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Lower powers of elliptic units

par STEFAN BETTNER et REINHARD SCHERTZ

RESUME. Dans un article antérieur [Sch2] il est démontré que
les corps de classes de rayon d’un corps quadratique imaginaire
possèdent comme générateurs des produits simples de valeurs sin-
gulières de la forme de Klein defini plus bas. Dans l’article présent
le deuxième auteur a généralisé les résultats de [Sch2] et en même
temps corrigé une erreur dans le Théorème 2 de [Sch2]. Le premier
auteur a implémenté le calcul de ces produits dans un progamme
de KASH et ainsi effectué le calcul des exemples en fin d’article.
Ces exemples, ainsi que les cas particuliers traités dans [Sch2],
démontrent, que les nombres définis par le Théorème 1 ont des
polynômes minimaux à très petits coefficients. En plus, à part des
exceptions triviales, ces produits de valeurs singulières constituent
même des générateurs, ce qui mène à la conjecture énoncée après
le Théorème 1.

ABSTRACT. In the previous paper [Sch2] it has been shown that
ray class fields over quadratic imaginary number fields can be
generated by simple products of singular values of the Klein form
defined below. In the present article the second named author
has constructed more general products that are contained in ray
class fields thereby correcting Theorem 2 of [Sch2]. An algorithm
for the computation of the algebraic equations of the numbers
in Theorem 1 of this paper has been implemented in a KASH
program by the first named author, who also calculated the list
of examples at the end of this article. As in the special cases
treated in [Sch2] these examples exhibit again that the coefficients
of the algebraic equations are rather small. Moreover, apart from
trivial exceptions, all numbers computed so far turn out to be
generators of the corresponding ray class field, thereby suggesting
the conjecture formulated more precisely after Theorem 1.

Introduction and results

We let r be a lattice in C and Wl, c~2 a Z-basis of r with &#x3E; 0. The
normalized Klein form is then defined by 
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Here aa denotes the a-function of r and 1] the Dedekind 1]-function. The
number z* is defined by

with the real coordinates zl, z2 Of Z = zlc.y + z2cv2 and the quasi-periods
of the elliptic Weierstrass (-function of r belonging to wl, cw2.

In what follows let K be a quadratic imaginary number field of discrimi-
nant d, D the ring of integers in K and f an integral ideal of 5J. We denote
by Kf the ray class field modulo f over K. Using this notation we now state
our main result.

Theorem 1. Let ~ be an element of K*, f the denominator of the ideal
(E) and f := min(N n (f B We use the notation [Wl, W2] := 7Gcy + Zw2
and choose an element a E K, &#x3E; 0, so ~a,1~ and

w 
.

which is always possible.
Let s be some integer &#x3E; 1 and define ideals bl, ..., bs and c of 0 of norm
b1, .., bs, c prime to 6 f by

where the bar denotes complex conjugation. Note that the above second set
of equations imposes further constraints on a. ..., ~S, ~ be numbers
from sJ B f and nl, ..., ns E Z. We suppose that the ideals gcd((2), (ai)) are
equal for all i with and that gcd(N(A), 6 f ) = 1, where N(.) denotes
the norm.

We define
Q1 . -- .... ,.,...,.

and decompose

with fl E N and a primitive ideal f2 of norm f2. By f2 we denote the non
split part of f2 and by f2* the split part of f2. Now we make the following
assumptions:
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We choose a canonical basis f2 = ~&#x26;, f2~ with some other integral element
a E i7, s(a) &#x3E; 0. Here tr(a) is prime to f2* and so there is a solution a of
the congruence

= 1 is even and ~ = 2 odd. We set (

Then

and the action of the Frobenius map Q(ca) of Kf/K belonging to the ideal
ca is given by

where e(A, a) is the 12-th root of unity defined in (11).
Numerical experience shows that apart from trivial exceptions the num-

bers defined in Theorem 1 are even generators of Kf over K and in the
case of O being a power of a quotient of two cp-values this has been proved
in [Sch2] under certain assumptions about the Ai and f. Moreover the

computations done so far make us believe in the following

Conjecture. Let the Ai in Theorem 1 all be prime to the conductor f so
that raised to the power 12 f the factors in the definition of8 are conjugate
numbers in Kf. We assume further that the product of these 12 f -th powers
is not a norm to a proper subfield (i.e. the formal sum Ei ni[Àibi] of ray
classes modulo f of the ideals with the as coefficients is not

equal to a multiple of the formal sum over the elements ofa proper subgroup
of the ray class group modulo f). Then (8 is a generator of Kf/K.
Theorem 1 is a generalization of Theorem 2 in [Sch2], where, as H. Cohen

has pointed out to the authors, the hypothesis "gcd(f, f) = I" has to be
added. So in order to correct that theorem of [Sch2] we write down a

I  . -.. , "I

special case of Theorem 1 of this paper. Herein the number I

is a conjugate of the number
I I

defined in [Sch2].
Theorem 2. Let ~ be an element of K*, f the denominator of the ideal
(~) and f := min(N‘ fl (f B {0})). We use the notation [WI, W2] := ZW2
and choose an element a E K, &#x3E; 0, so that .t7 = (a,1~ and
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which is always possible.
We define ideals b and of norm b, c prime to 6f by

where the bar denotes complex conjugation. Note that the above second
set of equations imposes further constraints on a. Let Ai , A be numbers
from D B f. We suppose = = 1, where N(.)
denotes the norm.
We define 

’ 

, . - I

and decompose f = f 1 f 2 with 11 E N and a primitive ideal f 2 of norm f 2.
By f 2 we denote the non split part of f 2 and by the split part of f 2 .
Now we make the following assumptions:
1) b-1 mod4, if 21d and 2 f
2) b - 1 mod 3, if 3 ( d and 3 f f ,
3) bN(À¡) == 1 mod ,f 2 * gcd 2 f 2 * ) ’ °
We choose a canonical basis f 2 - f2l with some other integral element
a .~s(a) &#x3E; 0. Here tr(&#x26;) is prime to and so there is a solution a of
the congruence

= 1 is even and J1. = 2 is odd. We set ( := exp( 2f ).
Then

The action of the Frobenius map of Kf/K belonging to the ideal cÀ
is given by

where e(A,a) is the 12-th root of unity defined in (11).
According to Theorem 3 in [Sch2] all powers of the numbers defined in

Theorem 2 of this paper are generators for Kf/K under certain conditions.
For these conditions to be satisfied it is necessary that the ideal Aib is
not in the principle ray class modulo f, a condition which, according to
our Conjecture is also believed to be sufficient. However there are cases,
where such a pair À1, b cannot be found. Generalizing an idea that the
authors have been told by H. Cohen it then follows from class field theory
that Kf g K(~12f). Moreover the above inclusion implies that the Hilbert
class field of K is Abelian over Q. Thus K is one of the finite number of
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quadratic imaginary fields with only one class per genus. Further we can
conclude that f = f, and it follows more precisely C Kf C K((12f).
In particular this implies that Kf can be constructed using roots of unity,
when no pair À1, b satisfying the hypothesis of Theorem 2 exists.

Proof of Theorem 1

The proof of Theorem 1 requires the reciprocity law of complex multi-
plication which we are now going to explain (see [La, St]). For a natural

number N let Fnr be the field of modular functions belonging to the group

that have at every cusp q-expansion coefficients in the N-th cyclotomic
field. FN is generated over Fl by a primitive N-th roots unity (N and the
functions

where T denotes Weber’s T-function. The extension FN/Fl is Galois and
its Galois group is isomorphic to (10) 1. For an integral
matrix A of determinant a prime to N the action of the corresponding
automorphism of is given by

To compute the action of A on an arbitrary function f on FN we observe
that

where in abuse of notation we write M(w) instead of ~ . Looking at the
q-expansion of 7x (see [De]) we see that Tx o ( § [ ) is obtained by applying
the automorphism aa = ((N e ~~,) of ~ to the q-coefficients of Tx. So
for an arbitrary function f E FN with q-expansion

we also have

and

For an arbitrary integral matrix A of determinant a prime to N this action
can then be computed via a decomposition

which always exists.
With these definitions and notations we then have the
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Reciprocity law. Let a = ~al, a2~ be an ideal in K and a := ~ with
&#x3E; 0. Then for f E FN with /(~) 7~ oo we have

and the action of the Frobenius map Q(c) belonging to an integral ideal c
prime to N is given by

where C is an integral matrix of determinant c &#x3E; 0 such that C ( a2 ) is a

basis of 6.

We remark that the reciprocity law is proved for primitive prime ideals c
first. By multiplicativity it is then generalized to primitive ideals c and it is
in fact also valid for integral ideals c. This can easily be derived observing
on the one hand that f o A only depends on A modulo N and that on the
other hand given an integral ideal c prime to N there is a relation

with integral numbers Aj m 1 mod N and a primitive ideal co from the ray
class modulo N of c.
To apply the reciprocity law to the functions of Theorem 1 we start by

collecting some transformation formulas and q-expansions. For a complex
lattice r = [WI, W2], ~(~) &#x3E; 0, and w E r we obtain from the transforma-
tion formula of the a-function

where the zi have been defined in (1). The R-linear function 1 is alternate.
For any basis wl , w2 of r such that W2 &#x3E; 0, one has

and for the calculation of I the rule

for complex conjugate numbers ~, ~ (see [Ro]) is very useful.
For x = (XI, X2) E Q x Q we consider the function

Then besides (2) we have a second transformation formula
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for all M E SL2(Z). The factor E(M)2 is a 12-th root of unity that comes
from the transformation formula of the 1]-function:

If c &#x3E; 0 and d &#x3E; 0 if c = 0 we have the explicit formula

Here ci = c if c is odd and ci = 1 if c is even, and we use the notation

(12 = This formula is easily derived from [Me]. In fact there are
two formulas in [Me], one in the case 2 t c and another in the case 2 f a.
The above formula is obtained by applying the quadratic reciprocity law
to the Legendre symbol (~) in front of the second formula in [Me], which
then in the case 2 t c coincides with the first formula. To evaluate E(M)2
for arbitrary M E SL2 (Z) we have to use the relation

9x has the q-expansion (see [La])

with

Now let a = a2~ be an ideal of D with a = ~j in the upper half plane
and 6 E where f is defined as in Theorem 1. Then we can write

and

(5) and (8) imply that 9x is in F12 f2 and the reciprocity law tells us that

To compute the Galois action let c be a primitive ideal of sJ prime to 6 f
and let Q(c) denote the Frobenius automorphism of K12 fz/K belonging to
c. Then according to the reciprocity law the action of a(c) is given by
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where C is a rational matrix of determinant c = N(c) that transforms the
basis of a into a basis of aë. With a decomposition of the matrix cC-1,

we then compute using the transformation formula (5)
- , .. - . .. I’t....- _ _

By homogeneity of p we find

So the Galois action becomes as already shown in [Ro, Schl]

and herein ~ C ( a2 ) is a basis of ac-1.
Now we consider two special cases:

(i) First we assume that a = [a, 1] and ac = [a, c~. Then C = ( o ° ), whence
cc-, = (? ( o o ) ~ ol 1), and by the formulas (6),(7) we get

(ii) Next we assume a = 0 = [a, 1] and c = (A) to be a principal ideal
prime to 12 f . We write

As Q(a) depends on A only mod 12 f 2 we can change A modulo 12 f 2 thereby
achieving that

, - .. , , -

Then

where ,S’ and N denote trace and norm of a, and we find the decomposition
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with a, b E Z such that det(M2) = 1. Moreover as v 0 0 we can choose
a &#x3E; 0. So using the explicit formula (6) for e(Mi) we can now evaluate the
factor

By the formula (9), it does not depend on the auxiliary choice of a and
b. We omit the boring case by case calculation using the fact that c =
u2 + uvs + v2N is prime to 6. The result is

Moreover, in case (ii), assume that S = tr(a) satisfies the congruences
stated in Theorem 1. Then it can be worked out that

Observing further that for c = (À) we have )C C a2 ) = a ~ i ~ , the above
formula (9) becomes

where by homogeneity of cp the factor a in the second argument is replaced
by the factor A in the first argument. Now we use (10) and (13) to prove
the assertions of Theorem 1. The relative automorphisms of 
are of the form A = 1 + w, w E f. By (13) we compute using the
transformation formula (2) and the properties (3) and (4) of 1

To evaluate l(l,w) we choose in f a canonical basis, f = /i[o~ /2J? s(a) &#x3E; 0,
and write

Then, keeping in mind that a - a mod Z, we get l(l, w) = -2.7rifly. Now
we apply to both sides in of (14) and obtain using (10)
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The action of a(A) on 8 is then given by

Further we find

The assumptions about the Aj and nj together with the property (12) of
c(A, a) now imply that (8 is invariant under the action of the Galois group
of K12 f2 /Kf and so is contained in Kf. The computation of the conjugates
as described in the Theorem follows from (10) and (13).

Examples

By the following examples it is shown on the one hand, that the min-
imal polynomials of the numbers constructed in Theorem 1 mostly have
rather small coefficients. On the other hand all numbers considered in the

following are generators for Kf/K thereby confirming our conjecture.
Using Theorem 1 we determine O and its conjugates as well as the root

of unity ( by which we get the minimal polynomial of (0 over K. In all
cases CO turns out to be a generator of Kf/K, though in the examples 5.-7.
the conditions of our conjecture are not satisfied.

In the following mg K denotes the minimal polynomial of 0 over K. Fur-
ther we denote by p2, p3, p5, P7 prime ideals dividing 2, 3, 5, 7 and the num-
ber a is assumed to be of the form a = 9 with the discriminant d of K
and u = tr(a) E Z.

where tr(a) = 189, ~ = 9. Then ( = 1 and
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where

where

4. Let d = -31, f = p3 and

where 1 and

The denominator of O can be obtained by the known factorisation of
the singular values of cp.
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and

j , .

The special form of shows, that 05 does not generate KTIK.
This is not in contrast to our conjecture, because 5 is not prime to
f . Rather one can write 05 with _ as

10

and Theorem 1 supplies 05 E Kf with f = (2)5. So this example also
shows, that in general the exponents of the numbers given in Theorem 1
can not be reduced.

6. Let d = -52, f = p7 and

Here (8 is a generator of Kf/K, though it is a relative norm in the
sense of our conjecture. Also ((8)2 generates Kf/K with

Considering we see, that ((8)4 generates only a proper sub-
field of Kf over K. Kf itself is generated by (~O)4 over K(l) at least.

7. With "small" denominators f the Hilbert classfield K(l) can often be
constructed by the products in Theorem 1. This does not follow from
our conjecture as has the conductor f = (1).
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where and

with t 3 and
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