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Good reduction of elliptic curves over imaginary
quadratic fields

par MASANARI KIDA

RÉSUMÉ. Nous montrons que l’invariant modulaire j d’une courbe
elliptique définie sur un corps quadratique imaginaire ayant par-
tout bonne réduction vérifie certaines équations diophantiennes,
sous réserve que soient vérifiées certaines hypothèses relatives à
l’arithmétique du corps. En résolvant explicitement ces equations
dans l’anneau des entiers du corps, nous montrons que de telles
courbes n’existent pas sur certains corps quadratiques imaginaires.
Nos résultats généralisent des résultats antérieurs de Setzer et
Stroeker.

ABSTRACT. We prove that the j-invariant of an elliptic curve
defined over an imaginary quadratic number field having good re-
duction everywhere satisfies certain Diophantine equations under
some hypothesis on the arithmetic of the quadratic field. By solv-
ing the Diophantine equations explicitly in the rings of quadratic
integers, we show the non-existence of such elliptic curve for cer-
tain imaginary quadratic fields. This extends the results due to
Setzer and Stroeker.

Introduction

It is well-known that there is no elliptic curve having good reduction
everywhere over the field Q of rational numbers. This result is further

generalized to certain quadratic fields and some other fields (see [9] and the
references there).

In this paper, we are particularly interested in the case of imaginary
quadratic fields. For this case, the following nice result due to Setzer and
Stroeker is known.

Theorem (Setzer [11, Theorem 5], Stroeker [16, (1.9) Theorem]). Let k be
an imaginary quadratic field. If the class number of k is prime to 6, then
there is no elliptic curve defined over k having good reduction everywhere.
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Moreover, Setzer gives a criterion for the non-existence of elliptic curves
having good reduction everywhere by using certain Galois-theoretic proper-
ties of the two division fields of the elliptic curves ([11, p. 249, Proposition]).
The aim of this paper is to prove the non-existence of such elliptic curves

under somewhat weaker assumptions than Setzer and Stroeker’s in the
above theorem. For that purpose, we reduce the problem of finding such
curves to solving certain Diophantine equations (cf. Theorem 2) under
some hypothesis. Solving these Diophantine equations explicitly, we shall
show the following theorem.

Theorem 1. There is no elliptic curve having good reduction everywhere
over the following four imaginary quadratic fields:

The class numbers of these four fields are all 2. Therefore the non-
existence of elliptic curves having good reduction everywhere for these fields
does not follow from Setzer and Stroeker’s theorem above. Moreover, Set-
zer’s criterion cannot be applied to these fields (cf. [11, Theorem 4 (a)]).

This paper consists of three sections. In the first section, we show that
the j-invariant of an elliptic curve over an imaginary quadratic number field
having good reduction everywhere satisfies a set of Diophantine equations.
In the second section, we explain how to solve these Diophantine equations.
Some numerical examples and the proof of Theorem 1 are given in the third
section.

1. Diophantine equations

We shall prove the following theorem in this section. For the definition
of the j-invariant of an elliptic curve, we refer to [1, p. 364 (7.1)].
Theorem 2. Let k be an imaginary quadratic field. Suppose k satisfies the
following assumptions:

(i) The unit grouP of k consists of ~1;
(ii) The class number of k is prime to 3;
(iii) If the class numbers of k is divisible by 2, then ever y ideal class of order

2 contains an ideal c such that c2 = (r) with some rational integer r.
Then the j-invariant j of an elliptic curve defined over k having good re-
duction everywhere satisfies the following set of Diophantine equations in
the ring of integers of k:

where j and x are related by "
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Proof. It is known that the j-invariant j of an elliptic curve having good
reduction everywhere satisfies the following conditions for every discrete
valuation v of the ring of integers of k (see [2, (1.3)]):

It follows from (2a) that j is an algebraic integer. Furthermore, j generates
an ideal which is a cube by (2b): (j) = 63. By the assumption on the class
number of k, the ideal b is principal, i.e., b = (x). Hence, we have

Here we used the assumption on the unit group. It is easy to see that the

generator x can be taken in the ring of algebraic integers of k.
Now by (2c), there exists an ideal a such that

Suppose first that a in (4) is principal, say a = (y). Then we get j -
1728 = ±y 2 with some y E k. It is readily seen from this equation that y is
an algebraic integer. Combining this with (3), we obtain :1::.y2 = ±~ 20131728.
Changing the signs of the variables, we have Ci : y2 = X3 ± 1728.

If a is not principal, then the class of a is of order 2 in the ideal class
group. The class of a contains an ideal c such that c2 = (r) with r E Z by the
third assumption. This means that there exists y satisfying a = (y)c.
Hence it follows a2 = (y2)c2 = (ry2). Combining this with (4), we have
j -1728 = ~ry2. This implies that ry2 is an algebraic integer. Substituting
(3) into this equation and, if necessary, changing the signs of the variables,
we obtain ry2 = x3 :1::.1728. Multiplying by r3 then yields (r2y)2 = (rX)3 ±
1728r3. Since (r2y)2 = r3 . ry2, we see that r2y is integral. Replacing
(rx, r2y) by (x, y), we have C~. We have thus proved Theorem 2. D

Some remarks are in order. The first assumption in Theorem 2 is satisfied
if k is neither Q(B/2013l) nor ~(~). The class number of each field is
one. Hence the non-existence for these two fields follows from Setzer and
Stroeker’s theorem.
The resulting Diophantine equations Ct in Theorem 2 define elliptic

curves over Q. Thus, to apply the theorem to a specific imaginary quadratic
field, we have to determine the integral points in the ring of quadratic
integers of an elliptic curve defined over Q. This is actually possible by the
method we will explain in the next section.

2. Integral points on an elliptic curve

Let k = be an imaginary quadratic field where m is a square-
free rational integer and Zk the ring of integers of k. Let E be an elliptic
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curve given by a short Weierstrass equation

with a, b E Z. In this section, we discuss how to find the integral points of
E in 7Gk.

First we consider the method of computing the Mordell-Weil group E(k).
We denote by E(-m) the quadratic twist of E corresponding to the

quadratic extension k/Q, which is defined by the equation

These two curves E and E(-m) are both defined over Q and are isomorphic
over k. An explicit isomorphism over k is given by

By this isomorphism, we have c E(k). Note that the

generator Q of the Galois group of the quadratic extension acts on

by P ~ -P.
Hereafter, for a finitely generated Abelian group A, let An be the kernel

of the multiplication-by-n map and set A(2) = A/A2- -
We now consider the following map:

In the map definition, the addition is that of the group law on E. Is is

easy to see that the map is a homomorphism. By considering the action
of Q, it is verified that the intersection of and is a

subset of E(~)2. Therefore, the sum of the groups on the left hand side
is direct. Similarly, it can be seen that the map is injective. Moreover,
the cokernel of cp is killed by the multiplication-by-2 map. Indeed, for any
P E E(k)(2), take E E(Q)(2) C~(E(-m)(Q))(2), then
we have cp(P + pu, P - Pa) = 2P.
Summing up the above arguments, we can compute E(k) by the following

procedure.
Step 1 Compute the generators of E(Q) and ~((E(-~)(Q))(2)). For

this purpose, several pseudo algorithms are known (see [18]) and they
are implemented in some number theory packages such as SIMATH
([6]).

Step 2 Determine whether the generators found in the preceding step
and all possible sums of them have a half point (i.e., a point Q such
that P = 2Q for a given P) in E(k) or not. If there exists a half

point, then compute it and enlarge the group. This can be done by
an algorithm due to Washington ([17, Proposition 4]). Repeat this
step until no more half point exists.
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Step 3 Fill up the 2-power torsion points. An explicit computation of
the division polynomials, for example, enables us to accomplish it.

It should be emphasized that we can compute E(k) because the curve
E is defined over Q. Computing Mordell-Weil groups over an algebraic
number field larger than Q is still difficult in general (cf. [3]).

Having computed the Mordell-Weil group, we now turn our attention to
computing the integral points.

Let Pl, P2, ... , P, be the generators of E(k). Suppose that P = plP1 +
P2 P2 + ..- E(k) is an integral point with pl, P2, ... , ps E Z. Us-
ing Baker’s theory for elliptic logarithms (cf. [5]), Smart and Stephens
([14], see also [15, Chapter XIII]) give a small computable upper bound for

jp2!? - " Hence we are able to find all the integral points in
E(k).

Here we make some remarks for a practical computation. To use the

Smart-Stephens algorithm, local minimal models of the curve E and the
canonical heights and the elliptic logarithms of the generators of E(k) are
required. We implemented the algorithms (Tate’s algorithm [13, Chapter
IV, §9], Silverman’s algorithm [12] and Algorithm 7.4.8 in [1], respectively)
for computing these invariants on KASH ([4]). We refer to [10] for more
details.

Though Algorithm 7.4.8 in [1] only describes how to compute the elliptic
logarithm of a point in the real locus of an elliptic curve, it is enough for
our purpose as the following proposition shows.

Proposition. (resp. ~~_~",~~ be the elliptic logarithm on E (resp.
E(-m)) and A (resp. the corresponding period lattice. Then the

following diagram is commutative:
1

where the map ai is defined by (5).

Proof. Let el, e2 and e3 be the roots of the polynomial 
where b2, b4 and b6 are the standard invariants of E (for the definitions, see
[1, p. 364 (7.1)] for example) and ei, e2 and e’ the corresponding objects
for E(-m). It is easy to see that they are related by

Hence we have

by an easy change of variables in the period integrations.
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Noting that the inverse map of O (resp. is given by

where (resp. p(z; A-m)) is the Weierstrass p-function relative to
the lattice A (resp. A-,), we have to show

The first half is obtained from the following elementary calculations:

Differentiating the both sides of the above obtained equation by z, we
have

/ ’Y B

This completes the proof of the proposition. D

If P = 2Q holds, then it is easy to see agrees with ether 2 7
(i = 1 or 2) our + w1, where A = + ZW2- We can2 2 2 2 7

choose the correct one by computing the p function at these values.
Since the generators of E(k) always arise from the points in or

E(-m) Q), it is enough to compute $ or for the Q-rational points.

3. Examples

In this section, we apply Theorem 2 to certain specific imaginary qua-
dratic fields.

Among 61 imaginary quadratic (1  m  100, m is
square-free), the non-existence of an elliptic curve having good reduction is
proved for the following 44 values of m by Setzer and Stroeker’s Theorem
in the introduction and Setzer’s criterion ([11, Thereom 4(a)]):
m = 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 30, 33, 34, 39, 41, 42, 43, 46

47, 55, 57, 58, 62, 66, 67, 69, 70, 71, 73, 77, 78, 9, 82, 85, 86, 93, 94, 95, 97.
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TABLE 1. The Mordell-Weil groups C’

The bold-faced numbers corresponds to the fields whose class numbers are
prime to six.

In our forthcoming paper [8], we show the non-existence for m = 74 by
a different method.
On the other hand, the only known examples of elliptic curves having

good reduction everywhere defined over an imaginary quadratic field of
small discriminant are the eight curves (up to isomorphism) defined over
~( -65) found by Setzer [11].
Among the fifteen fields which remain, the following four fields satisfy

the assumptions on the class number in Theorem 2 and they also satisfy the
third assumption of the theorem on the existence of the rational integer r.

Note that r is a rational integer that necessarily divides the discriminant
of the quadratic field, since r satisfies c2 = (r) in 1~. Although there may be
more than one r for one field, as for the Mordell-Weil group computation,
the results are essentially unchanged whichever r we choose. Indeed, let rl
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and r2 be the r’s. In each case, m = rlr2 holds. Then we have the following
isomorphism over Q:

Similarly we can show

Generally speaking, the smaller r we choose, the faster the computation is.
The Mordell-Weil groups and the integral points of the curves Ct (k) (t =

1 or r) are compiled in Table 1 and Table 2, respectively.
By Theorem 2, we have the candidates of the j-invariants of elliptic

curves having good reduction everywhere as follows.

An algorithm for computing all the elliptic curves having good reduction
everywhere for a given j-invariant is presented in [7]. Alternatively, we may
use the criterion of Comalada and Nart in [2]. Their criterion tells us which

TABLE 2. The integral points on C’
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algebraic integers appear as the j-invariants of elliptic curves having good
reduction everywhere. By either of these methods, it is shown that there is
no elliptic curve having good reduction everywhere having the j-invariants
in the above list. We thus obtain Theorem 1.

References

[1] H. COHEN, A course in computational algebraic number theory. Springer-Verlag, Berlin,
1993.

[2] S. COMALADA, E. NART, Modular invariant and good reduction of elliptic curves. Math.
Ann. 293 (1992), no. 2, 331-342.

[3] J. E. CREMONA, P. SERF, Computing the rank of elliptic curves over real quadratic number
fields of class number 1. Math. Comp. 68 (1999), no. 227, 1187-1200.

[4] M. DABERKOW, C. FIEKER, J. KLUNERS, M. POHST, K. ROEGNER, M. SCHÖRNIG,
K. WILDANGER, KANT V4. J. Symbolic Comput. 24 (1997), no. 3-4, 267-283, Compu-
tational algebra and number theory (London, 1993).

[5] S. DAVID, Minorations de hauteurs sur les variétés abéliennes. Bull. Soc. Math. France 121
(1993), no. 4, 509-544.

[6] C. HOLLINGER, P. SERF, SIMATH-a computer algebra system. Computational number
theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 331-342.

[7] M. KIDA, Computing elliptic curves having good reduction everywhere over quadratic fields.
Preprint (1998).

[8] M. KIDA, Non-existence of elliptic curves having good reduction everywhere over certain
quadratic fields. Preprint (1999).

[9] M. KIDA, Reduction of elliptic curves over certain real quadratic fields. Math. Comp. 68
(1999), no. 228, 1679-1685.

[10] M. KIDA, TECC manual version 2.2. The University of Electro-Communications, November
1999.

[11] B. SETZER, Elliptic curves over complex quadratic fields. Pacific J. Math. 74 (1978), no. 1,
235-250.

[12] J.H. SILVERMAN, Computing heights on elliptic curves. Math. Comp. 51 (1988), no. 183,
339-358.

[13] J.H. SILVERMAN, Advanced topics in the arithmetic of elliptic curves. Springer-Verlag, New
York, 1994.

[14] N.P. SMART, N.M. STEPHENS, Integral points on elliptic curves over number fields. Math.
Proc. Cambridge Philos. Soc. 122 (1997), no. 1, 9-16.

[15] N.P. SMART, The algorithmic resolution of Diophantine equations. Cambridge University
Press, Cambridge, 1998.

[16] R.J. STROEKER, Reduction of elliptic curves over imaginary quadratic number fields. Pacific
J. Math. 108 (1983), no. 2, 451-463.

[17] L.C. WASHINGTON, Class numbers of the simplest cubic fields. Math. Comp. 48 (1987),
no. 177, 371-384.

[18] H.G. ZIMMER, Basic algorithms for elliptic curves. Number theory (Eger, 1996), de Gruyter,
Berlin, 1998, pp. 541-595.

Masanari KIDA

Department of Mathematics
The University of Electro-Communications
Chofu, Tokyo 182-8585
Japan
E-mail : kida@matha.e-one.uec.ac.jp


