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Congruences between 03B5 factors for

cuspidal representations of GL(2)

par MARIE-FRANCE VIGNÉRAS

Pour Jacques Martinet

RÉSUMÉ. Titre français : Congruences entre facteurs ~
des représentations cuspidales de GL(2)

~ p deux nombres premiers distincts, F un corps local
non archimedien de caractéristique résiduelle p, une clôture

algébrique du corps des nombres et corps
résiduel de On conjecture que la correspondance locale de
Langlands pour GL(n, F) sur respecte les congruences mod-

entre les facteurs L et ~ de paires, et que la correspondance
locale de Langlands sur est caractérisée par des identités entre

de nouveaux facteurs L et ~. Nous allons le démontrer lorsque
n = 2.

ABSTRACT. p be two different prime numbers, let F be

a local non archimedean field of residual characteristic p, and let
be an algebraic closure of the field of numbers

the ring of integers of the residual field of We proved
the existence and the unicity of a Langlands local correspondence
over for all n &#x3E; 2, compatible with the reduction in

[V5], without using factors of pairs.
We conjecture that the Langlands local correspondence over

respects congruences between L and 03B5 factors of
pairs, and that the Langlands local correspondence over is

characterized by identities between new L and 03B5 factors. The aim
of this short paper is prove this when n = 2.

Introduction

The Langlands local correspondence is the unique bijection between all
irreductible Q£-representations of GL(n, F) and certain t-adic representa-
tions of an absolute Weil group WF of dimension n, for all integers n &#x3E; 1,
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which is induced by the reciprocity law of local class field theory

when n = 1 (Wpb is the biggest abelian Hausdorff quotient of WF), and
which respects L and s factors of pairs [LRS], [HT], [H2].

Let,o : F -~ Ze be a non trivial character. We denote by CuspR GL(n, F)
the set of isomorphism classes of irreducible cuspidal R-representations of
GL(n, F). When 7r E CUSPQi GL(n, F), Henniart [H1] showed that 7r is

characterized by the epsilon factors of pairs for all Q E

CuspQe GL(m, F) and for all m  n - 1 (note that Q) = 1), using
the theory of Jacquet, Piatestski-Shapiro, and Shalika [JPS1].

Does this remain true for cuspidal irreductible Ft-representations of
GL(n, F) ? We need first to define the epsilon factors of pairs.

Let 7r E Cuspe GL(n, F). It is known that the constants of the epsilon
factors of pairs £( 7r, a) belong to Ze for all Q E Cuspe GL(m, F) and for all
m  n - 1, and that the conductor does not change by reduction modulo t
(this is proved by Deligne [D] for the irreducible representations of the
Weil group, and by the local Langlands correspondence over (ae is true for
cuspidal representations).
Now let 7r E CusPFi GL(n, F). Then 7r lifts to F) [VI,

III.5.10~ . By reduction modulo ~, one can define epsilon factors of pairs
£(7r, o,) for all a E CusPFi GL(m, F) and for all m  n - 1. Let q be
the order of the residual field of F. We expect that 7r is characterized

by the epsilon factors £( 7r, Q) for all Q, when the multiplicative order of q
modulo f is &#x3E; n -1; otherwise, 7r should be characterized by less naive but
natural epsilon factors. The same should be true when 7r is replaced by an
Fe-irreducible representation of the Weil group WF.
The existence [V4] of an integral Kirillov model for 7r E CUSPQi GL(n, F)

seems to be an adequate tool to solve the problem. The description of the
representation 7r on the Kirillov model is given by the central character W7r
and by the action of the symmetric group Sn (the Weyl group of GL(n, F)).
The action of Sn is related with the e(r, a) for all Q as above [GK, see the
end of paragraph 7]. When n = 2 Jacquet and Langlands [JL] described
the action of S2 on the Kirillov model in terms of £( 7r, X) = £( 7r 0 X) for all
(ae-characters x of F*, using the Fourier transform on F*.

In the case n = 2 and only in this case, we will prove that two integral
F) have the same reduction modulo t if and only if

their central characters have the same reduction modulo t and the factors

X), X) have the same reduction modulo f for integral Qg-
characters X of F* when t does not divide q - 1. When f divides q - 1
this remains true with new epsilon factors taking into account the natural
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congruences modulo satisfied by the £(1f 0 x) for all x. By reduction
modulo f, we get that the local Langlands Fl-correspondence for n = 2 is
characterized by the equality on L and new E factors of pairs. The field Ft
can be replaced by any algebraically closed field R of characteristic .~.
The case n = 3 could be treated probably, but the general case n &#x3E; 4

remains an open and interesting question.

1. Integral Kirillov model

The definition of the L and E factors of pairs [JPS1] uses the Whittaker
model, or what is equivalent the Kirillov model. We showed [V4] that these
models are compatible with the reduction modulo .~.

We denote by OF the ring of integers of F. Let R be an algebraically
closed field of characteristic # p, and let 0 : : F - R* be a character
such that OF is the biggest ideal on which o is trivial. We extend 0
to a R-character of the group N of strictly upper triangular matrices of
G = GL (n, F) for n = E N. The mirabolic

subgroup P of G is the semi-direct product of the group GL(n - 1, F)
embedded in GL(n, F) by 

i’

and of the group embedded in GL(n, F) by

The representation TR := of the mirabolic subgroup P (compact
induction) is called mirabolic. It is irreducible (this is a corollary of [V4
prop. I] ) , but it is not admissible when n &#x3E; 2.

Lemma. EndRp TR ^~ R.

Proof. This is a general fact: the representation TR is absolutely irreducible
[VI, 1.6.10], hence EndRp -rR - R. From the Schur’s lemma [VI, 1.6.9]
EndRP R when the cardinal of R is strictly bigger than diMR TR
(countable dimension). There exists an algebraically closed field R’ which
contains R and of uncountable cardinal. Two RP-endomorphisms of TR
which are proportional over R’ are proportional over R. D

Theorem. An irreducible R-representation 1f o f G is cuspidal i f and only
if extends the mirabolic representation TR.

Proof. This results from [BZ] and [VI]. Suppose that zr is cuspidal. Then
1flp is the mirabolic representation: when R = C see [BZ, 5.13 &#x26;

5.20~, when R = 7r lifts to Q~ [VI, 111.5.10] where it is true then reduce.
Conversely, suppose 1flp = TR and R = Q~ or F~. Then 7r is cuspidal [Vl,
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111.1.8]. The case of a general R is deduced from this two cases by the next
lemma. D

Let G be the group of rational points of a reductive connected group
over F. We denote by IrrR G the set of isomorphism classes of irreducible
R-representations of G.

Lemma. (1) A non zero homomorphism of algebraically closed fields f :
R ~ R’ gives a natural injective map 7r ~ f* (1r) : IrrR G -~ IrrR, G which
respects cuspidality.

(2) Let 1r’ E CusPR’ G. Then there exists an unramified character x of
G such that 1r’ Q9 x = f*(1r) with 1r E CusPR G.

Proof. This results from [VI].
(1) f * respects irreducibility [VI, 11.4.5], and commutes with the para-

bolic restriction. Hence it respects cuspidality. The linear independence of
characters [Vl , 1.6.13] shows that if Jr, zr’ E IrrR G are not isomorphic then

are not isomorphic.
(2) Let Z be the center of G. The group of rational characters X(Z)

is a subgroup of finite index in the group X ( G) . This implies that there
exists an unramified character X of G such that the quotient Z/Zo of Z by
the kernel Zo of the central character of 7r’ ® x is profinite. Hence the
values of w are roots of unity. We deduce that 7r’ 0 X has a model on R
[Vl, IL4.9). D

Let 7r E CuspR GL(n, F) of central character w. The realisation of 7r on
the mirabolic representation TR is called the Kirillov model K(7r) of 7r. It is

sometimes useful to use the Whittaker model instead of the Kirillov model.

By adjonction and the theorem R (the unicity of
the Whittaker model); the Whittaker model is the unique realisation
of 7r in By definition

for all g E G and for all Whittaker functions W E We denote by
T(j) the subgroup of matrices k E GL(n,OF) of the form

for any integer j &#x3E; 0. The smallest j &#x3E; 0 such that 1f contains a non-zero
vector transforming under r(j) according to the one dimensional character

for k E as above, is called the conductor of 7r and denoted f .



575

Theorem. Let 7r E CUSPR GL(n, F) of central character w = w and con-
ductor f.

(1) The restriction from G to P induces a G-equivariant isomorphism

from the Whittaker model to the Kirillov model.
(2) Let 1f’ E CUSPR GL(n, F). There is a natural isomorpltism W - W’ :

W(1f) -&#x3E; W(1f’) of R-vector spaces defined by the condition Wlp = W’lp.
(3) There is unique functions W1r E W (~r) such that

The function W7r is called the new vector of 7r and generates the space of
vectors of 7r transforming under r( f ) according to WI.

(4) W(-x) is contained in the compactly induced representation
ind

Proof. (1) There exists W E with 0, and f : W - Wp is a
non zero P-equivariant map from 7r to Indt 0. The map f is injective of
image indp 1/;, because End R TR = R. We get also (2).

(3) The space of TR is isomorphic by restriction to G’ = GL(n - 1, F),
to the space of where N’ = N n G’. As V) is trivial on OF,
the characteristic function of GL(n - 1, OF) belongs to For the
conductor [JPS2].

(4) Let W E The function z - W (xg) on the parabolic standard
subgroup PZ is locally constant of compact support modulo NZ for all
g E G. As G = PZGL(n, OF), the function W is of compact support
modulo NZ. D

Let 7r E Irr Ql G. Let E/(aP be an extension contained in a finite extension
of the maximal unramified extension of Qi. Example: the extension 
generated by the values of 0. The ring of integers OE is principal. An OE-
free module L with an action of G such that L is a finite type OEG-module
and such that Qi 00 E L - 7r is called an OE-integral structure of 7r. If such

an L is exists, 7r is called integral, the representation rtL = L 00E Fe is of
finite length. One calls ZP OOE L an integral structure of 7r. When L, L’
are two integral structures of 7r, then the semi-simplifications of rf L, rgL’
are isomorphic (see [VI, II.5.1l.b] when is finite, and [Vig4, proof
of theorem 2, page 416] in general). When 7r E CuspQe G is integral,
rgL = L OOE Fe is irreducible; the isomorphism class rt-x of rEL is called
the reduction of 7r; any irreducible cuspidal Ft-representation of G is the
reduction of an integral irreducible cuspidal Q£-representation of G. For

all these facts see ~Vl, 111.5.10].
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A function with values in Qt is called integral, when its values belong to
Zt . We denote by Zt), resp. W(1r, Ze), the set of integral functions
in the Kirillov model, resp. Whittaker model, of 7r E G. Let A be

the maximal ideal of Zi. The reduction modulo t of an integral function f
is the fonction rtf with values in Ft deduced from f .
Theorem. (A) Let 1r E G with central characters úJ1f. Then the

following properties are equivalent:
(A.1) W1f is integral.
(A.2) 7r is integral.
(A.3) K(,7r, Zf) is a ZP-structure of 7r, called the integral Kirillov model.
(A.4) Zt) is a Zi -structure of 7r, called the integral LVjcittaker model.

(B) When 7r is integral, we have
(B.1) The restriction to P frorrc W(1r, Zt) to Zt) is an isomorphism.
(B.2) The integral Kirillov model is ZtP- generated by any functions f

with f (1) = 1. The integral Whittaker model W(1r, Zt) is ZfG generated by
the new vector.

(B.3) Ft 0zl K(ir, Zt) = K(rt7r, Ff) is the Kirillov model, and Fe 0zi
W(1r, Zt) = W(re1r, Ft) is the Whittaker model of rf1r.
Proof. The equivalence of (Al) (A2) [VI, 11.4.12]; for the rest [V4 th.2] and
the last theorem. 0

Corollary. Let 1r, 1r’ E CUSPQl G integral, with central character W1f, W1f1 .
Then re1r = re1r’ if and only if

for all w E and for all f in the integral Kirillov model.

Proof. Use (B.3) and End-p. D

Questions. Can one define an integral Kirillov or Whittaker model for
7r E Irr Qt G integral and not cuspidal ? What is the action of Sn in the
Kirillov model ?

2. The case n = 2

We can go further in the case n = 2. Let 7r E CusPQt G where G =
GL(2, F). The restriction of GL(2, F) to GL ( 1, F) = F* gives an isomor-
phism from to the space of locally constant functions
F* --~ Qe with compact support, which respects the natural ZE-structures

C°°(F*, Zt). The unique non trivial element of 52 is repre-
sented by
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The action of ir(w) on the Kirillov model was described by Jacquet and
Langlands [JL, Prop.2.10 p.46~, using Fourier transform for complex rep-
resentations.
We choose a (ae-Haar measure dx on F*. The Fourier transform of

f E C°°(F*, Qt) with respect to dx is

for any character X : F* -~ Qi.
We choose a uniformizing parameter PF of F. A function f E C,’ (F*, Qi)

is determined by the set of functions fn E Qt) defined by fn(x) :=
f (pFnx) for all n E Z. The functions fn depend on the choice of pF. Exten-
sion by zero allows to consider as a subspace of Qt),
because OF is open in F* . We have

For a given character x, the sum is finite. The functions depend only
on the restriction of x to OF. Set 6* := Hom(OF’ One introduces
the formal series

for all x E OF and for all x E 0*
Jacquet and Langlands [JL Prop. 2.10 page 46] proved that the action

of 7r( w) on the Kirillov model is given by:

for all X E6* , all integers n E Z, where m = -n - 0 ~ ~ for some
constant c(?) E (~e and some integer f (?) E Z. The formula and c(1f0 
are independent of the choice of dx. The formula is equivalent to

for all Qg-characters x of OF, where the epsilon factor is

On calls c(7r) the constant and f (~r) the conductor of the epsilon factor c(7r).
They both depend on the choice of the non trivial ZP
which was fixed, but not on the choice of dx or on pF. Jacquet and Lang-
lands used complex representations but their method is valid when the field
of complex numbers is replaced by Qt, because one uses only integrals of lo-
cally constant functions on compact sets. There is no problem of vanishing
because we work on Qt.
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We suppose that dx is a Zi-Haar measure on F* wich is not divisible by
£. Let

£ = the Fourier transform of C~ ° (OF, Ze)
We have ,C and ,C = C~ ° (OF, 1 Zf) if and only if q fl 1 mod £
(V2~ . In general, we separate the £-regular part X of OF from the .~-part
Y of 0* which is a cyclic group of order m = The volume of X for
dx should be a unit in Z~ ; we can suppose it is equal to 1. The group
of Qf-characters satisfy X X Y. A general character in OF is now
written as XM where X E X and p E V, and a function v : bh - is

thought as a function v : C(Y, with 

The Zt-module ,C consists of all functions v : 5l - L with compact
support, where

is the free Zi-module with basis the characters y : p - of Y for all

We need some elementary linear algebra. The Zg-module L is the set of
functions v E C§fl~ (9, Ql) such that

belongs to C(Y, Ze). The orthogonality formula of characters gives

for all v E C(Y, For the usual product, C§° (9, is an algebra.

Lemma. Let v E jQe) -
(i) The inclusion vL C L is equivalent to v E L.
(ii) The equality vL = L is equivalent to v E L and v(p) E all /-I E Y.
(iii) The inclusion vL C AL is equivalent to  v, y &#x3E;E A for all y E Y
(A is the maximal ideal of 

Proof. (i) The inclusion vL c L is equivalent to  vz, z’ &#x3E;= v, &#x3E;E

Z~ for all z, z’ E Y, which is equivalent to v E L.
(ii) vL = L means that vz for z E Y is a basis of L. We have vz =

¿z’EY  v, z lz’ &#x3E; z’, hence vL = L means that

The Dedekind determinant det( v, z-lz’ is equal to ITp,EY (see
[L] exercise 28 page 495).

(iii) see the proof of (i). D
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Let 7r E Cuspo G integral. As 7r( w) is an isomorphism of the integral
Kirillov model, the function

satisfies c(7r © x)L = L for all character X We apply the lemma to
c(7r Q9 X). We define new epsilon factors

for all y E Y. As have &#x3E; 2 for 7r E G, we have =

f(7r 0 Jl) &#x3E; 2 for all Jl E Y. When Y is trivial (i.e. q 0 1 they are
simply the usual ones.

Theorem. (1) Let 7r E CusPQt G integral. Then the constant of the epsilon
factor is a unit c(7r) E Ze and the new constants  c(7r), y &#x3E;E Zt are
integral, for all y E Y.
(2) Let 7r, 7r’ E CusPQt G integral with central characters W7r’ . Then

= rf1T’ if and only if = and their new epsilon factors have
the same reduction modulo t: the conductors f(1T0X) = f(7r’0X) are equal,
and the new constants have the same reduction modulo t :

for all y E Y, and all Qg-characters x E X .

Proof. With the last corollary of the paragraph (1), rg7r = rl!7r’ if and only
if = and

for all In E Zt) and all n E Z. With the lemma, we deduce the
theorem. D

We apply now the theorem to representations over F~. Any 7r E Cuspp G
lifts to Qg and we can define epsilon factors

for all y E Y and all X E Hom(O*, Ft) = Hom(X, F~ ), by reduction
modulo .~. They are not zero for any (y, x) .

Corollary. 7r, 7r’ E Cuspp G are isomorphic if and only if they have the
same central character and the same epsilon factors

for all y E Y, and for all character X E Hom(OF, F~).
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Final remarks. a) When n &#x3E; 2, the groups GL(m, OF)* for m  n -1
replace OF.

b) Using the explicit description for the irreducible representations of di-
mension n of WF [V3], one could try to prove a similar theorem for the
irreducible integral Q -representations of WF of dimension n. To my know-
ledge this is a known and harder problem, which is not solved in the complex
case.
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