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On the distribution modulo one

par XIAODONG CAO et WENGUANG ZHAI

RÉSUMÉ. Dans cet article, on donne une nouvelle majoration de
la discrépance

D(N):= 

de la suite lorsque 5/3 ~ 03B1  3 et 03B1 ~ 2.

ABSTRACT. In this paper, we give a new upper-bound for the
discrepancy

D(N):= |03A3 p~N {p03B1}~03B3 1201403C0(N)03B3
{p03B1}~03B3

for the sequence when 5/3 ~ 03B1  3 and 03B1 ~ 2.

1. INTRODUCTION.

In 1940 I. M. Vinogradov [14] considered the distribution of the fractional
parts of the sequence where p runs over the set of prime numbers
and f a positive constant. This celebrated work motivated the interests
of many authors to investigate the distribution of pet modulo one for fixed
a &#x3E; 0, a V N(see [1,2,3,4,6,7,9,10]). It is well-known that the sequence (pet)
is uniformly distributed modulo one as p runs over prime values. To make
this precise, we consider the discrepancy

I ,

where denotes the fractional part of real t.
Leitmann [10] showed that
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as N tends to infinity, for some J &#x3E; 0. R. C. Baker and G. Kolesnik [1]
showed that (1.2) holds with

for a &#x3E; 1, a ~ N. This is the sharpest result for large a at present.
We can do much better for small a, but one can’t find a unified method

as a varies, just as Baker and Kolesnik pointed out in their paper [1]:
"Of course, one can do much better for small a, although the optimal
technique varies considerably as a moves over an interval such as 1 

a  2". By Vaughan’s identity and mean value estimates for Dirichlet
polynomial, Balog [2] proved that

for 1/2  a  1. Throughout the paper, e denotes an arbitrarily small
positive constant, and m - M means that M  m  2M. Harman [7]
proved that (1.3) holds for a = 1/2 independently. Baker and Kolesnik [1]
also proves that

for a = 3/2 by Van der Corput’s method (essentially).
The aim of this paper is to use a new technique to study the case 5/3 

a  3, a ~ 2. Previous methods only yield weak results in this interval.
We shall combine the double large sieve inequality due to Bombieri and
Iwaniec [4] and Heath-Brown’s method [8] to prove the following

Theorem 1. The estimate

holds where

2. A SPECIAL SPACING PROBLEM

In 1989, Fouvry and Iwaniec [5] first used the double large sieve inequal-
ity to estimate exponential sums with monomials. If the exponential factor
is large comparable to the variables,then it oscillates too rapidly and can’t
be controlled by using the double large sieve inequality directly. In order
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to overcome this problem, Fouvry and Iwaniec appealed to Weyl’s method,
which reduces the oscillatory behaviour of the exponential factor. Conse-

quently it causes serious problems about the spacing of the resulting points.
See Proposition 2 of Fouvry and Iwaniec [5] and Theorem 2 of Liu [11].

Sometimes if the exponential factor is very large, we have to use the
Weyl’s shift two times. Thus it causes a new spacing problem.

In this section we shall investigate the spacing problem for the points

..

In this section all constants implied by "4", "« " depend only on a. 
-2Let M &#x3E; 100, Q M/10,A &#x3E; 0. We set T = 

and G = log(2MQr). Thus for m - M, q - Q and r fixed, we have
t(m, q; r) - T. We use to denote the number of quadruples

with m, iii - M; q,;¡ rv Q and r fixed, such that

Our aim is to prove the following:

Remark 1. In Theorem 2, the condition r  eQ can be replaced by r 
C(a)Q, where C(a) is a small constant depending only on 1, then
this condiction can be removed.

Remark 2. In applications, the contribution of (2.4) is always absorbed
by the contribution of (2.3). Since (2.3) is proved only for r  eQ, we state
(2.4) for completeness of the Theorem.

Proof. Clearly (2.2) implies that

namely,

(2.6)

where
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Using Taylor’s formula we have for ,Q ~ 0, Ixl  1/2

Moreover,

where

By the mean value theorem and the condition r  Q « we obtain
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Using (2.7) again and after a simple calculation, one has

From (2.11) we see that

By substituting (2.14) into (2.11) we find the first approximation

Again by substituting (2.15) into (2.11) we get a more precise approxi-
mation
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We assume that AM  1/4, for otherwise Theorem 2 follows from (2.16).
If AM  1/4, we claim from (2.16) that

Since is non-decreasing in we have

where A2 = AM + M-’(r2/3 + ~2/3 ~ ,
Now we use the method of Fouvry and Iwaniec [5 ,p319-321] to estimate

Bo (M, Q, A2; r~. For S’ &#x3E; 0 we have the identity

For fixed (q, q-), the number of lattice points counted in Bo(M, Q, A2; r)
is b ounded by

where S = ê(4.d2)-I.
Using our assumption and Lemma 4.8 of Titchmarsh [12], the innermost

sum in (2.20) equals to
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Thus by the mean value theorem we have

for some qo rv Q,if r  for some small C(a) &#x3E; 0. It should be
remarked that if a &#x3E; 1, then this condition can be removed.
We always have « This is trivial if !g - $1 &#x3E;

Q/20 since C(q, q; r) « Q~ . Now suppose !? - g)  (~~20. For 0,
we have

Inserting this into the expression of C(q, q; r) we get the desired inequality.

and if IlAsil  3sIBIM-2, then by Lemma 4.4 of [12] we have

Combining (2.20)-(2.25) we have

where

and

= 1, 2) can be estimated in the same way as Fouvry and
Iwaniec [5] (page 320), and we have

The estimate (2.3) follows from (2.26)-(2.28). To prove the estimate

(2.4), we need only to consider

where A 3 = AM + M-3(r4 + Q4). Since the proof is almost the same as
that of (2.3), we omit the details. D
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3. SOME PRELIMINARY LEMMAS

In this section we quote some lemmas needed for our proof. We shall use
the work of Heath-Brown [8] on the decomposition of sums

with 2P. Heath-Brown subdivides the sum (3.1) into expressions of
the form

with X  Xl  2X, Y  2Y, « P-, b(y) « P’ for every
fixed e &#x3E; 0. The above sum is usually called "Type I" sum if b( y) - 1 or
b(y) = log y; Otherwise it is called "Type II" sum.

Lemma 1. Let f (n) (n = 1,2,...) be a complexe valued ficnction. Let
P &#x3E; 2, P1  2P. Let u, v, z be positive numbers satisfying

Then the sum (3.1) may be decomposed into (log p)6 sums, each of which
is either of Type I with Y &#x3E; z or of Type II with u  Y  v.

Lemma 2. Let Xl, X2, ... , XJ be real and H &#x3E; 1. Then the discrepancy of
sequences is defined by 

~

satisfies

Lemma 3. Let L &#x3E; K, Q &#x3E; 0, and let Zk be compleac numbers. We then
have
.
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Lemma 4. Let X and Y be two finite sets of real numbers, X C [-X, X],
Y C [-Y, Y]. Then for any complexe functions u(x) and v(y) we have

Lemma 5. 1, m - M, q - Q. Let a(~ 0,1) be a real number,
t(m~ q) - (m + q)a - (m - MCt-1Q, and let the

number of lattice points (m, ml, q, ql ) such that m,ml "J M, q7 q, - Q, and

Suppose t7 is a sufficiently small positive constant. If Q  

the implied constant relying at most on 77 and a.

Lemma 1 and 2 are Lemma 1 and 2 of Baker and Kolesnik [1] respectively.
Lemma 3 is Lemma 2 of Fouvry and Iwaniec [5]. Lemma 4 is the double
large sieve inequality, see Proposition 1 of Fouvry and Iwaniec [5]. Lemma 5
is Theorem 2 of Liu [11].

4. ESTIMATIONS OF EXPONENTIAL SUMS

We first estimate the bilinear forms of type

with MN - X and ocm « 1, b,

Proposition 1. Suppose that



416

Proof. Take Q, = [X28]. By Cauchy’s inequality and Lemma 3 we get

for some 1 « Qi G Ql, where

with

It reduces to show that

Take Q2 = + 10. Using Lemma 3 again gives

for some 1 C Q* C Qz, where

and t(n, q2; ql) is defined by (3.1).
No loss of generality, we suppose that Q* C Q2. It suffices for us to

show for fixed ql that

If 0~ » Q*, we shall estimate the sum over ql.
Take [log x]2 + 10. Using Lemma 3 again, we get that
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for some 1 C Q~ G Q3, where

It is easy to show that Q2 = o(N 3/4) and Q3 = O(M3/4). Let F =
FQ*Q*hM’N’ and G = It is easy to check that G » 1. By Lemma 4

we obtain that

where ,A is the number of quadruples (m, m, q3, 4’3’) such that

for M; Q3, f3 "-I Q~, and where B is the number of quadruples
(~ ~) 92 ?~) such that

for n, fi - ~V;q2)92 ~ ~2. Then A, B can be estimated by Lemma 5 and
Theorem 2, respectively; And we get that

Combining (4.12)-(4.14) we get that

Now it is easy to check that under the conditions of Proposition 1 we
have

Thus Proposition 1 follows from inserting (4.16) into (4.10).
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Proposition 2. Suppose that 2  a  3, 0  8 ~ 339 , 0  8 ~ 13s ,
0  e - 1269~ ~ and 0  8 ~ ~ - 1, h  xe. Then (,~.2) holds for

Proof. Take Ql = [X28] and Lemma 3 gives us
, 1 -,

for some 1 C Q* C C~1.
Let Sl denote the triple exponential sum in the right side of (4.18). Take

Q2 = + 10 and Lemma 3 gives

for some 1 « Q2 « Qz.
Let 82 denote the quadruple sum in the right side of (4.19). Take Q3 =

[lo~~]2 ~- 10 and Lemma 3 gives

for some 1 « (Q3 « Q3, where

No loss of generality we suppose that ~1 « Q~; Otherwise we estimate
the sum over qi . Thus we have



419

where x31 denotes the number of quadruples such that

for 0~, and where ~2 is the number of quadruples
(n, n, 93, q3 ) such that

Combining (4.23)-(4.25) we obtain

under the conditions of Proposition 2. Now Proposition 2 follows from
(4.18)-(4.22) and (4.26). 0

Next we estimate the triple sum
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Proposition 3. Suppose

Proof. We apply Heath-Brown’s method [8]. Suppose 1  Q  HN is a
parameter to be specified later. For a fixed q(1  q  Q), define

Then we have

Cauchy’s inequality gives

where A = and (*) denotes a sum over hi , h2 rv H, nt, n2 rv N
such that

Applying the exponent pair (1/14’ we have
14 

14 
- - ,

By the same argument as in Heath-Brown [8], we get that

-20Finally take Q = and Proposition 3 follows. 0

5. PROOF OF THEOREM 1

Let Dp denote the discrepancy of the sequence ip a : p- Pl. By a
simple splitting argument, there exists a P such that 1 ~ P  N and
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Suppose P » Let Ho = [P6], where 6 is given in Theorem 1.
Applying Lemma 2, we obtain

I I

for some
Applying Lemma 1 with f (n) = e(hna), we find

I

where S(h) is either a Type I sum with

or a Type II sum with

If S(h) is a Type II sum, then by Proposition 3 (take 0 = 8) we have

It suffices for us to show that for any S(h) of Type I we have

We prove (5.5) by Propositions 1 and 2.
Case 1. 3  a  26 3 - - 26*

In this interval, we have J - Z6. We take 0 = 26 in Proposition 1 and
we find that (5.5) holds for For ~r » p23/39 , using
the exponent pair ( i4 , on the sum over y and estimating the sum over
~ trivially, we get

Case 2 .a - ° 

_

In this interval, we have ð = 5 40a . By Proposition 1 we have (5.5) holds
for P2*~ « y « P 8 i5 5 . We use the exponent pair ( 1 , 11 ) again for
Y» P15.
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In this interval, we have I = 5J.0. By Proposition 2 we see that (5.5) holds
for P 2 - « Y « P ~5 . For Y » P 75 we use the exponent pair (30’ 2s ) and
(5.5) still holds.

C 4 317  347Case4.. °
In this interval, we have ð = 9i33 and (5.5) can be proved as the same

in Case 3.

In this case, we have j = 5-,, . By Proposition 2 we know that (5.5)
holds for p!-6 « Y « P 2 . For P 2 « Y « pl-24~, (5.5) also follows
from Proposition 2 with X and Y interchanged. For Y » pl-246 , we use
the exponent pair ( 30 , 30 ) again.
Case 6. 59  a  3.

In this case, we have 5 - 339 and (5.5) could be proved as the same in
Case 5.

Combining all the above, we see that (5.5) holds in any cases. This

completes the proof of Theorem 1.
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