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Signed bits and fast exponentiation

par WIEB BOSMA

RÉSUMÉ. Nous donnons une analyse précise du gain obtenu en
utilisant la représentation des entiers sous la forme non-adjacente,
plutôt que la représentation binaire, lorsqu’il s’agit de calculer les
puissances d’éléments dans un groupe dans lequel l’inversion est
facile. En comptant le nombre de multiplications pour un ex-
posant aléatoire ayant un nombre donné de bits dans son écriture
binaire, nous obtenons une version précise du résultat asympto-
tique connu, selon lequel en moyenne, un parmi trois bits signés de
la forme non-adjacente n’est pas nul. Cela montre que l’utilisation
des bits signés réduit le coût de l’exponentiation d’un neuvième,
par rapport à la méthode ordinaire consistant à des élevations au
carré et à des multiplications répétées.

ABSTRACT. An exact analysis is given of the benefits of using
the non-adjacent form representation for integers (rather than the
binary representation), when computing powers of elements in a
group in which inverting is easy. By counting the number of
multiplications for a random exponent requiring a given number
of Its in its binary representation, we arrive at a precise version
of the known asymptotic result that on average one in three signed
bits in the non-adjacent form is non-zero. This shows that the use
of signed bits (instead of bits for ordinary repeated squaring and
multiplication) reduces the cost of exponentiation by one ninth.

1. Introduction

To raise elements of a monoid into the power e &#x3E; 1, the method of
repeated squaring and multiplication is often employed. To calculate xe,
where e = £2=o bi2i, with b2 E 10, 11 and bn =1, the powers

are computed by repeated squaring, and xe is found by taking the product
of the yi for which bi = 1. It is clear that computing xe this way takes
l(e) -1 squarings and w(e) - 1 multiplications, where the (binary) length

Manuscrit reçu le 22 octobre 1999.
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l (e) - n + 1 and the Hamming weight w(e) are the total number of bits
and the number of non-zero bits b2 used to express the exponent e.

If the monoid is a group in which inverses can be computed efhciently,
it may be advantageous to use a different representation of the exponent.
Writing e = si 2i, where si E I - 1, 0, I}, we have obtained a signed bit
representation [2] for e. To determine xe, again compute

via repeated squaring, and accumulate the product (for the non-zero
which involves an inversion if s2 = -l.

The advantage of signed bit representations is that the signed bit weight
ws(e) may be smaller than w(e). Taking e = 15 for example, the binary rep-
resentation consists of four bits equal to 1. But 15 = 24 -1, so a signed bit
representation of weight 2 and length 5 exists. At the cost of one inversion
and an extra squaring we have done away with two multiplications.

There exist better ways to compute xe, using arbitrary addition chains
or addition-subtraction chains. We briefly discuss them in Section 3.
A complication in considering signed bits may seem that signed bit rep-

resentations of integers are by no means unique. Indeed, using that the
integer 1 has a representation 1 = 2k + ~~=o 20131-2~, for any &#x3E; 1, it is

seen that every integer admits infinitely many signed bit representations.
In Section 2 we describe the non-adjacent form, which selects a unique
signed bit representation for any non-negative integer e. We indicate how
it, and a modified version of it, can be determined efhciently, and we show
that these special representations have certain optimal properties.

In Sections 4 and 5 we will analyze exactly the weight of non-adjacent
forms for integers e. It is shown (in a precise sense) that on average this
weight is a third of the length of e, as opposed to a half for the binary
form. In general the gain that can be achieved from this in exponentiation
will depend on the relative costs of inverting, multiplying, and squaring
in the group. The standard application for signed bit exponentiation is
to the arithmetic of elliptic curves, [7], [9]. The group of points on an
elliptic curve over a field in Weierstrass form has the desired property that
inverting is (almost) for free. When inverting is free the results of Section
5 show that a reduction by a ninth in cost, on average, is obtained by using
the non-adjacent form rather than the binary form. This makes precise a
result that so far only seems to be known heuristically or asymptotically ~1~,
[7], [9]. (Note that in the elliptic curve case squarings are usually slightly
more expensive than ordinary multiplications, which means that the cost
reduction from using signed bits is in fact less.)
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2. Signed Bits

To fix the notation, let a signed-bit representation of length l (e) for a posi-
t.. b h h I(e)-l si2’,tive integer e be a sequence 81(e)-l, st e -2 - - - , so such that e = 
with si E I - 1, 0, 11 and = 1. Sometimes we will write m = L(e) -1;
the sequence of signed bits si is usually written without comma’s with
most-significant digit 81(e)-i first. In a sequence of signed bits the symbol
1 will denote -1. Thus 10001 is a signed bit representation for 15.

As we have seen already, e will in general have signed-bit representations
of various lengths; indeed, since we may replace the leading 2m by 2m+1 -
2r’’L, a process which can be repeated, we find infinitely many representations
for any e, of arbitrary (large enough) length. With our application of
minimizing costs of exponentiation in mind, we are particularly interested
in short representations of low weight.
We will call a signed bit representation for e optirrzal if it has least possible

weight and among all representations of minimal weight it has minimal

length clearly the length of the binary expansion is a lower bound for
the length of a signed-bit representation. But note that optimality does
not determine a unique representation in general, as the example 11 =
23+2+1 = 2~ + 2~ - 1 shows.

Let us first worry about uniqueness. The non-adjacent form representa-
tion is the signed bit representation for e characterized by the property:

Proposition 1. Positive integers have unique non-adjacent form represen-
tations.

Proof. Suppose that there exist positive integers e with two different non-
adjacent forms. Among all such e select eo having a non-adjacent form of
minimal length. The minimality condition requires that the least significant
bit in the minimal representation of eo differs from that in any other. The
only admissible pairs for the two least-significant bits in non-adjacent forms
are 00, 01, 01, 10, TO; only 10 and 10 determine the same value modulo 4,
but their least-significant bits are equal.

This ends the proof. D

It is easy to obtain the non-adjacent form from the ordinary binary ex-
pansion : apply the following rule repeatedly, working from right to left
(least-significant first):

replace any sequence 01 ... 1 by 10 ... 01

where the number of consecutive 0’s in the latter is one less than the number
of consecutive 1’s in the former.



30

Since Ek = 2k+1 - 1, it is clear that the result will always be a non-
adjacent form representation for the given integer determined by the binary
expansion. It will also be clear that the length of the non-adjacent form is
either equal to or one larger than that of the binary expansion.

Example. Starting with the binary expansion for 3190 = 211 + 210 + 2 6+
25 + 24 + 22 + 2, the rule produces:

for 3190 = 2 12 -210+2 7-2 3 -2.
In fact the above procedure can be generalized to transform any given
signed bit representation into the non-adjacent form; first apply the follow-
ing rule repeatedly working from left to right:

and then apply the following repeatedly (working from right to left):

followed by a step of the form (I) if necessary.

Proposition 2. For any integer the non-adjacent form has minimal weight.

Proof. Apply the above two rule-transformation to any signed bit repre-
sentation of minimal weight; the result is the non-adjacent form. The

transformation does not increase the weight. D

Corollary 3. For every integer there is a unique signed bit representation
satisfying:

moreover this expansion is optimal.

Proof. Let tito be the non-adjacent form for e. If the three most
significant bits are 101, then let n = m - 1 and define

In all other cases let n = m and si = ti for 0  i  n. This way s is equal to
the non-adjacent form except when the leading digits for the non-adjacent
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form are 1010, in which case we replace them by the shorter expansion with
leading digits 110. Clearly s satisfies the non-adjacency conditions of the
statement; we will show that it is optimal too.

In the exceptional case the weights of s and t are equal, but the length of
s equals that of the binary expansion. Hence s is optimal in that case. We
will prove that in all other cases the non-adjacent form t itself is optimal.

Suppose that e is an integer with non-adjacent form tlto of
minimal length that is not optimal. Since the non-adjacent weight is always
minimal, this can only occur if the length of the non-adjacent form of e
exceeds that of its binary expansion by 1. This only happens if in the final
transformation step a sequence 2 adjacent l ’s is replaced by io ... 01-,
where the number of 0’s 1. If k = 2 we are in the exceptional case,
so we will assume that 1~ &#x3E; 2. The binary expansion uo has

= um-2 = = 1, while = 0 or 1.

Since the non-adjacent weight is minimal, there must exist a signed bit
representation VO of length m, and it necessarily has =

= Vm-3 = 1, and Vm-4 = Um-4 E f 0, 11 since u and v represent
the same number e. If = 1, an extra reduction step reduces length
plus weight, which contradicts optimality of v. So = 0; but then

u contradicts minimality of m since represents the same
number as with lower weight.

That ends the proof. D

We will refer to the optimal representation of Corollary 3 as the modified
non-adjacent form. It is the same as the non-adjacent form, except that
non-adjacency is allowed in the most significant two bits, that is 110 is

not transformed to 1010, because such transformation increases the length
without decreasing the weight.

Note that this does not mean that the modified version is different for

precisely those integers for which the leading bits in the binary expansion
are 110 because of the propagation of carries in the transformations: non-
adjacent and modified non-adjacent forms for 27 = 11011 = 100101 are the
same, but for 25 = 11001 they are different, namely 101001 and 11001.

It is not so difficult to obtain the (modified) non-adjacent form directly
from e, without computing the binary (or another signed-bit) expansion
first. The method resembles the method for finding the binary expansion
producing the least significant bit first: starting with k = e repeat:

if k even: produce 0 and divide by 2;
if k odd: produce 1, subtract 1 from k and divide 1~ by 2;

until k is 0.

For the non-adjacent form one proceeds as follows. Starting with = e &#x3E; 0

again, one repeats:
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1~ mod 4=s~{2013l,l}~ produce signed bits s and 0, and replace k by
(k - s)/4;
I~ mod 4 - s E ~0, 2~: produce 0 and replace by 1~/2.

until is less than or equal to 3, after which
if k = 0: produce nothing;

produce 1;
if k = 2: produce 0 and 1;
if k = 3: produce 1 and 0 and 1;

and terminate.
For the modified version the only change necessary is to produce 11 in the
case that I~ = 3.

Note the similarities with the continued fraction algorithm, where divi-
sion by 2 is replaced by inverting, and truncation replaces extracting bits.
The algorithm to obtain the non-adjacent form is similar to the nearest
integer continued fraction algorithm.
The table shows binary expansion, non-adjacent form, and modified non-

adjacent form for the first few positive integers.

3. Addition-subtraction chains

The method of repeated squaring and multiplication does not necessarily
give the fastest way to evaluate powers. It is well-known [6] that there are
ways to find xe using fewer multiplications.
An addition chain for a positive integer e is a sequence 1 = eo, el, ... ,

ek = e with the property that for 1  i  1~ it holds that ei = eu + ev with
0  u, v  i. Each term is thus the sum of two (possibly the same) previous
terms. One usually arranges the ei in ascending order. The length of the
addition chain is the integer 1~. It will be clear that an addition chain for e
can be used to compute xe : for any i the power xei can be computed from
xe~ , ... , by a single multiplication.
The binary expansion e = En 0 b222 of any e of length n + 1 defines

an addition chain of length n + w(e) - 1 for e, corresponding to repeated
squaring and multiplication as described in Section 1, as follows. Write
down the powers pi = 2’, i = 0, ... , n of 2 less than or equal to e. Next

take ro = 0 and let rj be rj-I +Pij’ where i1, ... , ik are those i from 0 to n
for which bi # 0. The addition chain for e then consists of the the pi (with
1  i C n) and r j (with j &#x3E; 1) in ascending order.

There is an alternative addition chain associated with the binary expan-
sion, obtained by reading the bits from left to right (most significant first) .
Starting with eo = 1 one repeats for i = 1, ... , n:

if bn-i = 1: append 2ej and 2ei + 1 to the existing sequence eo, ... e~ ;
otherwise: append 2ej to the existing sequence eo, ... e~ .
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There are two problems with general addition chains. In the first place
is it hard to find a shortest chain for given e [6]. Secondly, general addition
chains make it necessary to remember entries xe°, ... , xez-1 along the way
to compute xi . Note that this is not true for the left-to-right binary addition
chain, as ei is either 2e2_1 or ei-1 + 1, that is, every step is either a squaring
or a multiplication by x ([4], see also [8] for the special case of integer
exponentiation) .

Taking the possibility of subtracting into account as well, we arrive at
addition-subtraction chains [11]. In general we cannot insist on ascending
entries anymore. Again, it will be clear that any signed-bit representation
of e will give rise to two addition-subtraction chains, by reading the signed
bits either way. It is also obvious that, since the weight of a signed bit
representation can be smaller than that of the binary expansion, that the
corresponding chain may be shorter.

Examples. Let e = 43; reading its bits 101011 right-to-left to obtain the
sequence of p2’s l, 2, 4, 8,16, 32 and of rj’s 3,11, 43, we obtain an addition
chain by merging and ordering: 1, 2, 3, 4, 8,11,16, 32, 43 of length 8.

Reading the binary expansion 101011 left-to-right produces eo = 1, then
ei = 2, and e2 = 4, e3 = 5, then e4 = 10, and e5 = 20, e6 = 21, and finally
e7 = 42, e8 = 43. Indeed, length 8 for 5 doublings and 3 multiplications.

Reading the modified non-adjacent form 43 = 110101 left-to-right gives
the addition-subtraction chain 1, 2, 3, 6,12,11, 22, 44, 43, reading it right-
to-left the chain -1, 2, 4, -5, 8, 16, 11, 32, 43. Both have length 8. The
non-adjacent form gives chains of length 9.

There exists an addition chain of length 7 for 43: 1, 2, 4, 8, 9,17, 34, 43.
The addition-subtraction chain 1, 2, 4, 8,16,15 associated with 15 = 24 -

20, is shorter than the chain 1, 2, 3, 6, 7, 14, 15 arising from the binary ex-
pansion ~ 15 = 23 +2 2 + 21 + 20. In this case there is an addition chain of
length 5 as well, however: 1, 2, 3, 5, 10, 15 for example.

In general, for e = 2~ 2013 1 the binary expansion gives rise to an addition
chain of length 2k - 2 while the non-adjacent form leads to an addition-
subtraction chain of length k + 1.

Outside numbers of this form, e = 23 is the first example where the
modified non-adjacent form for e leads to an addition-subtraction chain
(1, 2, 3, 6,12, 24, 23 of length 6) that is strictly shorter than the binary ad-
dition chains (l, 2, 4, 5,10,11, 22, 23 and l, 2, 3, 4, 7, 8,16, 23 of length 7).
Again there exist addition chains of length 6, like 1, 2, 3, 5,10,13, 23.

For e = 27 there are addition chains (such as 1, 2, 3, 6, 9,18, 27) that are
shorter than both the chains obtained from the binary expansion (1, 2, 3, 6,
12,13, 26, 27) and the addition-subtraction chain gotten from the (modi-
fied) non-adjacent form (1, 2, 4, 8, 7, 14, 28, 27). For e = 47 the length of
the chain given by the modified non-adjacent form (1, 2, 3, 6, 12, 24,
48, 47) is shorter than any addition chain (the shortest of which have
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length 8: 1, 2, 3, 4, 7,10, 20, 27, 47 for example, while the binary gives length
9: 1,2,4,5,10,11,22,23,46,47); in this case there is no shorter addition-
subtraction chain either.
There are methods to construct short addition chains - these are not

necessarily shortest, but shorter than those obtained from the binary ex-
pansion. The results from the present paper indicate the gain that can be
obtained by using signed bits rather than bits; perhaps this will lead to a
more general analysis of the advantages of addition-subtraction chains over
addition chains (in situations where they are applicable).

4. Analysis

To analyze the benefits of using the signed bit representations, we first
prove some results on (average) length of non-adjacent and modified non-
adjacent forms. Let denote the number of positive integers requiring
exactly n bits in their binary representation, and let cn and c~ be the number
of positive integers requiring exactly n signed bits in the non-adjacent form
and in the modified non-adjacent form representation, respectively. Also,
let Cn, Cn and Cn similarly define the number of positive integers requiring
at most n bits in the three representations.

Proposition 4. The number of positive integers with expansions of length
n is given by ci = c’ = c" = 1, and for n &#x3E; 2:

Hence, for n&#x3E; 0:

Proof. Only 1 requires one bit in any expansion. It is also clear that there
are exactly 2n-1 integers with most significant bit 1 (of length n),
so 2n-1 and Cn = 2n .

The easiest way to count integers with n signed bits in their non-adjacent
form is to observe that the following recursion holds:

Namely, the c~ positive integers of length n (all having - 1 ) , when
’prepended’ with sn = 0 and 1 all contribute. We get another
contribution of size cn by flipping the n-th bit to -1. This accounts
for all positive integers requiring n + 2 bits for which 0. We obtain
those with bn-1 = 0 by taking the cn+l representations of length n + 1 and
replacing the leading digit bn = 1 by bn = 0 and putting 1. This

way the validity of the recursion can be seen to hold. With starting values
c~ = c2 = 1 the closed form for cn in the statement of the proposition is
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then easily proved, for example by induction. The formula for C£ is simply
obtained by summation: 
One way to count integers with modified non-adjacent form of length n

is to use that their number also satisfies the recursion:

This time one takes the representations of length n, and obtains from each
two valid representations of length n + 2 by shifting over 2 places and
inserting bl - 0 and From the length n + 1 representations
one gets length n + 2 representations by shifting one place and taking
bo - 0. This clearly leads to 2cn + valid representations of length
n + 2 (taking care that n &#x3E; 1 to prevent the illegal representation 101 for
3) that are all distinct (look at bo); it is not terribly hard to see that we
obtain all valid modified signed bit representations this way. The starting
values for the recursion are c" = 2 and c3 = 3. Again, Cn can be derived
by summation. D

Here are the first few values for each of the functions:

Remarks. Note that c, also satisfies the recursion that cn and cn satisfy.
The sequence cn has been called the Jacobsthal sequence (A001045 in [10];
see also [5]).
Next we count the total weight of all representations of fixed length. Define
sn to be the total number of ones in all different n-bit integers; we use sn
and sn for the total number of non-zero signed bits in all different non-
adjacent forms and modified non-adjacent forms of length n. Similarly, by
,S’n, Sn and we denote the total number of non-zeroes in in all binary,
non-adjacent and modified non-adjacent representations of length at most
n.

Proposition 5. For n &#x3E; 2:
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Also,

_ ..... _ -.

Proof. To count the total number of non-zero bits in n-bit words, note
that n + 1 bit words can be formed out of n-bit words by shifting and
’appending’ a single bit (0 or 1). Since there are cn such n-bit integers,
having sn non-zero bits, we find

From and 82 = 3 we get the result by induction.
To prove the formula for note that

This follows immediately from the proof of the previous Proposition. Then
use verification of s1 = s2 = 1 and induction.

For s" one derives similarly that

For Sun and ~5’n we sum only using that

Here are the first few values for each of the functions again:

As a consequence we can determine how many non-zero (signed) bits
there are on average in all integers requiring exactly or at most n bits in
the various expansions; we denote these by gn, and tn, 
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Corollary 6. For all n &#x3E; 2:

and

This Corollary, the proof of which is an easy computation, tells us that on
average half the bits in a binary expansion are non-zero (as expected), one
in three signed bits in the non-adjacent form are non-zero (compare [1, 3,
9]). For the modified non-adjacent form also a third of the bits are non-
zero asymptotically, but the convergence is slightly slower because there
are fewer zeroes in the exceptional case.
To give a fair comparison, we need to count the number of bits used

for integer with binary expansion of length n. An n-bit integer is a non-
negative integer for which the ordinary binary representation has length n
exactly.

5. Analysis for integers of given length

First we count the total length and the total weight of n-bit integers in
the various representations. As usual we denote by l, l’, l" and L, L’, L" the
values for ordinary binary, non-adjacent form and modified non-adjacent
form representation.

Proposition 7. The total length of all numbers that take exactly n bits in
binary:
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The total length of all numbers that take at most n bits (in the ordinary
representation):

Proof. Obviously the cn length n integers give

One way to count Ln is to determine which length n integers contribute to
length n non-adjacent forms. These are the binary expansions of length n
for which bn-2 = 0 and for which the non-adjacent form of bn-3bn-4 ... bo
has length n - 2. Of those there are exactly Cn_2. The others, cn - Cn-2 =

Cn-2 = Cn_1-1 in number (compare (*)), contribute length n + 1
each, so

Using Proposition 4 immediately gives the desired result.
Similarly it can be proven that

For Ln we merely sum:

and likewise for L’ and L~.

The first few values for these functions are:

Let wn, w’, w" denote the total weight of all non-negative integers requir-
ing exactly n bits in binary representation, and Wn, Wn, Wn the same for
integers of at most n bits.
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Proposition 8.

Proof. Obviously again,

The weight of non-adjacent and modified non-adjacent forms are the same,
so wn - wn and Wn = W#. The first integer that requires n binary bits
is fn _ 2n-1. For every integer h larger than fn for which the length of
its non-adjacent form is n, there is an integer g smaller than fn that has
non-adjacent form of length n -1 and the same weight as h: simply reverse
all bits of h except for the most significant one. Thus the integers with non-
adjacent forms of length n other than f n (which has weight 1) contribute
exactly half their total weight, that is (sn - 1)/2, to wn. On the other
hand, for the same reason exactly half the total weight of the length 
non-adjacent forms contribute to the binary length n count, which implies
that

the +1 being the contribution of fn itself. Substitution then gives the
result. 0

A small table again:

Corollary 9. The number of multiplications necessary to compute xe for
a random integer e of exactly n bits using the binary expansion, the non-
adjacent form and the modi fi ed non-adjacent form for e is:
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If e is randorra of at most n digits, the cost functions are:

As expected we see that, for e of binary length n, it takes n -1 multipli-
cations (all squarings) and on average (n -1)/2 multiplications using the
binary expansion for e; using the non-adjacent form the number of mul-
tiplications can be reduced to (n -1)/3, where on average we save 1/3
multiplication using the modified form.
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