Marie-France Vignéras

Congruences modulo ℓ between ε factors for cuspidal representations of $G L(2)$

Journal de Théorie des Nombres de Bordeaux, tome 12, n 2 (2000), p. 571-580

http://www.numdam.org/item?id=JTNB_2000__12_2_571_0
© Université Bordeaux 1, 2000, tous droits réservés.
L'accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Congruences modulo ℓ between ε factors for cuspidal representations of $G L(2)$

par Marie-France VIGNÉRAS

Pour Jacques Martinet

Abstract

Résumé. Titre français : Congruences modulo ℓ entre facteurs ϵ des représentations cuspidales de $G L(2)$ Soient $\ell \neq p$ deux nombres premiers distincts, F un corps local non archimedien de caractéristique résiduelle $p, \overline{\mathbf{Q}}_{\ell}$ une clôture algébrique du corps des nombres ℓ-adiques, et $\overline{\mathbf{F}}_{\ell}$ le corps résiduel de $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$. On conjecture que la correspondance locale de Langlands pour $G L(n, F)$ sur $\overline{\mathbf{Q}}_{\ell}$ respecte les congruences modulo ℓ entre les facteurs L et ϵ de paires, et que la correspondance locale de Langlands sur $\overline{\mathbf{F}}_{\ell}$ est caractérisée par des identités entre de nouveaux facteurs L et ϵ. Nous allons le démontrer lorsque $n=2$.

Abstract. Let $\ell \neq p$ be two different prime numbers, let F be a local non archimedean field of residual characteristic p, and let $\overline{\mathbf{Q}}_{\ell}, \overline{\mathbf{Z}}_{\ell}, \overline{\mathbf{F}}_{\ell}$ be an algebraic closure of the field of ℓ-adic numbers \mathbf{Q}_{ℓ}, the ring of integers of $\overline{\mathbf{Q}}_{\ell}$, the residual field of $\overline{\mathbf{Z}}_{\ell}$. We proved the existence and the unicity of a Langlands local correspondence over $\overline{\mathbf{F}}_{\ell}$ for all $n \geq 2$, compatible with the reduction modulo ℓ in [V5], without using L and ε factors of pairs.

We conjecture that the Langlands local correspondence over $\overline{\mathbf{Q}}_{\ell}$ respects congruences modulo ℓ between L and ε factors of pairs, and that the Langlands local correspondence over $\overline{\mathbf{F}}_{\ell}$ is characterized by identities between new L and ε factors. The aim of this short paper is prove this when $n=2$.

Introduction

The Langlands local correspondence is the unique bijection between all irreductible $\overline{\mathbf{Q}}_{\ell}$-representations of $G L(n, F)$ and certain ℓ-adic representations of an absolute Weil group W_{F} of dimension n, for all integers $n \geq 1$,

[^0]which is induced by the reciprocity law of local class field theory
$$
W_{F}^{a b} \simeq F^{*}
$$
when $n=1\left(W_{F}^{a b}\right.$ is the biggest abelian Hausdorff quotient of $\left.W_{F}\right)$, and which respects L and ε factors of pairs [LRS], [HT], [H2].

Let $\psi: F \rightarrow \overline{\mathbf{Z}}_{\ell}^{*}$ be a non trivial character. We denote by $\operatorname{Cusp}_{R} G L(n, F)$ the set of isomorphism classes of irreducible cuspidal R-representations of $G L(n, F)$. When $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(n, F)$, Henniart [H1] showed that π is characterized by the epsilon factors of pairs $\varepsilon(\pi, \sigma)$ for all $\sigma \in$ $\operatorname{Cusp}_{\bar{Q}_{\ell}} G L(m, F)$ and for all $m \leq n-1$ (note that $L(\pi, \sigma)=1$), using the theory of Jacquet, Piatestski-Shapiro, and Shalika [JPS1].

Does this remain true for cuspidal irreductible $\overline{\mathbf{F}}_{\boldsymbol{\ell}}$-representations of $G L(n, F)$? We need first to define the epsilon factors of pairs.

Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(n, F)$. It is known that the constants of the epsilon factors of pairs $\varepsilon(\pi, \sigma)$ belong to $\overline{\mathbf{Z}}_{\ell}$ for all $\sigma \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(m, F)$ and for all $m \leq n-1$, and that the conductor does not change by reduction modulo ℓ (this is proved by Deligne [D] for the irreducible representations of the Weil group, and by the local Langlands correspondence over $\overline{\mathbf{Q}}_{\ell}$ is true for cuspidal representations).

Now let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G L(n, F)$. Then π lifts to $\operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(n, F)$ [V1, III.5.10]. By reduction modulo ℓ, one can define epsilon factors of pairs $\varepsilon(\pi, \sigma)$ for all $\sigma \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G L(m, F)$ and for all $m \leq n-1$. Let q be the order of the residual field of F. We expect that π is characterized by the epsilon factors $\varepsilon(\pi, \sigma)$ for all σ, when the multiplicative order of q modulo ℓ is $>n-1$; otherwise, π should be characterized by less naive but natural epsilon factors. The same should be true when π is replaced by an $\overline{\mathbf{F}}_{\ell}$-irreducible representation of the Weil group W_{F}.

The existence [V4] of an integral Kirillov model for $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(n, F)$ seems to be an adequate tool to solve the problem. The description of the representation π on the Kirillov model is given by the central character ω_{π} and by the action of the symmetric group S_{n} (the Weyl group of $G L(n, F)$). The action of S_{n} is related with the $\varepsilon(\pi, \sigma)$ for all σ as above [GK, see the end of paragraph 7]. When $n=2$ Jacquet and Langlands [JL] described the action of S_{2} on the Kirillov model in terms of $\varepsilon(\pi, \chi)=\varepsilon(\pi \otimes \chi)$ for all $\overline{\mathbf{Q}}_{\ell}$-characters χ of F^{*}, using the Fourier transform on F^{*}.

In the case $n=2$ and only in this case, we will prove that two integral $\pi, \pi^{\prime} \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G L(2, F)$ have the same reduction modulo ℓ if and only if their central characters have the same reduction modulo ℓ and the factors $\varepsilon(\pi \otimes \chi), \quad \varepsilon\left(\pi^{\prime} \otimes \chi\right)$ have the same reduction modulo ℓ for integral $\overline{\mathbf{Q}}_{\ell^{-}}$ characters χ of F^{*} when ℓ does not divide $q-1$. When ℓ divides $q-1$ this remains true with new epsilon factors taking into account the natural
congruences modulo ℓ satisfied by the $\varepsilon(\pi \otimes \chi)$ for all χ. By reduction modulo ℓ, we get that the local Langlands $\overline{\mathbf{F}}_{\ell}$-correspondence for $n=2$ is characterized by the equality on L and new ε factors of pairs. The field $\overline{\mathbf{F}}_{\ell}$ can be replaced by any algebraically closed field R of characteristic ℓ.

The case $n=3$ could be treated probably, but the general case $n \geq 4$ remains an open and interesting question.

1. Integral Kirillov model

The definition of the L and ϵ factors of pairs [JPS1] uses the Whittaker model, or what is equivalent the Kirillov model. We showed [V4] that these models are compatible with the reduction modulo ℓ.

We denote by O_{F} the ring of integers of F. Let R be an algebraically closed field of characteristic $\neq p$, and let $\psi: F \rightarrow R^{*}$ be a character such that O_{F} is the biggest ideal on which ψ is trivial. We extend ψ to a R-character of the group N of strictly upper triangular matrices of $G=G L(n, F)$ by $\psi(n)=\psi\left(\sum n_{i, i+1}\right)$ for $n=\left(n_{i, j}\right) \in N$. The mirabolic subgroup P of G is the semi-direct product of the group $G L(n-1, F)$ embedded in $G L(n, F)$ by

$$
g \rightarrow\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)
$$

and of the group F^{n-1} embedded in $G L(n, F)$ by

$$
x \rightarrow\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

The representation $\tau_{R}:=\operatorname{ind}_{P, N} \psi$ of the mirabolic subgroup P (compact induction) is called mirabolic. It is irreducible (this is a corollary of [V4 prop.1]), but it is not admissible when $n \geq 2$.

Lemma. $\operatorname{End}_{R P} \tau_{R} \simeq R$.
Proof. This is a general fact: the representation τ_{R} is absolutely irreducible [V1, I.6.10], hence $\operatorname{End}_{R P} \tau_{R} \simeq R$. From the Schur's lemma [V1, I.6.9] $\operatorname{End}_{R P} \tau_{R} \simeq R$ when the cardinal of R is strictly bigger than $\operatorname{dim}_{R} \tau_{R}$ (countable dimension). There exists an algebraically closed field R^{\prime} which contains R and of uncountable cardinal. Two $R P$-endomorphisms of τ_{R} which are proportional over R^{\prime} are proportional over R.

Theorem. An irreducible R-representation π of G is cuspidal if and only if extends the mirabolic representation τ_{R}.

Proof. This results from [BZ] and [V1]. Suppose that π is cuspidal. Then $\left.\pi\right|_{P}$ is the mirabolic representation: when $R=\overline{\mathbf{Q}}_{\ell} \simeq \mathbf{C}$ see [BZ, $5.13 \&$ 5.20], when $R=\overline{\mathbf{F}}_{\ell}, \pi$ lifts to $\overline{\mathbf{Q}}_{\ell}$ [V1, III.5.10] where it is true then reduce. Conversely, suppose $\left.\pi\right|_{P}=\tau_{R}$ and $R=\overline{\mathbf{Q}}_{\ell}$ or $\overline{\mathbf{F}}_{\ell}$. Then π is cuspidal [V1,
III.1.8]. The case of a general R is deduced from this two cases by the next lemma.

Let G be the group of rational points of a reductive connected group over F. We denote by $\operatorname{Irr}_{R} G$ the set of isomorphism classes of irreducible R-representations of G.

Lemma. (1) A non zero homomorphism of algebraically closed fields f : $R \rightarrow R^{\prime}$ gives a natural injective map $\pi \rightarrow f_{*}(\pi): \operatorname{Irr}_{R} G \rightarrow \operatorname{Irr}_{R^{\prime}} G$ which respects cuspidality.
(2) Let $\pi^{\prime} \in \operatorname{Cusp}_{R^{\prime}} G$. Then there exists an unramified character χ of G such that $\pi^{\prime} \otimes \chi=f_{*}(\pi)$ with $\pi \in \operatorname{Cusp}_{R} G$.

Proof. This results from [V1].
(1) f_{*} respects irreducibility [V1, II.4.5], and commutes with the parabolic restriction. Hence it respects cuspidality. The linear independence of characters [V1, I.6.13] shows that if $\pi, \pi^{\prime} \in \operatorname{Irr}_{R} G$ are not isomorphic then $f_{*} \pi, f_{*} \pi^{\prime}$ are not isomorphic.
(2) Let Z be the center of G. The group of rational characters $X(Z)$ is a subgroup of finite index in the group $X(G)$. This implies that there exists an unramified character χ of G such that the quotient Z / Z_{o} of Z by the kernel Z_{o} of the central character ω of $\pi^{\prime} \otimes \chi$ is profinite. Hence the values of ω are roots of unity. We deduce that $\pi^{\prime} \otimes \chi$ has a model on R [V1, II.4.9].

Let $\pi \in \operatorname{Cusp}_{R} G L(n, F)$ of central character ω. The realisation of π on the mirabolic representation τ_{R} is called the Kirillov model $K(\pi)$ of π. It is sometimes useful to use the Whittaker model instead of the Kirillov model. By adjonction and the theorem $\operatorname{Hom}_{R G}\left(\pi, \operatorname{Ind}_{G, N} \psi\right) \simeq R$ (the unicity of the Whittaker model); the Whittaker model $W(\pi)$ is the unique realisation of π in $\operatorname{Ind}_{G, N} \psi$. By definition

$$
W(g)=(\pi(g) W)(1)
$$

for all $g \in G$ and for all Whittaker functions $W \in W(\pi)$. We denote by $\Gamma(j)$ the subgroup of matrices $k \in G L\left(n, O_{F}\right)$ of the form

$$
k=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a \in G L\left(n-1, O_{F}\right), d \in O_{F}^{*}, c \in p_{F}^{j} O_{F}
$$

for any integer $j>0$. The smallest $j>0$ such that π contains a non-zero vector transforming under $\Gamma(j)$ according to the one dimensional character

$$
\omega_{j}(k)=\omega(d)
$$

for $k \in \Gamma(j)$ as above, is called the conductor of π and denoted f.

Theorem. Let $\pi \in \operatorname{Cusp}_{R} G L(n, F)$ of central character $\omega=\omega$ and conductor f.
(1) The restriction from G to P induces a G-equivariant isomorphism

$$
\left.W \rightarrow W\right|_{P}: W(\pi) \simeq K(\pi)
$$

from the Whittaker model to the Kirillov model.
(2) Let $\pi^{\prime} \in \operatorname{Cusp}_{R} G L(n, F)$. There is a natural isomorphism $W \rightarrow W^{\prime}:$
$W(\pi) \rightarrow W\left(\pi^{\prime}\right)$ of R-vector spaces defined by the condition $\left.W\right|_{P}=\left.W^{\prime}\right|_{P}$.
(3) There is unique function $W_{\pi} \in W(\pi)$ such that

$$
\left.W_{\pi}\right|_{G L(n-1, F)}=1_{G L\left(n-1, O_{F}\right)} .
$$

The function W_{π} is called the new vector of π and generates the space of vectors of π transforming under $\Gamma(f)$ according to ω_{f}.
(4) $W(\pi)$ is contained in the compactly induced representation $\operatorname{ind}_{G, N Z} \psi \otimes \omega_{\pi}$.

Proof. (1) There exists $W \in W(\pi)$ with $W(1) \neq 0$, and $f: W \rightarrow W_{P}$ is a non zero P-equivariant map from π to $\operatorname{Ind}_{N}^{P} \psi$. The map f is injective of $\operatorname{image}_{\operatorname{ind}}^{N} P$, because $\operatorname{End}_{R} \tau_{R} \simeq R$. We get also (2).
(3) The space of τ_{R} is isomorphic by restriction to $G^{\prime}=G L(n-1, F)$, to the space of $\operatorname{ind}_{N^{\prime}, G^{\prime}} \psi$ where $N^{\prime}=N \cap G^{\prime}$. As ψ is trivial on O_{F}, the characteristic function of $G L\left(n-1, O_{F}\right)$ belongs to $\operatorname{ind}_{N^{\prime}}^{G^{\prime}} \psi$. For the conductor [JPS2].
(4) Let $W \in W(\pi)$. The function $x \rightarrow W(x g)$ on the parabolic standard subgroup $P Z$ is locally constant of compact support modulo $N Z$ for all $g \in G$. As $G=P Z G L\left(n, O_{F}\right)$, the function W is of compact support modulo $N Z$.

Let $\pi \in \operatorname{Irr}_{\overline{\mathbf{Q}}_{\ell}} G$. Let E / \mathbf{Q}_{ℓ} be an extension contained in a finite extension of the maximal unramified extension of \mathbf{Q}_{ℓ}. Example: the extension E / Q_{ℓ} generated by the values of ψ. The ring of integers O_{E} is principal. An $O_{E^{-}}$ free module L with an action of G such that L is a finite type $O_{E} G$-module and such that $\overline{\mathbf{Q}}_{\ell} \otimes_{O_{E}} L \simeq \pi$ is called an O_{E}-integral structure of π. If such an L is exists, π is called integral, the representation $r_{\ell} L=L \otimes_{O_{E}} \overline{\mathbf{F}}_{\ell}$ is of finite length. One calls $\overline{\mathbf{Z}}_{\ell} \otimes_{O_{E}} L$ an integral structure of π. When L, L^{\prime} are two integral structures of π, then the semi-simplifications of $r_{\ell} L, r_{\ell} L^{\prime}$ are isomorphic (see [V1, II.5.11.b] when E / Q_{ℓ} is finite, and [Vig4, proof of theorem 2, page 416] in general). When $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ is integral, $r_{\ell} L=L \otimes_{O_{E}} \overline{\mathbf{F}}_{\ell}$ is irreducible; the isomorphism class $r_{\ell} \pi$ of $r_{\ell} L$ is called the reduction of π; any irreducible cuspidal $\overline{\mathbf{F}}_{\ell}$-representation of G is the reduction of an integral irreducible cuspidal $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$-representation of G. For all these facts see [V1, III.5.10].

A function with values in $\overline{\mathbf{Q}}_{\ell}$ is called integral, when its values belong to $\overline{\mathbf{Z}}_{\ell}$. We denote by $K\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$, resp. $W\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$, the set of integral functions in the Kirillov model, resp. Whittaker model, of $\pi \in \operatorname{Cusp}_{\bar{Q}_{\ell}} G$. Let Λ be the maximal ideal of $\overline{\mathbf{Z}}_{\ell}$. The reduction modulo ℓ of an integral function f is the fonction $r_{\ell} f$ with values in $\overline{\mathbf{Z}}_{\ell} / \Lambda \simeq \overline{\mathbf{F}}_{\ell}$ deduced from f.
Theorem. (A) Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ with central character ω_{π}. Then the following properties are equivalent:
(A.1) ω_{π} is integral.
(A.2) π is integral.
(A.3) $K\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$ is a $\overline{\mathbf{Z}}_{\ell}$-structure of π, called the integral Kirillov model.
(A.4) $W\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$ is $a \overline{\mathbf{Z}}_{\ell}$-structure of π, called the integral Whittaker model.
(B) When π is integral, we have
(B.1) The restriction to P from $W\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$ to $K\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$ is an isomorphism.
(B.2) The integral Kirillov model is $\overline{\mathbf{Z}}_{\ell} P$ - generated by any function f with $f(1)=1$. The integral Whittaker model $W\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)$ is $\overline{\mathbf{Z}}_{\ell} G$ generated by the new vector.
(B.3) $\overline{\mathbf{F}}_{\ell} \otimes_{\overline{\mathbf{Z}}_{\ell}} K\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)=K\left(r_{\ell} \pi, \overline{\mathbf{F}}_{\ell}\right)$ is the Kirillov model, and $\overline{\mathbf{F}}_{\ell} \otimes_{\overline{\mathbf{Z}}_{\ell}}$ $W\left(\pi, \overline{\mathbf{Z}}_{\ell}\right)=W\left(r_{\ell} \pi, \overline{\mathbf{F}}_{\ell}\right)$ is the Whittaker model of $r_{\ell} \pi$.

Proof. The equivalence of (A1) (A2) [V1, II.4.12]; for the rest [V4 th.2] and the last theorem.

Corollary. Let $\pi, \pi^{\prime} \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral, with central character $\omega_{\pi}, \omega_{\pi^{\prime}}$. Then $r_{\ell} \pi=r_{\ell} \pi^{\prime}$ if and only if

$$
\begin{equation*}
r_{\ell} \omega_{\pi}=r_{\ell} \omega_{\pi^{\prime}}, \quad r_{\ell} \pi(w)(f)=r_{\ell} \pi^{\prime}(w)(f) \tag{*}
\end{equation*}
$$

for all $w \in S_{n}$, and for all f in the integral Kirillov model.
Proof. Use (B.3) and $\operatorname{End}_{\overline{\mathbf{F}}_{\ell}} \tau_{\overline{\mathbf{F}}_{\ell}} \simeq \overline{\mathbf{F}}_{\ell}$.
Questions. Can one define an integral Kirillov or Whittaker model for $\pi \in \operatorname{Irr}_{\overline{\mathbf{Q}}_{\ell}} G$ integral and not cuspidal ? What is the action of S_{n} in the Kirillov model?

2. The case $n=2$

We can go further in the case $n=2$. Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ where $G=$ $G L(2, F)$. The restriction of $G L(2, F)$ to $G L(1, F)=F^{*}$ gives an isomorphism from $K(\pi)$ to the space $C_{c}^{\infty}\left(F^{*}, \overline{\mathbf{Q}}_{\ell}\right)$ of locally constant functions $F^{*} \rightarrow \overline{\mathbf{Q}}_{\ell}$ with compact support, which respects the natural $\overline{\mathbf{Z}}_{\ell}$-structures $K\left(\pi, \overline{\mathbf{Z}}_{\ell}\right) \simeq C_{c}^{\infty}\left(F^{*}, \overline{\mathbf{Z}}_{\ell}\right)$. The unique non trivial element of S_{2} is represented by

$$
w=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The action of $\pi(w)$ on the Kirillov model was described by Jacquet and Langlands [JL, Prop. 2.10 p. 46], using Fourier transform for complex representations.

We choose a \mathbf{Q}_{ℓ}-Haar measure $d x$ on F^{*}. The Fourier transform of $f \in C_{c}^{\infty}\left(F^{*}, \overline{\mathbf{Q}}_{\ell}\right)$ with respect to $d x$ is

$$
\hat{f}(\chi):=\int_{F^{*}} f(x) \chi(x) d x
$$

for any character $\chi: F^{*} \rightarrow \overline{\mathbf{Q}}_{\ell}^{*}$.
We choose a uniformizing parameter p_{F} of F. A function $f \in C_{c}^{\infty}\left(F^{*}, \overline{\mathbf{Q}}_{\ell}\right)$ is determined by the set of functions $f_{n} \in C_{c}^{\infty}\left(O_{F}^{*}, \overline{\mathbf{Q}}_{\ell}\right)$ defined by $f_{n}(x):=$ $f\left(p_{F}^{-n} x\right)$ for all $n \in \mathbf{Z}$. The functions f_{n} depend on the choice of p_{F}. Extension by zero allows to consider $C_{c}^{\infty}\left(O_{F}^{*}, \overline{\mathbf{Q}}_{\ell}\right)$ as a subspace of $C_{c}^{\infty}\left(F^{*}, \overline{\mathbf{Q}}_{\ell}\right)$, because O_{F}^{*} is open in F^{*}. We have

$$
\hat{f}(\chi)=\sum_{n} \hat{f}_{n}(\chi) \chi\left(p_{F}^{-n}\right) .
$$

For a given character χ, the sum is finite. The functions $\hat{f}_{n}(\chi)$ depend only on the restriction of χ to O_{F}^{*}. Set $\hat{O}_{F}^{*}:=\operatorname{Hom}\left(O_{F}^{*}, \overline{\mathbf{Q}}_{\ell}\right)$. One introduces the formal series

$$
f(x, X):=\sum_{n \in \mathbf{Z}} f_{n}(x) X^{n}, \quad \hat{f}(\chi, X):=\sum_{n \in \mathbf{Z}} \hat{f}_{n}(\chi) X^{n}
$$

for all $x \in O_{F}^{*}$ and for all $\chi \in \hat{O}_{F}^{*}$.
Jacquet and Langlands [JL Prop. 2.10 page 46] proved that the action of $\pi(w)$ on the Kirillov model is given by:

$$
(\pi(w) f)_{n}^{\wedge}(\chi)=c\left(\pi \otimes \chi^{-1}\right) \hat{f}_{m}\left(\chi^{-1} \omega_{\pi}^{-1}\right)
$$

for all $\chi \in \hat{O}_{F}^{*}$, all integers $n \in \mathbf{Z}$, where $m=-n-f\left(\pi \otimes \chi^{-1}\right)$, for some constant $c(?) \in \overline{\mathbf{Q}}_{\ell}^{*}$ and some integer $f(?) \in \mathbf{Z}$. The formula and $c\left(\pi \otimes \chi^{-1}\right)$ are independent of the choice of $d x$. The formula is equivalent to

$$
(\pi(w) f)^{\wedge}(\chi, X)=\varepsilon\left(\pi \otimes \chi^{-1}\right) \hat{f}\left(\chi^{-1} \omega_{\pi}^{-1}, X^{-1}\right)
$$

for all $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$-characters χ of O_{F}^{*}, where the epsilon factor is

$$
\varepsilon\left(\pi \otimes \chi^{-1}\right)=c\left(\pi \otimes \chi^{-1}\right) X^{f\left(\pi \otimes \chi^{-1}\right)}
$$

On calls $c(\pi)$ the constant and $f(\pi)$ the conductor of the epsilon factor $\varepsilon(\pi)$. They both depend on the choice of the non trivial character $\psi: F \rightarrow \overline{\mathbf{Z}}_{\ell}^{*}$ which was fixed, but not on the choice of $d x$ or on p_{F}. Jacquet and Langlands used complex representations but their method is valid when the field of complex numbers is replaced by $\overline{\mathbf{Q}}_{\ell}$, because one uses only integrals of locally constant functions on compact sets. There is no problem of vanishing because we work on $\overline{\mathbf{Q}}_{\ell}$.

We suppose that $d x$ is a \mathbf{Z}_{ℓ}-Haar measure on F^{*} wich is not divisible by ℓ. Let

$$
\mathcal{L}=\text { the Fourier transform of } C_{c}^{\infty}\left(O_{F}^{*}, \overline{\mathbf{Z}}_{\ell}\right)
$$

We have $\mathcal{L} \subset C_{c}^{\infty}\left(\hat{O}_{F}^{*}, \overline{\mathbf{Z}}_{\ell}\right)$ and $\mathcal{L}=C_{c}^{\infty}\left(\hat{O}_{F}^{*}, \overline{\mathbf{Z}}_{\ell}\right)$ if and only if $q \not \equiv 1 \bmod \ell$ [V2]. In general, we separate the ℓ-regular part X of O_{F}^{*} from the ℓ-part Y of O_{F}^{*} which is a cyclic group of order $m=\ell^{a}$. The volume of X for $d x$ should be a unit in \mathbf{Z}_{ℓ}^{*}; we can suppose it is equal to 1 . The group of $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$-characters satisfy $\hat{O}_{F}^{*} \simeq \hat{X} \times \hat{Y}$. A general character in \hat{O}_{F}^{*} is now written as $\chi \mu$ where $\chi \in \hat{X}$ and $\mu \in \hat{Y}$, and a function $v: \hat{O}_{F}^{*} \rightarrow \overline{\mathbf{Q}}_{\ell}$ is thought as a function $v: \hat{X} \rightarrow C\left(\hat{Y}, \overline{\mathbf{Q}}_{\ell}\right)$ with $v(\chi)(\mu):=v(\chi \mu)$.

The $\overline{\mathbf{Z}}_{\ell}$-module \mathcal{L} consists of all functions $v: \hat{X} \rightarrow L$ with compact support, where

$$
L \subset C_{c}^{\infty}\left(\hat{Y}, \overline{\mathbf{Z}}_{\ell}\right)
$$

is the free $\overline{\mathbf{Z}}_{\ell}$-module with basis the characters $\underline{y}: \mu \rightarrow \mu\left(y^{-1}\right)$ of \hat{Y} for all $y \in Y$.

We need some elementary linear algebra. The $\overline{\mathbf{Z}}_{\ell}$-module L is the set of functions $v \in C_{c}^{\infty}\left(\hat{Y}, \overline{\mathbf{Q}}_{\ell}\right)$ such that

$$
y \mapsto<v, y>:=|Y|^{-1} \sum_{\mu \in \hat{Y}} v(\mu) \mu(y)
$$

belongs to $C\left(Y, \overline{\mathbf{Z}}_{\ell}\right)$. The orthogonality formula of characters gives

$$
v=\sum_{y \in Y}<v, y>\underline{y}
$$

for all $v \in C\left(\hat{Y}, \overline{\mathbf{Q}}_{\ell}\right)$. For the usual product, $C_{c}^{\infty}\left(\hat{Y}, \overline{\mathbf{Q}}_{\ell}\right)$ is an algebra.
Lemma. Let $v \in C_{c}^{\infty}\left(\hat{Y}, \overline{\mathbf{Q}}_{\ell}\right)$.
(i) The inclusion $v L \subset L$ is equivalent to $v \in L$.
(ii) The equality $v L=L$ is equivalent to $v \in L$ and $v(\mu) \in \overline{\mathbf{Z}}_{\ell}^{*}$ for all $\mu \in \hat{Y}$.
(iii) The inclusion $v L \subset \Lambda L$ is equivalent to $<v, y>\in \Lambda$ for all $y \in Y$ (Λ is the maximal ideal of $\overline{\mathbf{Z}}_{\ell}$).

Proof. (i) The inclusion $v L \subset L$ is equivalent to $<v \underline{z}, z^{\prime}>=<v, z^{-1} z^{\prime}>\in$ $\overline{\mathbf{Z}}_{\ell}$ for all $z, z^{\prime} \in Y$, which is equivalent to $v \in L$.
(ii) $v L=L$ means that $v \underline{z}$ for $z \in Y$ is a basis of L. We have $v \underline{z}=$ $\sum_{z^{\prime} \in Y}<v, z^{-1} z^{\prime}>\underline{z}^{\prime}$, hence $v L=L$ means that

$$
\left(<v, z^{-1} z^{\prime}>\right)_{z, z^{\prime}} \in S L\left(m, \overline{\mathbf{Z}}_{\ell}\right)
$$

The Dedekind determinant $\operatorname{det}\left(<v, z^{-1} z^{\prime}>\right)_{z, z^{\prime}}$ is equal to $\prod_{\mu \in \hat{Y}} v(\mu)$ (see [L] exercise 28 page 495).
(iii) see the proof of (i).

Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral. As $\pi(w)$ is an isomorphism of the integral Kirillov model, the function

$$
c(\pi \otimes \chi): \mu \in \hat{Y} \rightarrow c(\pi \otimes \chi \mu) \in \overline{\mathbf{Q}}_{\ell}
$$

satisfies $c(\pi \otimes \chi) L=L$ for all character $\chi \in \hat{X}$. We apply the lemma to $c(\pi \otimes \chi)$. We define new epsilon factors

$$
\varepsilon(\pi, y):=<c(\pi), y>X^{f(\pi)}, \quad<c(\pi), y>=|Y|^{-1} \sum_{\mu \in \hat{Y}} c(\pi \otimes \mu) \mu(y)
$$

for all $y \in Y$. As have $f(\pi) \geq 2$ for $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$, we have $f(\pi)=$ $f(\pi \otimes \mu) \geq 2$ for all $\mu \in \hat{Y}$. When Y is trivial (i.e. $q \not \equiv 1 \bmod \ell$), they are simply the usual ones.

Theorem. (1) Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral. Then the constant of the epsilon factor is a unit $c(\pi) \in \overline{\mathbf{Z}}_{\ell}^{*}$ and the new constants $<c(\pi), y>\in \overline{\mathbf{Z}}_{\ell}$ are integral, for all $y \in Y$.
(2) Let $\pi, \pi^{\prime} \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral with central characters $\omega_{\pi}, \omega_{\pi^{\prime}}$. Then $r_{\ell} \pi=r_{\ell} \pi^{\prime}$ if and only if $r_{\ell} \omega_{\pi}=r_{\ell} \omega_{\pi^{\prime}}$ and their new epsilon factors have the same reduction modulo ℓ : the conductors $f(\pi \otimes \chi)=f\left(\pi^{\prime} \otimes \chi\right)$ are equal, and the new constants have the same reduction modulo ℓ :

$$
r_{\ell}<c(\pi \otimes \chi), y>=r_{\ell}<c\left(\pi^{\prime} \otimes \chi\right), y>
$$

for all $y \in Y$, and all $\overline{\mathbf{Q}}_{\ell}$-characters $\chi \in \hat{X}$.
Proof. With the last corollary of the paragraph (1), $r_{\ell} \pi=r_{\ell} \pi^{\prime}$ if and only if $r_{\ell} \omega_{\pi}=r_{\ell} \omega_{\pi^{\prime}}$ and
$(*) \quad c(\pi \otimes \chi) \hat{f}_{m}\left(\chi^{-1} \omega_{\pi}^{-1}\right)=c\left(\pi^{\prime} \otimes \chi\right) \hat{f}_{m^{\prime}}\left(\chi^{-1} \omega_{\pi^{\prime}}^{-1}\right) \quad$ modulo $\Lambda \mathcal{L}$
for all $f_{n} \in C_{c}^{\infty}\left(O_{F}^{*}, \overline{\mathbf{Z}}_{\ell}\right)$ and all $n \in \mathbf{Z}$. With the lemma, we deduce the theorem.

We apply now the theorem to representations over $\overline{\mathbf{F}}_{\ell}$. Any $\pi \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G$ lifts to $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$ and we can define epsilon factors

$$
\varepsilon(\pi \otimes \chi, y):=<c(\pi \otimes \chi), y>X^{f(\pi \otimes \chi)}
$$

for all $y \in Y$ and all $\chi \in \operatorname{Hom}\left(O_{F}^{*}, \overline{\mathbf{F}}_{\ell}^{*}\right)=\operatorname{Hom}\left(X, \overline{\mathbf{F}}_{\ell}^{*}\right)$, by reduction modulo ℓ. They are not zero for any (y, χ).

Corollary. $\pi, \pi^{\prime} \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G$ are isomorphic if and only if they have the same central character and the same epsilon factors

$$
\varepsilon(\pi \otimes \chi, y)=\varepsilon\left(\pi^{\prime} \otimes \chi, y\right)
$$

for all $y \in Y$, and for all character $\chi \in \operatorname{Hom}\left(O_{F}^{*}, \overline{\mathbf{F}}_{\ell}^{*}\right)$.

Final remarks. a) When $n>2$, the groups $G L\left(m, O_{F}\right)^{*}$ for $m \leq n-1$ replace O_{F}^{*}.
b) Using the explicit description for the irreducible representations of dimension n of W_{F} [V3], one could try to prove a similar theorem for the irreducible integral $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$-representations of W_{F} of dimension n. To my knowledge this is a known and harder problem, which is not solved in the complex case.

References

[D] P. Deligne, Les constantes des équations fonctionnelles des fonctions L. Modular functions of one variable II. Lecture Notes in Mathematics 340, Springer-Verlag (1973).
[GK] I.M. Gelfand, D.A. Kazhdan, Representations of the group $G L(n, K)$ where K is a local field. In: Lie groups and Representations, Proceedings of a summer school in Hungary (1971), Akademia Kiado, Budapest (1974).
[H1] G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires. Invent. math. 113 (1993), 339-350.
[H2] G. HENniART, Une preuve simple des conjectures de Langlands pour $G L(n)$ sur un corps p-adique. Prepublication 99-14, Orsay.
[HT] M. Harris, R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Institut de Mathématiques de Jussieu. Prépublication 227 (1999).
[JL] H. Jacquet, R.P. Langlands, Automorphic forms on $G L(2)$. Lecture Notes in Math. 114, Springer-Verlag (1970).
[JPS1] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), 367-483.
[JPS2] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire. Math. Ann. 256 (1981), 199-214.
[L] S. Lang, Algebra. Addison Wesley, second edition (1984).
[LRS] G. Laumon, M. Rapoport, U. Stuhler, D-elliptic sheaves and the Langlands correspondence. Invent. Math. 113 (1993), 217-238.
[M] J. Martinet, Character theory and Artin L-functions. In: Algebraic number fields, A. Frohlich editor, Academic Press (1977), 1-88.
[V1] M.-F. VignÉras, Representations modulaires d'un groupe réductif p-adique avec $\ell \neq p$. Progress in Math. 137 Birkhauser (1996).
[V2] M.-F. Vignéras, Erratum à l'article : Représentations modulaires de GL(2,F) en caractéristique ℓ, F corps p-adique, $p \neq \ell$. Compos. Math. 101 (1996), 109-113.
[V3] M.-F. Vignéras, A propos d'une correspondance de Langlands modulaire. Dans : Finite reductive groups, M. Cabanes Editor, Birkhauser Progress in Math 141 (1997).
[V4] M.-F. Vignéras, Integral Kirillov model. C.R. Acad. Sci. Paris Série I 326 (1998), 411416.
[V5] M.-F. Vignéras, Correspondance de Langlands semi-simple pour $G L(n, F)$ modulo $\ell \neq$ p. Institut de Mathématiques de Jussieu. Prepublication 235 (Janvier 2000).

Marie-France Vignéras
Institut de Mathématiques de Jussieu
Université Denis Diderot - Paris 7-Case 7012
2, place Jussieu
75251 Paris Cedex 05
France
E-mail : vigneras@math.jussieu.fr

[^0]: Manuscrit reçu le 10 mars 2000.

