), hence Tx = T(~’) and x = Çn, a contradiction. Here the
injectivity of T is a direct consequence of the fact that X starts with a
and Y with b. Thus P # 0 and there is an acceptable path from P with
label TIOO. But we know from the proof of Lemma 3 that q is determined up
to conjugacy by P and hence the set of possible is finite. Now suppose
that are primitive such that Tx, Ty are powers of 77. Then we have
Tx = some m,n E N+, hence xn = y’. From the Defect
Theorem, (see [B/P, Theorem 2.8]), it follows that either m = n or that

x, y are powers of the same word. Hence x, y are powers of the same word
and by primitivity we have x = y. We conclude that there are only finitely
many 77 and each q yields at most one x. D

Lemma 5. Let T be an irreducible substitution. There are only finitely
many x such that there exist y with y but Tx rv Ty.

Proof. Suppose x, y are as in the lemma and write Tx = 1]m with 1] primitive
and m &#x3E; 1. Choose an admissible path 7 from 0 with label (Ty)°°. Since
(Ty)00 has primitive period cycle 77 there is a P E y such that the induced
path from P onwards has label 77’. If P = 0 then T(y°°) = T(zxOO) for
some z hence y°° = zxoo. It follows that xl = yOO (where now these words
are understood to be Z-words), hence z - for some primitive v
and k, 1 &#x3E; 1. Then T(v)k rv Tx N Ty N T(v)l and by comparing lengths
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we find k = 1 and z - y, a contradiction. Hence P ~ O, and since the
infinite path from P onwards is admissible we find that q is determined up
to conjugacy by P. Hence only finitely many 1] are possible and since every
1] yields at most one x we are done. 0

Let ,M be the monoid of all substitutions generated by (ab, b), (ba, b) and
(b, a). In the next lemma we will show that every T E Nl leaves the class
of infinite Hedlund words It invariant. Next we show that TQ has stiffness

k(T) when T is a fixed substitution and Q is a "generic" infinite Hedlund
word.

Lemma 6. Let T E .M where M is as above and Q a Z-word. Then Ta is

infinite Hedlund when a is infinite Hedlund.

Proof. It suffices to take for T one of the generators above. The theorem
is clear for T = (b, a) and we need only consider T = (ab, b) since the
case T = (ba, b) follows from this one by symmetry. Let Q = A)
and write w = TQ. If x is the left period cycle for Q then Tx has length
l + s and content l. Similarly, if x is the right period cycle then Tx has
length r + k and content k. The fractions and ~+r are irreducible and
unequal. It follows that zv has left period s + l, right period r + k and that
the period cycles are unequal. By Lemma 1 the symbols surrounding the
maximal overlap of Q are different. Hence in both cases (Ll = -1, Ll = 1)
we find g(w) = r + s + k + l - 2. Theorem B now gives us k = x - 1 - g =
r+s+k+L-1-(k+l+r+s-2)=1. ItfollowsthatwEh. 0

Remark. Let T E .M. Because every finite balanced word appears in the

periodic part of some infinite Hedlund word it is clear from the previous
lemma that T : Bal -+ Bal where Bal is the collection of all balanced
words (finite and infinite). Assume now that Q is a Sturmian Z-word with
density a. Then TQ is balanced and an easy calculation shows that TQ has
irrational density when T is one of the three given generators of ,/1~1. In fact
these densities equal and 1 - a respectively. It follows that TQ is
Sturmian for these T as well and then the same follows for all T E Nl. The
fact that every T E .M maps Sturmian words into Sturmian words is well-
known and the converse is also true; see [Mi/S]. For this reason members
of .M are sometimes called Sturmian transformations.

Lemma 7. Let T be a substitution,. Then there exists a finite set V C Q
such that P(Tw, n) = n+k(T) for n large whenever w is an infinite Hedlund
word whose left- and right-density avoid V.

Proof. If T is a substitution it is easy to see that T = where
(D E M . Since by Lemma 6 D induces an injection from h into itself it
follows that we may assume without loss of generality that T is reduced.
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Now choose w = PER(s, r, A) such that the period cycles of length s, r
are not in the exceptional sets of Lemmas 4 and 5. We write ITal =
0, ITbl = 0 and A, B, C as in the definition of k(T). Then Tw has minimal
left-period 10 + (s - minimal right-period ko + (r - and overlap
(k + 1 - 1)~ + (r + s - k - l - + The period cycles mentioned
are not conjugate and applying Theorem B we have k(Tw) = x - 1 - g =

Remark. Let T = (abba, bb) and w = PER(2, 5, 1) = (ab)°°(babab)°°. The
reader may verify that k(T) = 5 and that k(Tw) = 2. This shows that the
restriction on w cannot be dropped.

Let w be a Z-word and x a finite subword. We say that x has multiple
right extension (MRE) in w if xa, xb C w and we denote the set of these
subwords by MRE(w). We note that some authors express this by saying
that x is right-special in w. A similar definition can be given with left
instead of right.
Now assume that w has minimal block growth, i.e., P(w, n) = n + k

for n &#x3E; N. This means that N there is a unique word En of
length n with MRE in w and also a unique word Cn of length n with
MLE in w. It is obvious that Bn is a right-factor of Bn+l if n &#x3E; N,
hence there exists a unique left-infinite word B such that Bn equals the
last n symbols of B for every n &#x3E; N. Of course every right-factor from
B has MRE and this allows us to define Bn for every n &#x3E; 0. Similar
definitions can be given for C and Cn. We note that for stiff words w
we have MRE(W) = MRE(w) = and that for infinite Hedlund
words B, C are equal to the maximal periodic tails. We say that w has
a jump at n &#x3E; 0 if MRE(w) has more than one element of length n or,
equivalently, if P(w, n + 1) - P(w, n) &#x3E; 1. Of course n  N for such n.
The following lemma has been set apart since it will be used several times
in the sequel.
Lemma 8. Let w be a Z-word with P(w, n) = n + 1 for all n, T an
irreducible substitution, y the bi-infinite path in G(T) induced by Tw and
let x E MRE(Tzv) be finite. If all paths along T with label x have the same
endpoint, then is a right-factor of the left-infinite word T(B(w)).

Proof. If all paths in G(T) with label x have the same endpoint, then this
endpoint must be O. It follows that we can write x = yT(z) where y is a
strict right-factor of X or Y and where z C w. Here y, z are unique because
T is irreducible. We have z E MRE (w), hence z = Bi(w) for some i and we
have = Az for some symbol A. If 7 contains different paths with
label x then y is a common right-factor of X and Y. In particular y is a
right-factor of TA and x is a right-factor of T(B(w)), as stated. If there
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is a unique path along -y with label x, then y must be a right-factor of TA
and we are done as well. D

Lemma 9. Let w be a Z-word with P(w, n) - n + 1 for all n, T an
zrreduczbl e substitution, ti = and M, N as in Lemma 3. If
x E MRE(Tw) has length T no right-factor of T(B(w)), then w
contains an M-periodic word of length rz - 1 - NJ.
Proof. It follows from Lemma 8 that x has two representing paths Po ... PT,
C~o ~ - ~ (~T along, with Or and, consequently, Po ~ We may
assume (otherwise the theorem is trivial), hence both paths pass
through 0. If neither of these paths starts at 0 then we delete the initial
edge of both of them and we repeat until one of them does. The new length
v of both paths satisfies T - tc  v  T and both paths have label x, the
final v symbols of x. We denote the new paths, without loss of generality,
by P~ and Qo ~ ~ ~ Q~. Note that Q~ and O # Qo. Let ~ be the
coding of these acceptable paths. From c q we deduce ~ C w
and from Lemma 3 applied to the acceptable path Qo " ’ Qi we deduce that
~ has period M after deleting the first N symbols. The result now follows
from &#x3E; &#x3E; T - j~1. D

Proof of Theorem 1. (first part) The first part of the theorem is trivial if
w is periodic, hence we assume that this is not the case. For every n &#x3E; 1 we
define a directed graph Gn with vertex-set n) and edge-set B(w, n -~-1)
in such a way that every induces an arrow from its first
n symbols to its last n symbols. Then every subword x of w of length
&#x3E; n + 1 induces in a natural way a path in namely the path which has
the successive n-factors of x as its successive vertices. This path has x - n
edges. The undirected graph underlying Gn is of course connected and for
n large there is one point Bn of outdegree 2 and one point Cn of indegree
2. It follows that we have only three possibilities for the type of Gn for n
large.
a) A loop from Bn to itself, a path of positive length from Bn to Cn and

a loop from Cn to itself. (Apart from Bn, Cn the different loops and
paths have to be disjoint).

b) If Bn = Cn then two distinct loops from Bn to itself.
c) If Bn ~ Cn then two paths from Bn to Cn and a single path from Cn

to Bn.
If one is in case a) for some n then one is in case a) for all larger n and it
is easy to see that the pathlength BnCn in Gn increases by 1 if n increases
by 1. After at most one such step we find a point P ~ Bn, Cn on this path
and then there is no path in G~ from P to itself, contradicting the fact that
w is recurrent. Hence only b) and c) occur. If one is in case c) then it is



434

not hard to show either that the pathlength CnBn in Gn decreases by 1 if
n increases by 1. See also [A/R, section 1]. It follows that case b) appears
for infinitely many n and without loss of generality we take some n above
all jumps such that case b) applies. The loops a, {3 correspond to words
X, Y with different initial symbols. We suppose that X starts with a, that
Y starts with b and we let T = (X, Y). We define X(a) = a, X(b) = /3
and extend X by concatenation to a mapping sending words to paths in
Gn. It is immediate that w = T(Q) for some Z-word ~, that w induces
a bi-infinite path -y in Gn and that y = ~(~). For all p &#x3E; 0 we have a
natural correspondence + n) ++ { paths of length p in 71: a word
x = XI ... corresponds to the path which as its ith
point. The cardinality of both sets equals p + n + k . It follows that for every
p &#x3E; 0 there is a unique path of length p with two right-extensions in y. In
particular, every two such paths are comparable, i.e., y~, is a left-extension
of q. Now suppose that E MRE(Q). The words X(x), X(x)
induce paths from Bn to itself with multiple right extension in q and since
they are comparable the same follows for x, x. Since Q is not periodic it
follows that MRE( a) contains exactly one word of length i for each i and
hence that P(Q, i) = i + 1 for all i. If Q is not recurrent then Q is left- and

right-periodic with a finite overlap. The same is then true for w, but then
Theorem B shows that w is not recurrent. Hence Q is recurrent and by the
classification in C it is Sturmian.

(second part) Let Q be a Sturmian Z-word. If x C T(a) then we can
write yxz = T~ where ~ C Q. Since ~ appears infinitely often in Q the same
holds for x in TQ. Hence T(Q) is recurrent. We write &#x3E; = max(ITaJ, ITbi)
as before. Choose n &#x3E; 1 and let fIn C Q be a finite subword such that fIn
contains all from Q and let w = w(n) be an infinite Hedlund
word containing fIn. Then B(a,n + 2~C) = + 2/~), hence 
B(Tw, n) and P(TQ, n) = P(Tw, n). For every p &#x3E; 1 there exists a constant
Cp such that Q contains no Cp-factors of period p. Otherwise, let fIn be
a p-periodic subword of length n for every n. Then d( ~~~"~ , P ) - 0 and
~~ 2013~ a(s) 00, a contradiction. It follows that the left and right
density of w = w(n) lie outside the set V from Lemma 7 for n &#x3E; nl. Taking
n &#x3E; nl we have k(Tw) = k(T).
Suppose now that T &#x3E; n is such that MRE(Tw) contains more than one
word of length T. Then w contains an M-periodic word of 
by Lemma 9 and since ~ 2013 1 - Nl  n the same word appears in a.

Hence r~ - 1 - Ni  CM whence n  + CM + 1). Taking n larger
than this value it follows that Tw has no jumps at places T &#x3E; n, hence

P(Ta, n) = P(Tw, n) = n + k(Tw) = n + k(T). 0
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Remark. Let w be a recurrent Z-word of minimal block growth. It follows
from the previous proof that is strongly connected for large i. From
this we conclude that Gi (w) is strongly connected for all i.

6. Theorems 2 and 3

Proof of Theorem 2a. First let w E Srer with primitive period cycle 7r
and choose n maximal such that P(w, n) = n + k. Then P(w, n - 1) 
P(w, n) = P(w, n -~-1). The graph Gn is a cycle and because P(w, n - 1) 
P(w, n) it follows that MRE(w) contains an element A of length n - 1.
Choose a subword TA of w. Then only one of the words Aa, Ab succeeds
it in Gn, say AT’. We let G~ be the graph which is obtained by adding
the edge TAT’ to Gn. The two paths from Bn to itself in Gn induce words
which we designate by X, Y. Note that x E ~X, Y ~ and without loss of
generality we take X = 7r. Let a be a Z-word of stiffness 1 and T(a) = w’
where T = (X, Y). Then w’ has minimal block growth.
We will show now that w’ has no jumps at places &#x3E; n, hence has stiffness

1~. Suppose that x E MRE(w’) satisfies n and let r : Z Gn and
q : Z G(T R’ED ) be bi-infinite paths induced by w’. We normalize these
bi-infinite paths by demanding that r(o) = ,(0) = 0, and that the edge
F(t)F(t + I ) has the same label as the edge 1) for all t E Z. For all
P E G~ there is a corresponding point Q E G (TRED ) such that r (t) = P
implies y(t) - Q. It is enough to show this for P = Bn and P = Cn. For
P = Bn the statement is clearly true 0, because X, Y can be
written as words in T RED (a), TRED (b) . In Gn we have two simple paths
from Bn to Cn, exactly one of which has length 1. Denote this path by 51,
the other path by 2? and let a be the label of By induction we have a
Q for every P E b2 B let Po be the vertex of b2 preceding Cn. If the
subpath of J2 from Bn to Po has label Xi and if the unique simple path from
Cn to Bn (possibly empty) has label X2, then X = Xl oX2, Y = and

Tred = Therefore the point corresponding to Po is 0, since Xi
can also be seen as a word in T RED (a), T RED (b). From this the statement
follows for P = Cn, hence for all P E G~.
Now suppose that two finite subpaths of, have label x. The correspond-

ing paths along r have the same endpoint P, which corresponds to the last
n symbols of x. But then the subpaths along, both end in Q. We can
now apply Lemma 8 with T RED and 3 to find that x = B,(w’). Hence w’
has no jumps at any T &#x3E; n and w’ has stiffness k, as claimed.

If x is a finite factor of w then x is also a factor of w’ = T(a) whenever a
is a Sturmian word with a density sufficiently close to 1. Also, x is a factor
of w’ if o- is an infinite Hedlund word with one of its densities close enough
to 1. This shows that F n (Skper) is contained in and in 
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Now for the other part. Let w E Srnp and x C w a finite factor. We
take n &#x3E; Ixl above all jumps of w such that Bn = Cn, and if the loops in
Gn have labels X, Y we set w’ :_ (XY)OO as a Z-word and this w’ contains
x. The only n-factor of w’ with MRE is and in exactly one of the two
loops we have that precedes Bn. These two facts imply that all
(n + I )-factors of w’ have unique right extension. Since P(w’, n) = P(w, n)
this implies w’ E Srer. 0

Proof of Theorem 2b. Let w E sk r with equal period cycles in both
directions and x C w a finite factor. Again we take n &#x3E; Ixl above all jumps
of w. The common period cycle in w induces a cycle in Gn which contains
Bn, Cn since Bn is contained in the left periodic part and Cn is contained
in the right one. It follows that we are in case b) or c), as described in the
proof of Theorem 1. Without loss of generality we assume that we are in
case b) . If the loops in G~ have label X, Y we set w’ : _ (X Y) °° as before
and this w’ E contains x. D

Proof of Theorem 3. Suppose that w is not k-balanced. We can find in
w two subwords A, B with c(A) &#x3E; c(B) + k + 1. We
take A, B such that n is minimal. Then c(A) - c(B) + k + 1. The graph
Gn (w) is strongly connected, as remarked after the proof of Theorem 1.
Let a be a directed path from A to B of minimal length in Gn and ~3 a
directed path from B to A of minimal length. The path a has length &#x3E; n
since otherwise a non-empty right-factor of A would equal a left-factor of
B, contradicting the minimality of n. Likewise # has length &#x3E; n. We define
the effect of an arrow in Gn as c(y) - c(x), which is contained in
{ -1,0, I}. The effect of a set of edges is simply the sum of the individual
effects. We denote the number of edges in a B (3 by s and their total effect
by a. We denote the number of edges in /3 B a by t and their effect by T.
We denote the number of common edges by f and their total effect by 0.
Then

- . -- . -

Combining these inequalities with s + f , t ~- f &#x3E; n we find that equality
holds everywhere. This implies that

- the path is induced by the word ABA;
- the number of (n + 1)-words appearing in a/~ equals n + k + 1 and
hence that these words form B(w, n + 1);

- all edges in a ~ /~ are of the form a * b with * a word of length n - 1;
- all edges in {3 B a are of the form b * a.

Now suppose that an edge from a also appears in ~3. Let P - Q be the
first such edge (following a). Then A because /3 finishes when arriving
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in A. The arrow to P in a is of the form a * b. The arrow to P in ~3 is of the
form b * a. This is a contradiction, because the last symbol of P cannot be
a and b at the same time. Hence f = 0 = ~, s = t = n. But then all edges
in a are of the form a * b, hence A = an, B = bn. From c(A) = c(B) + k + 1
we read off n = k+1, but then P (s, n) = ~{vertices in ABA) = 2n &#x3E; 

contradicting that w is k-stiff.
Now let Q be an arbitrary Sturmian word containing b k and T the sub-

stitution with T(a) = ak,T(b) = b. Then TQ is k-stiff by Theorem 1, it is
recurrent and obviously not since ak, bk eTa. Therefore
the second k is indeed sharp. D

Corollary. If a is recurrent and then Ta is k(T)-balanced.

Proof. Indeed, every factor of Q is contained in a Sturmian word a’ by
Theorem 2a. Now Ta’ is recurrent and by Theorem 1 it is k(T)-stiff.
Applying Theorem 3 we find that T(/ is k(T)-balanced. 0

7. The counting theorems

We now turn to Theorem 4. Let x be a finite stiff word which is not
balanced. By Section 3, part B, x is contained in a stiff Z-word w. This
zv is not balanced, hence it is an infinite Hedlund word. In Lemma 10 we
identify the finite subwords of a given w which are not balanced and we
show that each of these subwords determines w completely. From this our
formula will follow quite easily.
Lemma 10. Let w = PER(s, r, A) be normalised such that its finite Hed-
lund block B is situated at [1, n]. Let S = [-s, n + r + 1]. Then a finite
subword x C w is not balanced if and only if it has a domain containing S.
Also, every non-balanced subword determines w completely.

Proof. Suppose that x C w is finite and not balanced. A standard argu-
ment, as in [C/H, Lemma 3.06], shows that there exists a word X such
that aXa, bXb C x. Since X has MRE and MLE in w it follows that
X = = Cm where m = IXI. Hence the word X has periods s and
r simultaneously and it is well-known, see for instance [T, Section 4] or
Lemma 12 in this article, that this implies [X[  r + s - 2 = Sup-
pose that ~X~  Since B has MRE and MLE too, it follows that
B = PX = XQ with non-empty P and Q. Let T be the final sym-
bol of P. Using the fact that B is a palindrome, see Lemma 1, we find
that Q begins with T. Then aB, bB C w implies aXT, bXT C w hence
XT = Since BT C w we have 7Xr C w and together with TXT C w
this implies XT = The contradiction implies = B and

aBa, bBb C x. This shows that B is determined by x as the only solu-
tion X of aX a, bXb C x. The word uB57 from Lemma 1 appears in x, for
otherwise x would be contained in a periodic part of w and be balanced.
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From Lemma 2 we deduce that w is unique, which is the second part of the
lemma.

If we look at s places to the left of the a B in aB3 C w we find another
a B, now followed by Q. Furthermore, there is no a B in between because s
is the minimal left period and s. This implies that the right-most
copy of QBQ appears at s places to the left of QBQ, hence at [-s, r - 11-
Similarly, the left-most copy of QBQ is at [r, n + 1 + r]. The first part of
the lemma now follows. 0

Proof of Theorem 4. Note that in the previous lemma 181 = 2(r + s).
We want to count the stiff words x of length n, which are not balanced.
To construct such an x, one chooses coprime positive integers s, r with

2(r + s)  n, one chooses A E and then x can be any subword of
w := PER(s, r, A) containing S. It follows from Lemma 10 that no different
choices for (s, r, A) yield the same x and writing i = r + s we have

Remark. Some elementary partial summation shows that the previous
formula can be rewritten as

where m = Together with the asymptotic formulas and

bal(n) as given in Section 2 this yields the asymptotic formula for st(n).
Lemma 11. For k &#x3E; 1 there exist exactly v :_ (k2 + k + 2) 2k-3 irreducible
substitutions with k(T) = k.

Proof. Write Ta = AaC, Tb = BZFC as before. Then IABCI = k - 1.
It immediately follows that there exist only finitely many T and for the
explicit calculation we distinguish between four cases. If A, B = 0 then
Ta = aC,Tb = bC where I C I = k - 1 and we have 2k-1 choices. If

A = 0 ~ B then Ta = aC,Tb = b8bC where = k - 2 and we

have 2k-2 (k - 1) choices. The case B = 0 ~ A is similar and gives the
same number. If 0 then Ta = aAQC,Tb = bi-357C where 
k - 3 and we have 2k-2~’~21~ choices. The total number then becomes

Proof of Theorem 5a. Let w E Sknp and x E Fn(w). We know by
Theorem 1 that w = T(Q) where Q is Sturmian, T is irreducible and k(T) =
k. We denote the set of these T by {Tl’... , where v is defined in
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Lemma 11. There exist y, z, ~ such that = zT (~) where z is a strict right-
factor of X or Y and ~ C a (possibly empty). Then x = [zT(ç)]n where
[... ~~, stands for taking the first n symbols only. We will write Z for the
set of possible z and define 0 : Z x x Bal(n) -~ by ~(z, T, ~) _

The image contains all words in Therefore 
and the result now follows from the result of Mignosi mentioned

after Theorem 4. 0

Example. If k = 2 then T E {(aa, b), (a, bb), (ab, bb), (aa, ba) }, Z = {0, a, b}
and 12bal(n).
Lemma 12. Let r, s E N+, d = (s, r), 0 = r + s - 2. The total numbers of
Z-words w with left-period s, right-period r (not per se minimal) and exact
overlap g equals max(2d, 2~-9) if g  ~ + 1 - d and 0 otherwise.

Proof. We first deal with g  0. Then w = A°°BC°° with IAI = s, 
-g, ICI = r, A, B have different initial symbols and B, C have different
terminal symbols. Choose the symbols in B arbitrarily. This yields only
2 letter restrictions on A, C hence we find 2IBI+(r-l)+(s-l) = 2~-s for the
number of possible w. Note that 0 - g &#x3E; d.
Now for g &#x3E; 0, we first consider the case d = 1. The proof is basically a

generalisation of Tijdeman’s proof in [T, Section 4] when d = 1 and 9 = 0.
We will use Tijdeman’s result that if xo = 0 and xn is inductively defined
by

then {0,"’ ,~ + 1 } and also = r.

Now first suppose that g &#x3E; 0 and without loss of generality that [1, /J + 1]
lies in the intersection of the periodic parts. If we define (zn)f as above
and write = WXn’ then an = an+i for n  0, hence w is constant on
[1, /J+ 1]. Since see that the Z-word w is constant,
a contradiction.
Now and assume, without loss of generality, that the intersection
of the periodic parts of zv is situated at [1, g]. At first we have to fill

in (an)6+1 subject to the condition that Qn = Qn+i when or

g. Then is only possible when &#x3E; in, 9 hence if

Xn E (max(g - s + l, 0), r - 1~.
Note that this interval is not empty because g  0. This yields 
s + 1, 0), r - l 1 = r + 1 - max(0, g - s + 1) choices. Next we have to fill in
the max(0, s - (g + 1)) symbols to the left of the 0-position to complete the
left period cycle. The total number of choices is then r + 1- max(0, g - s +
l)+max(0~2013~2013l) = r+l+s-g- 1 = ~+22013~, which is apparently the
number of Z-words with left-period s, right-period r (we will abbreviate
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this as s-r Z-words) with ~1, g~ in the overlap. The number of s-r Z-words
with (1, g~ in the overlap but not + 1] then equals

The second formula follows from the fact just proved that w is constant if
g &#x3E; 0. Hence the number of s-r Z-words with exact overlap [1, g] equals

1 -- ó7 T _

This proves our theorem when (r, s) = 1.
Now for the case (r, s) = d &#x3E; 1. We write r = dp, s and t = p+a-2.

If an s-r Z-word has finite overlap then the overlap contains at most t
elements from a certain residue-class A mod d, for otherwise the Z-word
would be constant on every residue class modulo d, and this would imply
periodicity. Hence g  t+(t+1)(d-1) = td+d-1 = r+s-d-1 = 0+1-d.
Now suppose that an s-r Z-word has finite overlap containing [1, g] where

write c(A) = mod d) n [1, g]1 ] for A e Z. The number
of choices is then (t + 2 - c(A)) = d(t + 2) - g = 4 + 2 - g and the
rest is similar to the discussion when d = 1. D

Proof of Theorem 5b. Let x E Fn(Skr) B and 2v a non-
recurrent Z-word of stiffness k containing x. Write s, r as usual for the
minimal periods of w. Without loss of generality we write (-oo, g], [1, 00)
for its maximal periodic domains. By Theorem 2b the period cycles are not
conjugate. If ~~, ~ + n -1) is a domain for x in w, then g + 2 - n  A  0, for
x is contained in no periodic part of w. Hence for given w it follows that the
number of possible x is at most = n + k - x  n+k. From the above
we also conclude g  n - 2, hence For
fixed s, r the number g is determined by g = r+s-1-k and we have at most
max(2d, 20-9) possiblities for w by Lemma 12. Now g  ~+1 2013 d, again by
Lemma 12, and substituting g = ~+1-k this gives d  k. Also 0 - g = k-1
and therefore each choice s, r yields at most 2’~ possible w. Combining all
previous inequalities we have 2k(n + k)3. D

Lemma 13. Let N, k, ~ be positive integers with 2/J  k, N - 0 :5 k and
A = fwl lwl = N, c(w) _ ol - Then every element of A’ is k-balanced.

Proof. For any w E A°° there is a partition of Z into intervals Ii = ~ +
[Ni, Ni + N - 1] such that the word with domain Ii is contained in A for
all i. Now let us assume that w E A°° is not k-balanced. Choose subwords
A, B C w of equal length n such that I &#x3E; k and choose domains

D(A), D(B) for A and B. We can write D(A) = PQR, D(B) = STU where
Q, T are unions of Ii’s and where P, R, S, U are strict subintervals of some
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Ii . We will identify P, Q, R, S’, T, U with the subwords they induce and we
write [ Q[ = ITI = J-LN where ~, ~ &#x3E; 0. Comparing lengths and contents
we find 

....

1. then the second inequality would imply k  I c(PR) - 
max(c(PR), c(SU))  2~  k, a contradiction. It follows that it is safe to
assume that A = tt + 1, interchanging A and B if necessary. Counting the
number of b’s in SU we find c(SU)  2(N - 0). Hence

This contradiction completes the proof. D

Proof of Theorem 6. Let k &#x3E; 2 and choose 0, N E N+ such that
 k. For instance 0 = = + k will do. Now balk(I)

is increasing in i (this follows from Section 3, part B) and applying the
previous lemma we find

In particular we can take C2 = 3 ~ and because Bal2 (n) C Balk (n) for k &#x3E; 2
we can take all 3 ". The choice § = l2 J, N = k gives Ck = (tk 21) ~~~’.
The inequalities 2~  (2K + 1)(~) and 2~+~  (2n + 2) (2K+l) then show
that Ck &#x3E; 2 , hence = 2. Now for the upper bound, let

N = 2k + 2. Then balk (N) =: A  2 N , hence
- - I ~ - - - 7~ -.. - r. / pr-i ~ . 1 / ~r. -. - _ ~
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