MARIE-FRANCE VIGNÉRAS

Congruences modulo ℓ between ϵ factors for cuspidal representations of GL(2)

Journal de Théorie des Nombres de Bordeaux, tome 12, nº 2 (2000), p. 571-580

<http://www.numdam.org/item?id=JTNB_2000__12_2_571_0>

© Université Bordeaux 1, 2000, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Congruences modulo ℓ between ε factors for cuspidal representations of GL(2)

par MARIE-FRANCE VIGNÉRAS

Pour Jacques Martinet

RÉSUMÉ. Titre français : Congruences modulo ℓ entre facteurs ϵ des représentations cuspidales de GL(2)

Soient $\ell \neq p$ deux nombres premiers distincts, F un corps local non archimedien de caractéristique résiduelle p, $\overline{\mathbf{Q}}_{\ell}$ une clôture algébrique du corps des nombres ℓ -adiques, et $\overline{\mathbf{F}}_{\ell}$ le corps résiduel de $\overline{\mathbf{Q}}_{\ell}$. On conjecture que la correspondance locale de Langlands pour GL(n, F) sur $\overline{\mathbf{Q}}_{\ell}$ respecte les congruences modulo ℓ entre les facteurs L et ϵ de paires, et que la correspondance locale de Langlands sur $\overline{\mathbf{F}}_{\ell}$ est caractérisée par des identités entre de nouveaux facteurs L et ϵ . Nous allons le démontrer lorsque n = 2.

ABSTRACT. Let $\ell \neq p$ be two different prime numbers, let F be a local non archimedean field of residual characteristic p, and let $\overline{\mathbf{Q}}_{\ell}, \overline{\mathbf{Z}}_{\ell}, \overline{\mathbf{F}}_{\ell}$ be an algebraic closure of the field of ℓ -adic numbers \mathbf{Q}_{ℓ} , the ring of integers of $\overline{\mathbf{Q}}_{\ell}$, the residual field of $\overline{\mathbf{Z}}_{\ell}$. We proved the existence and the unicity of a Langlands local correspondence over $\overline{\mathbf{F}}_{\ell}$ for all $n \geq 2$, compatible with the reduction modulo ℓ in [V5], without using L and ε factors of pairs.

We conjecture that the Langlands local correspondence over $\overline{\mathbf{Q}}_{\ell}$ respects congruences modulo ℓ between L and ε factors of pairs, and that the Langlands local correspondence over $\overline{\mathbf{F}}_{\ell}$ is characterized by identities between new L and ε factors. The aim of this short paper is prove this when n = 2.

Introduction

The Langlands local correspondence is the unique bijection between all irreductible $\overline{\mathbf{Q}}_{\ell}$ -representations of GL(n, F) and certain ℓ -adic representations of an absolute Weil group W_F of dimension n, for all integers $n \geq 1$,

Manuscrit reçu le 10 mars 2000.

which is induced by the reciprocity law of local class field theory

$$W_F^{ab} \simeq F^*$$

when n = 1 (W_F^{ab} is the biggest abelian Hausdorff quotient of W_F), and which respects L and ε factors of pairs [LRS], [HT], [H2].

Let $\psi: F \to \overline{\mathbf{Z}}_{\ell}^*$ be a non trivial character. We denote by $\operatorname{Cusp}_R GL(n, F)$ the set of isomorphism classes of irreducible cuspidal *R*-representations of GL(n, F). When $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(n, F)$, Henniart [H1] showed that π is characterized by the epsilon factors of pairs $\varepsilon(\pi, \sigma)$ for all $\sigma \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(m, F)$ and for all $m \leq n-1$ (note that $L(\pi, \sigma) = 1$), using the theory of Jacquet, Piatestski-Shapiro, and Shalika [JPS1].

Does this remain true for cuspidal irreductible $\overline{\mathbf{F}}_{\ell}$ -representations of GL(n, F)? We need first to define the epsilon factors of pairs.

Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(n, F)$. It is known that the constants of the epsilon factors of pairs $\varepsilon(\pi, \sigma)$ belong to $\overline{\mathbf{Z}}_{\ell}$ for all $\sigma \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(m, F)$ and for all $m \leq n-1$, and that the conductor does not change by reduction modulo ℓ (this is proved by Deligne [D] for the irreducible representations of the Weil group, and by the local Langlands correspondence over $\overline{\mathbf{Q}}_{\ell}$ is true for cuspidal representations).

Now let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} GL(n, F)$. Then π lifts to $\operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(n, F)$ [V1, III.5.10]. By reduction modulo ℓ , one can define epsilon factors of pairs $\varepsilon(\pi, \sigma)$ for all $\sigma \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} GL(m, F)$ and for all $m \leq n-1$. Let q be the order of the residual field of F. We expect that π is characterized by the epsilon factors $\varepsilon(\pi, \sigma)$ for all σ , when the multiplicative order of q modulo ℓ is > n-1; otherwise, π should be characterized by less naive but natural epsilon factors. The same should be true when π is replaced by an $\overline{\mathbf{F}}_{\ell}$ -irreducible representation of the Weil group W_F .

The existence [V4] of an integral Kirillov model for $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(n, F)$ seems to be an adequate tool to solve the problem. The description of the representation π on the Kirillov model is given by the central character ω_{π} and by the action of the symmetric group S_n (the Weyl group of GL(n, F)). The action of S_n is related with the $\varepsilon(\pi, \sigma)$ for all σ as above [GK, see the end of paragraph 7]. When n = 2 Jacquet and Langlands [JL] described the action of S_2 on the Kirillov model in terms of $\varepsilon(\pi, \chi) = \varepsilon(\pi \otimes \chi)$ for all $\overline{\mathbf{Q}}_{\ell}$ -characters χ of F^* , using the Fourier transform on F^* .

In the case n = 2 and only in this case, we will prove that two integral $\pi, \pi' \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} GL(2, F)$ have the same reduction modulo ℓ if and only if their central characters have the same reduction modulo ℓ and the factors $\varepsilon(\pi \otimes \chi)$, $\varepsilon(\pi' \otimes \chi)$ have the same reduction modulo ℓ for integral $\overline{\mathbf{Q}}_{\ell}$ -characters χ of F^* when ℓ does not divide q - 1. When ℓ divides q - 1 this remains true with new epsilon factors taking into account the natural

572

congruences modulo ℓ satisfied by the $\varepsilon(\pi \otimes \chi)$ for all χ . By reduction modulo ℓ , we get that the local Langlands $\overline{\mathbf{F}}_{\ell}$ -correspondence for n = 2 is characterized by the equality on L and new ε factors of pairs. The field $\overline{\mathbf{F}}_{\ell}$ can be replaced by any algebraically closed field R of characteristic ℓ .

The case n = 3 could be treated probably, but the general case $n \ge 4$ remains an open and interesting question.

1. Integral Kirillov model

The definition of the L and ϵ factors of pairs [JPS1] uses the Whittaker model, or what is equivalent the Kirillov model. We showed [V4] that these models are compatible with the reduction modulo ℓ .

We denote by O_F the ring of integers of F. Let R be an algebraically closed field of characteristic $\neq p$, and let $\psi : F \to R^*$ be a character such that O_F is the biggest ideal on which ψ is trivial. We extend ψ to a R-character of the group N of strictly upper triangular matrices of G = GL(n, F) by $\psi(n) = \psi(\sum n_{i,i+1})$ for $n = (n_{i,j}) \in N$. The mirabolic subgroup P of G is the semi-direct product of the group GL(n-1, F)embedded in GL(n, F) by

$$g \rightarrow \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$$

and of the group F^{n-1} embedded in GL(n, F) by

$$x \to \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

The representation $\tau_R := \operatorname{ind}_{P,N} \psi$ of the mirabolic subgroup P (compact induction) is called mirabolic. It is irreducible (this is a corollary of [V4 prop.1]), but it is not admissible when $n \geq 2$.

Lemma. End_{*RP*} $\tau_R \simeq R$.

Proof. This is a general fact: the representation τ_R is absolutely irreducible [V1, I.6.10], hence $\operatorname{End}_{RP} \tau_R \simeq R$. From the Schur's lemma [V1, I.6.9] $\operatorname{End}_{RP} \tau_R \simeq R$ when the cardinal of R is strictly bigger than $\dim_R \tau_R$ (countable dimension). There exists an algebraically closed field R' which contains R and of uncountable cardinal. Two RP-endomorphisms of τ_R which are proportional over R' are proportional over R.

Theorem. An irreducible R-representation π of G is cuspidal if and only if extends the mirabolic representation τ_R .

Proof. This results from [BZ] and [V1]. Suppose that π is cuspidal. Then $\pi|_P$ is the mirabolic representation: when $R = \overline{\mathbf{Q}}_{\ell} \simeq \mathbf{C}$ see [BZ, 5.13 & 5.20], when $R = \overline{\mathbf{F}}_{\ell}$, π lifts to $\overline{\mathbf{Q}}_{\ell}$ [V1, III.5.10] where it is true then reduce. Conversely, suppose $\pi|_P = \tau_R$ and $R = \overline{\mathbf{Q}}_{\ell}$ or $\overline{\mathbf{F}}_{\ell}$. Then π is cuspidal [V1,

III.1.8]. The case of a general R is deduced from this two cases by the next lemma.

Let G be the group of rational points of a reductive connected group over F. We denote by $\operatorname{Irr}_R G$ the set of isomorphism classes of irreducible *R*-representations of G.

Lemma. (1) A non zero homomorphism of algebraically closed fields $f : R \to R'$ gives a natural injective map $\pi \to f_*(\pi) : \operatorname{Irr}_R G \to \operatorname{Irr}_{R'} G$ which respects cuspidality.

(2) Let $\pi' \in \operatorname{Cusp}_{R'} G$. Then there exists an unramified character χ of G such that $\pi' \otimes \chi = f_*(\pi)$ with $\pi \in \operatorname{Cusp}_R G$.

Proof. This results from [V1].

(1) f_* respects irreducibility [V1, II.4.5], and commutes with the parabolic restriction. Hence it respects cuspidality. The linear independence of characters [V1, I.6.13] shows that if $\pi, \pi' \in \operatorname{Irr}_R G$ are not isomorphic then $f_*\pi, f_*\pi'$ are not isomorphic.

(2) Let Z be the center of G. The group of rational characters X(Z) is a subgroup of finite index in the group X(G). This implies that there exists an unramified character χ of G such that the quotient Z/Z_o of Z by the kernel Z_o of the central character ω of $\pi' \otimes \chi$ is profinite. Hence the values of ω are roots of unity. We deduce that $\pi' \otimes \chi$ has a model on R [V1, II.4.9].

Let $\pi \in \operatorname{Cusp}_R GL(n, F)$ of central character ω . The realisation of π on the mirabolic representation τ_R is called the Kirillov model $K(\pi)$ of π . It is sometimes useful to use the Whittaker model instead of the Kirillov model. By adjonction and the theorem $\operatorname{Hom}_{RG}(\pi, \operatorname{Ind}_{G,N} \psi) \simeq R$ (the unicity of the Whittaker model); the Whittaker model $W(\pi)$ is the unique realisation of π in $\operatorname{Ind}_{G,N} \psi$. By definition

$$W(g) = (\pi(g)W)(1)$$

for all $g \in G$ and for all Whittaker functions $W \in W(\pi)$. We denote by $\Gamma(j)$ the subgroup of matrices $k \in GL(n, O_F)$ of the form

$$k = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a \in GL(n-1, O_F), d \in O_F^*, c \in p_F^j O_F$$

for any integer j > 0. The smallest j > 0 such that π contains a non-zero vector transforming under $\Gamma(j)$ according to the one dimensional character

$$\omega_j(k) = \omega(d)$$

for $k \in \Gamma(j)$ as above, is called the conductor of π and denoted f.

Theorem. Let $\pi \in \operatorname{Cusp}_R GL(n, F)$ of central character $\omega = \omega$ and conductor f.

(1) The restriction from G to P induces a G-equivariant isomorphism

$$W \to W|_P : W(\pi) \simeq K(\pi)$$

from the Whittaker model to the Kirillov model.

(2) Let $\pi' \in \operatorname{Cusp}_R GL(n, F)$. There is a natural isomorphism $W \to W'$: $W(\pi) \to W(\pi')$ of R-vector spaces defined by the condition $W|_P = W'|_P$.

(3) There is unique function $W_{\pi} \in W(\pi)$ such that

$$W_{\pi}|_{GL(n-1,F)} = 1_{GL(n-1,O_F)}$$

The function W_{π} is called the new vector of π and generates the space of vectors of π transforming under $\Gamma(f)$ according to ω_f .

(4) $W(\pi)$ is contained in the compactly induced representation $\operatorname{ind}_{G,NZ} \psi \otimes \omega_{\pi}$.

Proof. (1) There exists $W \in W(\pi)$ with $W(1) \neq 0$, and $f: W \to W_P$ is a non zero *P*-equivariant map from π to $\operatorname{Ind}_N^P \psi$. The map f is injective of image $\operatorname{ind}_N^P \psi$, because $\operatorname{End}_R \tau_R \simeq R$. We get also (2).

(3) The space of τ_R is isomorphic by restriction to G' = GL(n-1, F), to the space of $\operatorname{ind}_{N',G'} \psi$ where $N' = N \cap G'$. As ψ is trivial on O_F , the characteristic function of $GL(n-1,O_F)$ belongs to $\operatorname{ind}_{N'}^{G'} \psi$. For the conductor [JPS2].

(4) Let $W \in W(\pi)$. The function $x \to W(xg)$ on the parabolic standard subgroup PZ is locally constant of compact support modulo NZ for all $g \in G$. As $G = PZGL(n, O_F)$, the function W is of compact support modulo NZ.

Let $\pi \in \operatorname{Irr}_{\overline{\mathbf{Q}}_{\ell}} G$. Let E/\mathbf{Q}_{ℓ} be an extension contained in a finite extension of the maximal unramified extension of \mathbf{Q}_{ℓ} . Example: the extension E/Q_{ℓ} generated by the values of ψ . The ring of integers O_E is principal. An O_E free module L with an action of G such that L is a finite type $O_E G$ -module and such that $\overline{\mathbf{Q}}_{\ell} \otimes_{O_E} L \simeq \pi$ is called an O_E -integral structure of π . If such an L is exists, π is called integral, the representation $r_{\ell}L = L \otimes_{O_E} \overline{\mathbf{F}}_{\ell}$ is of finite length. One calls $\overline{\mathbf{Z}}_{\ell} \otimes_{O_E} L$ an integral structure of π . When L, L'are two integral structures of π , then the semi-simplifications of $r_{\ell}L, r_{\ell}L'$ are isomorphic (see [V1, II.5.11.b] when E/Q_{ℓ} is finite, and [Vig4, proof of theorem 2, page 416] in general). When $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ is integral, $r_{\ell}L = L \otimes_{O_E} \overline{\mathbf{F}}_{\ell}$ is irreducible; the isomorphism class $r_{\ell}\pi$ of $r_{\ell}L$ is called the reduction of π ; any irreducible cuspidal $\overline{\mathbf{F}}_{\ell}$ -representation of G. For all these facts see [V1, III.5.10]. A function with values in $\overline{\mathbf{Q}}_{\ell}$ is called integral, when its values belong to $\overline{\mathbf{Z}}_{\ell}$. We denote by $K(\pi, \overline{\mathbf{Z}}_{\ell})$, resp. $W(\pi, \overline{\mathbf{Z}}_{\ell})$, the set of integral functions in the Kirillov model, resp. Whittaker model, of $\pi \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$. Let Λ be the maximal ideal of $\overline{\mathbf{Z}}_{\ell}$. The reduction modulo ℓ of an integral function f is the fonction $r_{\ell}f$ with values in $\overline{\mathbf{Z}}_{\ell}/\Lambda \simeq \overline{\mathbf{F}}_{\ell}$ deduced from f.

Theorem. (A) Let $\pi \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ with central character ω_{π} . Then the following properties are equivalent:

(A.1) ω_{π} is integral.

(A.2) π is integral.

(A.3) $K(\pi, \overline{\mathbf{Z}}_{\ell})$ is a $\overline{\mathbf{Z}}_{\ell}$ -structure of π , called the integral Kirillov model.

(A.4) $W(\pi, \overline{\mathbf{Z}}_{\ell})$ is a $\overline{\mathbf{Z}}_{\ell}$ -structure of π , called the integral Whittaker model.

(B) When π is integral, we have

(B.1) The restriction to P from $W(\pi, \overline{\mathbf{Z}}_{\ell})$ to $K(\pi, \overline{\mathbf{Z}}_{\ell})$ is an isomorphism.

(B.2) The integral Kirillov model is $\overline{\mathbf{Z}}_{\ell}P$ - generated by any function f with f(1) = 1. The integral Whittaker model $W(\pi, \overline{\mathbf{Z}}_{\ell})$ is $\overline{\mathbf{Z}}_{\ell}G$ generated by the new vector.

(B.3) $\overline{\mathbf{F}}_{\ell} \otimes_{\overline{\mathbf{Z}}_{\ell}} K(\pi, \overline{\mathbf{Z}}_{\ell}) = K(r_{\ell}\pi, \overline{\mathbf{F}}_{\ell})$ is the Kirillov model, and $\overline{\mathbf{F}}_{\ell} \otimes_{\overline{\mathbf{Z}}_{\ell}} W(\pi, \overline{\mathbf{Z}}_{\ell}) = W(r_{\ell}\pi, \overline{\mathbf{F}}_{\ell})$ is the Whittaker model of $r_{\ell}\pi$.

Proof. The equivalence of (A1) (A2) [V1, II.4.12]; for the rest [V4 th.2] and the last theorem. \Box

Corollary. Let $\pi, \pi' \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral, with central character $\omega_{\pi}, \omega_{\pi'}$. Then $r_{\ell}\pi = r_{\ell}\pi'$ if and only if

(*)
$$r_{\ell}\omega_{\pi} = r_{\ell}\omega_{\pi'}, \quad r_{\ell}\pi(w)(f) = r_{\ell}\pi'(w)(f)$$

for all $w \in S_n$, and for all f in the integral Kirillov model.

Proof. Use (B.3) and $\operatorname{End}_{\overline{\mathbf{F}}_{\ell}} \tau_{\overline{\mathbf{F}}_{\ell}} \simeq \overline{\mathbf{F}}_{\ell}$.

Questions. Can one define an integral Kirillov or Whittaker model for $\pi \in \operatorname{Irr}_{\overline{\mathbf{Q}}_{\ell}} G$ integral and not cuspidal? What is the action of S_n in the Kirillov model?

2. The case n = 2

We can go further in the case n = 2. Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ where G = GL(2, F). The restriction of GL(2, F) to $GL(1, F) = F^*$ gives an isomorphism from $K(\pi)$ to the space $C_c^{\infty}(F^*, \overline{\mathbf{Q}}_{\ell})$ of locally constant functions $F^* \to \overline{\mathbf{Q}}_{\ell}$ with compact support, which respects the natural $\overline{\mathbf{Z}}_{\ell}$ -structures $K(\pi, \overline{\mathbf{Z}}_{\ell}) \simeq C_c^{\infty}(F^*, \overline{\mathbf{Z}}_{\ell})$. The unique non trivial element of S_2 is represented by

$$w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

576

The action of $\pi(w)$ on the Kirillov model was described by Jacquet and Langlands [JL, Prop. 2.10 p. 46], using Fourier transform for complex representations.

We choose a \mathbf{Q}_{ℓ} -Haar measure dx on F^* . The Fourier transform of $f \in C_c^{\infty}(F^*, \overline{\mathbf{Q}}_{\ell})$ with respect to dx is

$$\hat{f}(\chi) := \int_{F^*} f(x)\chi(x)dx$$

for any character $\chi: F^* \to \overline{\mathbf{Q}}_{\ell}^*$.

We choose a uniformizing parameter p_F of F. A function $f \in C_c^{\infty}(F^*, \overline{\mathbf{Q}}_{\ell})$ is determined by the set of functions $f_n \in C_c^{\infty}(O_F^*, \overline{\mathbf{Q}}_{\ell})$ defined by $f_n(x) := f(p_F^{-n}x)$ for all $n \in \mathbf{Z}$. The functions f_n depend on the choice of p_F . Extension by zero allows to consider $C_c^{\infty}(O_F^*, \overline{\mathbf{Q}}_{\ell})$ as a subspace of $C_c^{\infty}(F^*, \overline{\mathbf{Q}}_{\ell})$, because O_F^* is open in F^* . We have

$$\hat{f}(\chi) = \sum_{n} \hat{f}_{n}(\chi) \chi(p_{F}^{-n}).$$

For a given character χ , the sum is finite. The functions $\hat{f}_n(\chi)$ depend only on the restriction of χ to O_F^* . Set $\hat{O}_F^* := \text{Hom}(O_F^*, \overline{\mathbf{Q}}_{\ell})$. One introduces the formal series

$$f(x,X) := \sum_{n \in \mathbf{Z}} f_n(x) X^n, \quad \hat{f}(\chi,X) := \sum_{n \in \mathbf{Z}} \hat{f}_n(\chi) X^n$$

for all $x \in O_F^*$ and for all $\chi \in \hat{O}_F^*$.

Jacquet and Langlands [JL Prop. 2.10 page 46] proved that the action of $\pi(w)$ on the Kirillov model is given by:

$$(\pi(w)f)_n^{\ }(\chi) \ = \ c(\pi\otimes\chi^{-1}) \ \hat{f}_m(\chi^{-1}\omega_\pi^{-1})$$

for all $\chi \in \hat{O}_F^*$, all integers $n \in \mathbb{Z}$, where $m = -n - f(\pi \otimes \chi^{-1})$, for some constant $c(?) \in \overline{\mathbb{Q}}_{\ell}^*$ and some integer $f(?) \in \mathbb{Z}$. The formula and $c(\pi \otimes \chi^{-1})$ are independent of the choice of dx. The formula is equivalent to

$$(\pi(w)f)^{\hat{}}(\chi,X) = \varepsilon(\pi\otimes\chi^{-1})\hat{f}(\chi^{-1}\omega_{\pi}^{-1},X^{-1})$$

for all $\overline{\mathbf{Q}}_{\ell}$ -characters χ of O_F^* , where the epsilon factor is

$$\varepsilon(\pi\otimes\chi^{-1})=c(\pi\otimes\chi^{-1})X^{f(\pi\otimes\chi^{-1})}.$$

On calls $c(\pi)$ the constant and $f(\pi)$ the conductor of the epsilon factor $\varepsilon(\pi)$. They both depend on the choice of the non trivial character $\psi: F \to \overline{\mathbf{Z}}_{\ell}^*$ which was fixed, but not on the choice of dx or on p_F . Jacquet and Langlands used complex representations but their method is valid when the field of complex numbers is replaced by $\overline{\mathbf{Q}}_{\ell}$, because one uses only integrals of locally constant functions on compact sets. There is no problem of vanishing because we work on $\overline{\mathbf{Q}}_{\ell}$. We suppose that dx is a \mathbb{Z}_{ℓ} -Haar measure on F^* wich is not divisible by ℓ . Let

 \mathcal{L} = the Fourier transform of $C_c^{\infty}(O_F^*, \overline{\mathbb{Z}}_{\ell})$.

We have $\mathcal{L} \subset C_c^{\infty}(\hat{O}_F^*, \overline{\mathbf{Z}}_{\ell})$ and $\mathcal{L} = C_c^{\infty}(\hat{O}_F^*, \overline{\mathbf{Z}}_{\ell})$ if and only if $q \not\equiv 1 \mod \ell$ [V2]. In general, we separate the ℓ -regular part X of O_F^* from the ℓ -part Y of O_F^* which is a cyclic group of order $m = \ell^a$. The volume of X for dx should be a unit in \mathbf{Z}_{ℓ}^* ; we can suppose it is equal to 1. The group of $\overline{\mathbf{Q}}_{\ell}$ -characters satisfy $\hat{O}_F^* \simeq \hat{X} \times \hat{Y}$. A general character in \hat{O}_F^* is now written as $\chi\mu$ where $\chi \in \hat{X}$ and $\mu \in \hat{Y}$, and a function $v : \hat{O}_F^* \to \overline{\mathbf{Q}}_{\ell}$ is thought as a function $v : \hat{X} \to C(\hat{Y}, \overline{\mathbf{Q}}_{\ell})$ with $v(\chi)(\mu) := v(\chi\mu)$.

The $\overline{\mathbf{Z}}_{\ell}$ -module \mathcal{L} consists of all functions $v: \hat{X} \to L$ with compact support, where

$$L \subset C^{\infty}_{c}(\hat{Y}, \overline{\mathbf{Z}}_{\ell})$$

is the free $\overline{\mathbb{Z}}_{\ell}$ -module with basis the characters $\underline{y} : \mu \to \mu(y^{-1})$ of \hat{Y} for all $y \in Y$.

We need some elementary linear algebra. The $\overline{\mathbf{Z}}_{\ell}$ -module L is the set of functions $v \in C_c^{\infty}(\hat{Y}, \overline{\mathbf{Q}}_{\ell})$ such that

$$y \mapsto < v, y > := |Y|^{-1} \sum_{\mu \in \hat{Y}} v(\mu) \mu(y)$$

belongs to $C(Y, \overline{\mathbb{Z}}_{\ell})$. The orthogonality formula of characters gives

$$v = \sum_{y \in Y} < v, y > \underline{y}$$

for all $v \in C(\hat{Y}, \overline{\mathbf{Q}}_{\ell})$. For the usual product, $C_c^{\infty}(\hat{Y}, \overline{\mathbf{Q}}_{\ell})$ is an algebra.

Lemma. Let $v \in C_c^{\infty}(\hat{Y}, \overline{\mathbf{Q}}_{\ell})$.

(i) The inclusion $vL \subset L$ is equivalent to $v \in L$.

(ii) The equality vL = L is equivalent to $v \in L$ and $v(\mu) \in \overline{\mathbf{Z}}_{\ell}^*$ for all $\mu \in \hat{Y}$.

(iii) The inclusion $vL \subset \Lambda L$ is equivalent to $\langle v, y \rangle \in \Lambda$ for all $y \in Y$

(Λ is the maximal ideal of $\overline{\mathbf{Z}}_{\ell}$).

Proof. (i) The inclusion $vL \subset L$ is equivalent to $\langle v\underline{z}, z' \rangle = \langle v, z^{-1}z' \rangle \in \overline{\mathbf{Z}}_{\ell}$ for all $z, z' \in Y$, which is equivalent to $v \in L$.

(ii) vL = L means that $v\underline{z}$ for $z \in Y$ is a basis of L. We have $v\underline{z} = \sum_{z' \in Y} \langle v, z^{-1}z' \rangle \underline{z'}$, hence vL = L means that

$$(\langle v, z^{-1}z' \rangle)_{z,z'} \in SL(m, \overline{\mathbf{Z}}_{\ell}).$$

The Dedekind determinant $\det(\langle v, z^{-1}z' \rangle)_{z,z'}$ is equal to $\prod_{\mu \in \hat{Y}} v(\mu)$ (see [L] exercise 28 page 495).

(iii) see the proof of (i).

578

Let $\pi \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral. As $\pi(w)$ is an isomorphism of the integral Kirillov model, the function

$$c(\pi\otimes\chi):\;\mu\in\hat{Y} o c(\pi\otimes\chi\mu)\in\overline{\mathbf{Q}}_{\ell}$$

satisfies $c(\pi \otimes \chi)L = L$ for all character $\chi \in \hat{X}$. We apply the lemma to $c(\pi \otimes \chi)$. We define **new epsilon factors**

$$arepsilon(\pi,y):= < c(\pi), y > X^{f(\pi)}, \quad < c(\pi), y > = |Y|^{-1} \sum_{\mu \in \hat{Y}} c(\pi \otimes \mu) \mu(y),$$

for all $y \in Y$. As have $f(\pi) \geq 2$ for $\pi \in \text{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$, we have $f(\pi) = f(\pi \otimes \mu) \geq 2$ for all $\mu \in \hat{Y}$. When Y is trivial (i.e. $q \not\equiv 1 \mod \ell$), they are simply the usual ones.

Theorem. (1) Let $\pi \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral. Then the constant of the epsilon factor is a unit $c(\pi) \in \overline{\mathbf{Z}}_{\ell}^*$ and the new constants $\langle c(\pi), y \rangle \in \overline{\mathbf{Z}}_{\ell}$ are integral, for all $y \in Y$.

(2) Let $\pi, \pi' \in \operatorname{Cusp}_{\overline{\mathbf{Q}}_{\ell}} G$ integral with central characters $\omega_{\pi}, \omega_{\pi'}$. Then $r_{\ell}\pi = r_{\ell}\pi'$ if and only if $r_{\ell}\omega_{\pi} = r_{\ell}\omega_{\pi'}$ and their new epsilon factors have the same reduction modulo ℓ : the conductors $f(\pi \otimes \chi) = f(\pi' \otimes \chi)$ are equal, and the new constants have the same reduction modulo ℓ :

$$r_\ell < c(\pi \otimes \chi), y >= r_\ell < c(\pi' \otimes \chi), y >$$

for all $y \in Y$, and all $\overline{\mathbf{Q}}_{\ell}$ -characters $\chi \in \hat{X}$.

Proof. With the last corollary of the paragraph (1), $r_{\ell}\pi = r_{\ell}\pi'$ if and only if $r_{\ell}\omega_{\pi} = r_{\ell}\omega_{\pi'}$ and

(*)
$$c(\pi \otimes \chi)\hat{f}_m(\chi^{-1}\omega_\pi^{-1}) = c(\pi' \otimes \chi)\hat{f}_{m'}(\chi^{-1}\omega_{\pi'}^{-1}) \mod \Lambda \mathcal{L}$$

for all $f_n \in C_c^{\infty}(O_F^*, \overline{\mathbb{Z}}_{\ell})$ and all $n \in \mathbb{Z}$. With the lemma, we deduce the theorem.

We apply now the theorem to representations over $\overline{\mathbf{F}}_{\ell}$. Any $\pi \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G$ lifts to $\overline{\mathbf{Q}}_{\ell}$ and we can define epsilon factors

$$\varepsilon(\pi\otimes\chi,y) := \langle c(\pi\otimes\chi), y \rangle X^{f(\pi\otimes\chi)}$$

for all $y \in Y$ and all $\chi \in \text{Hom}(O_F^*, \overline{\mathbf{F}}_{\ell}^*) = \text{Hom}(X, \overline{\mathbf{F}}_{\ell}^*)$, by reduction modulo ℓ . They are not zero for any (y, χ) .

Corollary. $\pi, \pi' \in \operatorname{Cusp}_{\overline{\mathbf{F}}_{\ell}} G$ are isomorphic if and only if they have the same central character and the same epsilon factors

$$arepsilon(\pi\otimes\chi,y)=arepsilon(\pi'\otimes\chi,y)$$

for all $y \in Y$, and for all character $\chi \in \text{Hom}(O_F^*, \overline{\mathbf{F}}_{\ell}^*)$.

Final remarks. a) When n > 2, the groups $GL(m, O_F)^*$ for $m \le n-1$ replace O_F^* .

b) Using the explicit description for the irreducible representations of dimension n of W_F [V3], one could try to prove a similar theorem for the irreducible integral $\overline{\mathbf{Q}}_{\ell}$ -representations of W_F of dimension n. To my knowledge this is a known and harder problem, which is not solved in the complex case.

References

- [D] P. DELIGNE, Les constantes des équations fonctionnelles des fonctions L. Modular functions of one variable II. Lecture Notes in Mathematics 340, Springer-Verlag (1973).
- [GK] I.M. GELFAND, D.A. KAZHDAN, Representations of the group GL(n, K) where K is a local field. In: Lie groups and Representations, Proceedings of a summer school in Hungary (1971), Akademia Kiado, Budapest (1974).
- [H1] G. HENNIART, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires. Invent. math. 113 (1993), 339–350.
- [H2] G. HENNIART, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Prepublication 99-14, Orsay.
- [HT] M. HARRIS, R. TAYLOR, On the geometry and cohomology of some simple Shimura varieties. Institut de Mathématiques de Jussieu. Prépublication 227 (1999).
- [JL] H. JACQUET, R.P. LANGLANDS, Automorphic forms on GL(2). Lecture Notes in Math. 114, Springer-Verlag (1970).
- [JPS1] H. JACQUET, I.I. PIATETSKI-SHAPIRO, J. SHALIKA, Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), 367–483.
- [JPS2] H. JACQUET, I.I. PIATETSKI-SHAPIRO, J. SHALIKA, Conducteur des représentations du groupe linéaire. Math. Ann. 256 (1981), 199–214.
- [L] S. LANG, Algebra. Addison Wesley, second edition (1984).
- [LRS] G. LAUMON, M. RAPOPORT, U. STUHLER, D-elliptic sheaves and the Langlands correspondence. Invent. Math. 113 (1993), 217–238.
- [M] J. MARTINET, Character theory and Artin L-functions. In: Algebraic number fields, A. Frohlich editor, Academic Press (1977), 1–88.
- [V1] M.-F. VIGNÉRAS, Representations modulaires d'un groupe réductif p-adique avec $\ell \neq p$. Progress in Math. 137 Birkhauser (1996).
- [V2] M.-F. VIGNÉRAS, Erratum à l'article : Représentations modulaires de GL(2, F) en caractéristique ℓ , F corps p-adique, $p \neq \ell$. Compos. Math. 101 (1996), 109–113.
- [V3] M.-F. VIGNÉRAS, A propos d'une correspondance de Langlands modulaire. Dans : Finite reductive groups, M. Cabanes Editor, Birkhauser Progress in Math 141 (1997).
- [V4] M.-F. VIGNÉRAS, Integral Kirillov model. C.R. Acad. Sci. Paris Série I 326 (1998), 411– 416.
- [V5] M.-F. VIGNÉRAS, Correspondance de Langlands semi-simple pour GL(n, F) modulo $\ell \neq p$. Institut de Mathématiques de Jussieu. Prepublication 235 (Janvier 2000).

Marie-France VIGNÉRAS

Institut de Mathématiques de Jussieu Université Denis Diderot - Paris 7 - Case 7012 2, place Jussieu 75251 Paris Cedex 05 France *E-mail* : vigneras@math.jussieu.fr