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Class invariants by Shimura’s reciprocity law

par ALICE GEE

RÉSUMÉ. On applique la loi de réciprocité de Shimura pour dé-
cider quand les valeurs des fonctions modulaires de haut niveau
peuvent être utilisées pour engendrer le corps de classes de Hilbert
d’un corps quadratique imaginaire. Lorsque c’est le cas, nous
montrons aussi comment trouver le polynôme correspondant. Cela
donne une preuve de certaines formules conjecturales de Morain
et Zagier relatives à ces polynômes.

ABSTRACT. We apply the Shimura reciprocity law to determine
when values of modular functions of higher level can be used to
generate the Hilbert class field of an imaginary quadratic field. In
addition, we show how to find the corresponding polynomial in
these cases. This yields a proof for conjectural formulas of Morain
and Zagier concerning such polynomials.

1. INTRODUCTION

Let K be an imaginary quadratic number field of discriminant d with ring
of integers 0 = 7G~B~. The first main theorem of complex multiplication says
that the modular invariant j(0) = j (B) generates the Hilbert class field over
K.

Weber noticed that in many cases, the Hilbert class field can be generated
by modular functions of higher level such as 72, -y3, and the so-called Weber
functions f, fi, and f2. We will also study Weber’s resolvents wo and c.~3 of
level 5. These functions are defined in §4. When h is a modular function
of level N, Weber calls the value h(O) of a modular function h at 0 a class
invariant whenever and j(O) generate the same field over K.

Class invariants can be useful because j(0) provides an ungainy descrip-
tion of the Hilbert class field from a computational point of view. Its min-
imum polynomial Hd E Z[X] has zeroes at j (a), with a ranging over the
ideal classes of 0. As a function on the complex upper half plane, the
value grows exponentially with the imaginary part of 9 so that the
coefficients of Hd grow exponentially with d. Even worse, the coefficients
of Hd are unwieldy even when d is of modest size. For example, the class
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polynomial for d = -71 is

However, taking 0 = -1+2 -71, the function values ~g-y2(B~, (48j(S) and
w3 (S) are all class invariants. These have minimum polynomials

In this paper, we apply the Shimura reciprocity law, which describes the
action of the idele class group of K on the values of modular functions h
taken at 0 E K, to the problem of finding and computing class invariants.
The reciprocity law provides a method of systematically determining the

instances when a given function yields a class invariant. By applying our
method to Weber’s functions ~y3, 72, f, fl, f2 we recover theorems of the type
found in [7]. This treatment allows us dispense with the need for ad hoc
arguments which appear even in the modern treatments [1] and [4], both of
which pre-date Shimura’s 1970 theorem.

Shimura’s reciprocity law also describes the action of the class group
on a class invariant h( 0). This provides an algorithm for computing

the minimum polynomial of a class invariant numerically. We apply the
algorithm to prove some conjectural formulas of Morain [3] and Zagier [8]
regarding the conjugates of class invariants arising from q3 and f2.

This paper is part of my thesis, which is being written at the University of
Amsterdam. I have calculated the polynomials for the class invariants aris-
ing from the functions considered in this paper for the imaginary quadratic
field discriminants d when -1000  d  0. The tables are not appended
here.
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2. THE MODULAR FUNCTION FIELD JF

Let H denote the complex upper half plane with completion = IHIUpl (Q).
A matrix ( b d ) E SL2(Z) acts on BF as the fractional linear transformation
zcz+d
When N is a positive integer, let rN C SL2 (Z) denote the kernel of the

map SL2(Z) -+ SL2(Z/NZ) obtained by reducing coefficients modulo N.
The quotient space X (N) = is a Galois cover of P (C) with group

At the cusp corresponding to the point at infinity in
Er, we have the local parameter q 1IN - e 2,i,IN . If h is a meromorphic
function on X(N), its the Laurent series expansion in the parameter 
is called the Fourier expansion of h.
We embed the algebraic closure Q of the rational numbers in C and fix

~n, to be the root of unity e21ri/N. The algebraic curve X (N) can be defined
over Q((N), and we let FN be its function field over Q( (N ). It is the field
of meromorphic functions on X(N) having Fourier coefficients in Q((N).
One has F1 = Q(j), and defines the automorphic function field .~ as the
union .~ = We will describe the infinite Galois extension F1 c J’
presently.

First consider the finite Galois extension Fi C Fnr. Let aN E SL2(Z/NZ)
represent the rN-equivalence class of a fractional linear transformation a
on For h E FN the action h°N = h o a is well-defined and induces an
isomorphism

For d E (7~/NG)*, let Qd denote the automorphism of Q((N) given by 
~~,. The action of and gives rise to a natural isomorphism

which we can lift to FN in the following way. If h E Fn, has Fourier ex-

pansion r k F e Q«N ) ( (q " ) ) then £k «d (ck ) . k W jS again a Fourierpansion E then is again a Fourier
expansion of some function in Fnr which we denote by had. Then h M had
defines a group action of (Z /NZ)* on Fnr. The invariant field FN,Q is the
subfield of functions in FN having Fourier coefficients in Q, so we have

Fl ((N) = Fl in the following diagram
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of fields. Define the subgroup

The map (7G/N7G)* -~ GN is a section of the determinant map on GL2 (Z /NZ)
and the isomorphism GN - defines the action of GN on FN.
We obtain the following commutative diagram with exact rows and columns:

Passing to the projective limit yields the exact sequence

3. SHIMURA RECIPROCITY OVER THE HILBERT CLASS FIELD

Let 0 = be the ring of integers of K, an imaginary quadratic number
field. We assume K is embedded in the complex plane with 0 E H.
When p E Z is a prime number we will use the notation Kp = Qp 0Q K

and Op = Zp0z O. For a prime ideal p C C~ lying over p, let Kp denote the
completion of K at p. Then KP is canonically isomorphic to rjip Kp. We
use the rational primes p E Z to index the group of finite idèles

of K. The restricted product is taken with respect to the subgroups 0; C
p.

Let ~~, I~~ denote the Artin map on Jk. We view K* to be embedded
along the diagonal of Jk. In the case that .K is an imaginary quadratic
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number field, the exact sequence of class field theory takes on the following
simple form:

If F C .~ is a subfield of the automorphic function field, let K(F(O))
denote the field extension of K obtained by adjoining all of the function
values h(O) for which h E F is pole-free at 0.

Theorem 1 (First main theorem of complex multiplication). Let(9 = Z[0]
be the ring of integers of an imaginary quadratic number field K. Then 1 (0)
generates the Hilbert class field over K. The maximal abelian extension Kab
is equal to K(.~’(B)), and the sequence

is exact. The ray class field of conductor N over K is K(Fnr(B)). The

subgroups of which acts trivially on K(FN(O)) with respect to the

Artin map is generated by 0* and flp ((1 + N. Op) 
Reference. Class field theory and [2; 10.1, Corollary to Theorem 2]. 0

We now consider the map that relates the exact sequences (3) and (1). For
every prime number p E Z, let

be the injection that sends xp E KP to the matrix in GL2(Qp) that rep-
resents multiplication by xp with respect to the Qp-basis (8, 1~ for Kp. In

other words, (ge)p(xp) E GL2(Qp) is the matrix that satisfies the relation

If 0 has minimum polynomial f~ = X2 + BX + C, then for sp, tp E Qp we
have

On J9 = IT~ K~ we obtain an injective product map

The restricted product is taken with respect to the subgroups GL2(Zp) C
GL2(Qp). We write rlp GL2 (Zp) = GL2(Z) and consider the pre-image



50

From (4) we note

because 0 is an algebraic integer. Until section 10, we only need the restric-
tion

of the map go. In combination with (1) and (3), it yields the diagram

Theorem 2 (Shimura reciprocity law). Let C~ = be the ring of inte-
gers of an imaginary quadratic number field i
we have

--I-I ,-/-

SupPose G C GL2 (2) is an open subgroups with fixed field F C .F. With re-

spect to the Artin map, the-subgroup of flp 0; that acts trivially on K(F(O))

Reference. [5; Theorem 6.31, Proposition 6.33]. D

Corollary 3. Let C~ = be the ring of integers of an imaginary qua-
dratic number field K of discriminant d  -4. Suppose h E .F does not have
a pole and suppose that Q(j) C Q( h). The functions value h(8) is a

class invariant if and only if every element of the image 0;] C GL2 (7G)
acts trivially on h.

Proof. The open subgroup {0152 E I ha = hl has fixed
field Q(h) C .~. The pre-image contains O* = ~~1~, so

C flp 0; is equal to the inverse image of 
with respect to the Artin map. Thus h( 0) is a class invariant if and only if
the equality holds. This last equality is equivalent to
the condition C Stabh by the injectivity of go. D

The infinite groups and GL2(Z) occuring in Corollary 3 are not
directly suited for performing explicit computations. In practice, for h E FN
and 0 an algebraic integer we can reduce modulo N and work with their
finite quotient groups.

If N is a positive integer let UN C GL2(Z) be the kernel of the natural
map GL2(Z) -+ GL2(Z/NZ) obtained by reducing coefficients modulo N.
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We have UN = StabFN where StabFN is the inverse image of in

GL2(Z). Also, we observe

Thus with respect to the Artin map, the subgroup of IIp C7~ that acts
trivially on K(FN(B)) is generated by 0* and

is exact and go induces a well-defined injection between the quotient groups

We use the isomorphism to define the map

which is the reduction of 90 modulo N. One obtains the diagram

Define to be the image

If 0 has minimum polynomial we can list the

elements of WN,e explicitly as a finite set

Corollary 4. Let (~ = Z[0] be the ring of integers of an imaginary number
field K of discriminant d  -4. Let h E FN and suppose Q(j) C Q(h) .
Then

h(B) is a class invariant ~ WN,o acts trivially on h.

Proof. The image of StabQ(h) in GL2(Z/NZ) obtained by reducing coeffients
modulo N is given by

By Corollary 3, the inverse image with respect
to the Artin map on is As is injective, the

equality holds if and only if is contained

in D
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4. WEBER’S MODULAR FUNCTIONS

Weber constructs several functions which provide good candidates for pro-
ducing class invariants for a large number of discriminants. These are mod-
ular functions for which Q(h) is an extension of Q(j) having small degree.
We call f an automorphic form of weight k if it is meromorphic on EF

and satisfies the relation

The normalized Eisenstein series

are automorphic functions of weights 4 and 6, respectively. The Dedekind-q
function

is holomorphic and non-zero for z E H. For the generating matrices S, T E
SL2(Z) given by

the transformation rules

hold. Here, the branch of the square root on the half plane {z E C Re(z) &#x3E;

0} is chosen to be positive on the real axis. The A-function defined by

is automorphic of weight 12 and without poles or zeros on IHI.
Let denote the set of 2 x 2 matrices with integer coefficients and

positive determinant. These matrices act as fractional linear transforma-
tions on the complex upper half plane. The next lemma provides a method
for making F N-invariant functions.

Lemma 5. Let f and 9 be automorphic functions of the same weight, and
let 0152 E be an integral matrix such that = N. Then the

function

is r N -invariant.
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Reference. [2; 11, §2 Theorem 3]. D

Applying lemma 5 in the case a = (10), we can recover the well-known
fact that the j-invariant

is invariant under f1 = SL2(Z). As A = r¡24 is a 24th power, the above

expressions for j show that one can extract holomorphic roots f and
j - 123. The resulting Weber functions

are no longer SL2(Z)-invariant. Under S and T they transform as

from which one deduces that q2 is r3-invariant and that -y3 is r2-invariant .
The function values of,2 and q3 are only moderately smaller than the

j-function. Better results can be obtained by applying lemma 5 to quotients
of A. One can then extract holomorphic roots of higher power.
The functions

are of level 2 and have rational Fourier coefficients. They are the distinct
roots of (X - 16)3 - jX. As we have A = r~24, we can extract holomorphic
24th roots to obtain the Weber-f functions

These Weber functions have considerably smaller values than j, but they
also have higher level and generate extensions of higher degree over Q(j) .
It follows from the product expansion (7) for y(z) that each of the functions
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f, fi, and J2. f2 have rational Fourier expansions. From the transformation
rules (8) for q(z) we obtain

One deduces that f, f, and f2 are contained in F48 . Taking suitable powers of
Weber’s functions, one obtains various modular functions of level dividing
48. For example, the functions

are contained in ~( f 8 , f 8, f~). Thus we note that both y3 and q2 have Fourier
coefficients in Q, and in particular we have y3 E F2 and 72 E F3.

Let K be an imaginary quadratic number field and suppose h E J’. The class
invariants h(B) E R which arise from real function values are particularly
convenient because their minimum polynomials satisfy

Namely, when we embed the algebraic closure Q in C, the generator of

Gal(K/Q) is obtained by restricting complex conjugation to K. Thus if
Q E Aut(C) denotes complex conjugation and h(B) = is real, then
the polynomial

is invariant under Gal(K/Q) .
The product expansion (7) and the expressions (10) and (12) imply that

the functions f, fl, f2, 1’3 and q2 all take on real values along the imaginary
axis in H. As y2 has Fourier expansion in Q( (q 3)), 1 we also note when z E H
has real part R(z) c 1 - Z, then the function value -y2 (z) is real.
It is difficult to produce modular functions of small degree over Q( j) when
the level N is not divisible by 2 or 3. The reason for this is group theoretical.
For p &#x3E; 5 the group

is simple. Weber shows that any subgroup of has index
at least p, and that a subgroup of index exactly p can only occur in the
cases p = 5,7,11.

For the smallest example p = 5, Weber constructs modular functions
Wi E F5 with i = 0, ... , 4 such that Q( j) C is an extension of degree



55

5. These are known as Weber’s resolvents of level and degree 5. For Z =

0, ... , 4, let ci be an integer such that

Define the functions
,

Then the functions
1

are in F5. They are the five distinct roots of (X + 3)3 (X 2 + 11X + 64) - j E
Fi [X] .
The action E G5 induced by Qd : (5 e ~5 on the Fourier coeffi-

cients of w2 is given by

Observe that the function wo is G5-invariant and thus has Fourier expansion
in Q((~5)). In particular, if z E H satisfies R(z) ~ ~-Z, then the function
value is real. From (8), one derives the action of the generators S and
T for SL2(Z)

Reference. [7; §34, §54 and §83].

5. COMPUTATION OF W N,O AND ITS ACTION ON F~r
In this section we collect a few remarks of a practical nature with regard to
computing and the explicit action of WN,g on FN.

It is well known that every E SL2(Z) can be written as
an element of (8, T). For u e let uN E M2(Z/NZ) denote the
matrix obtained by reducing coefficients modulo N. If in particular, N =
p’’ is a prime power, we have the following formula for 
SL2(Z /NZ) as an element of  &#x3E;.

Lemma 6. Let N = P’~ be a prime Power and E so

that either a or c is invertible modulo N. If (c, N) = 1 let y - (1 + a). c-l
mod N. 
has the decomposition
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Proof. If (c, N) = 1 note that

Left multiplication by appropriate powers of and TN quickly produces
a triangular matrix, which is some power of TN . In the other case of

(a, N) - 1, the same argument applies to ,S’. (~ ~) = ( -~ D

The factorization formula in Lemma 6 makes it convenient to calculate the
action of on some function h E FN in the case that N is a prime
power. If N and M are relative prime integers then for h E we will

use the Chinese remainder theorem to we lift the action of W N , 8 to FNM
so that W N,8 x W N M,8 as groups of automorphisms of FNM.
In sections 8, 9 and 10 we need to determine whether the entire matrix
group acts trivially on some given function h E FN . One could ignore
the group structure completely and calculate the action of every element of

given by the list (6). However, it is often less cumbersome to first find
generators for W N,8.

For 0 = 7 9, the groups are isomorphic. Suppose 0
and T are imaginary quadratic algebraic integers. Then the description (6)
of shows

Even if the coefficients of f~ and f;Q are not congruent modulo N we can
often use the following lemma to determine generators for WN,T from given
generators for 

Lemma 7. Suppose u E MZ (7G) such that UN E GL2 (Z/NZ). If both 0 and
u(0) are imaginary quadratic algebraic integers then is the conjugate
group 

-

Proof. Regarding go as a function on IIp observe that

Example 8. Take N = 16 and suppose m E Z and

The congruence

give,s
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Example 9. Again, take N = 16 and now suppose m E Z is odd with

The congruence

gives

6. CLASS INVARIANTS FOR 1’3 AND 1’2

We illustrate our technique by recovering some classical results due to We-
ber.

Theorem 10. Let K be an imaginary quadratic number field of discrimi-
nant d, with d  -4. = generate the ring of integers C7 of K.
We have

is a class invariant

is a class invariant with

If 2 divides d, then ~y3 (B) generates the ray class field of conductor 2 over
K. If 3 divides d, then ~y2(B) generates the ray class field of conductor 3
over K.

Proof. Consider the assertion for 73. If 2 splits in C~ then (C~/2C~)* is

trivial. If 2 is inert in C~ then ((9/2C~ ~ Z/3Z. It follows that the length
of the W2,o-orbit of q3 divides 3. Because 1’l = j - 12~ we know [~(73(~)) :
K(j(e))~  2 and conclude that ~y3(9) is a class invariant.

If d is divisible by 2 then Z/2Z. If f~ = X2 + BX + C is the
minimum polynomial for 0 then W2,o is generated by

Both of these matrices act on

is a group of order 2, we have KC"Y3(O)) = K(F2(B)). In other words, ’3(0)
generates the ray class field of conductor 2.

Consider the assertion for ~2- In the case B - 0 mod 3 we find the genera-
tors for given in the table below.
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Using the factorization formula from Lemma 6 and the transformation
rules (9), we calculate the action of each of these generators on (3 and 12.
In the following table, the second column indicates the discriminants d for
which a matrix in the first column occurs as a generator for 

Observe that if d is not divisible by 3 then -y2 (B) is a class invariant. We

have E Q[X] because the function value y2(8) is real.
In the case that 3 divides d, we see that W3,0 does not fix ~3 72 (9) for

any integer m E Z. The group W3,B/{~1~ has order 3 so we conclude that
q2(0) generates the ray class field K(F3(0)) of conductor 3 over K. Thus
the statement of the theorem holds in the case B = 0 mod 3.

In the general case, if 9 = )" , then generates CO., 
- 

2 7 2 
.

The transformation rules (8) for q2 imply

In particular, (~72 (~) = -y2(B - B) is a class invariant if and only if 3 does
not divide d, and the proposition holds for all integers B e Z. D

7. CLASS INVARIANTS FOR THE RESOLVENTS Wo AND w3 OF LEVEL 5

If 5 is inert or if 5 is ramified in 0 = then W5,o fails to stabilize any
of the resolvents Wi, i = 0, ... , r of level and degree 5. In the split case we
have the following:

Proposition 11. Let K be an imaginary quadratic number field of discrim-
inant d - ::i:1 mod 5 with d  -4. Let C~ = be the ring of integers of
K with
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The following statements hold:

is a class invariant with

is a class invariant with

Proof. If d - :t:1 mod 5, then W5,o has structure (
Let

be the minimum polynomial for 0. We find generators for as the

coefficients (B, C) range over the possible values. We then determine the
action of these matrices on Q(wo, ~2,~3, w4 ) . The second column (B, C)
in the table below indicates the 0 for which a matrix in the first column

appears as a generator for The image of wi, for i = 0, ... , 4 with
respect to the action of these matrices is given in the remaining columns.

Observe that oo is invariant under in the case that d = 0 mod 4, and
that w3 is W5,0-invariant in the case that d = 1 mod 4.

The function wo takes on real values at z E H with 2 ~ Z and the
transformation rules (13) give

In particular, if d - 0 mod 4 we have In the case d - 1 mod 4

we have 03 (0) = wo(0 + 3) E R. D

8. CLASS INVARIANTS FOR THE WEBER-f FUNCTIONS

We now determine class invariants for powers of the Weber-f functions by
computing the explicit action of W3,9 x W16,(J on 
as the coefficients of the minimum polynomial f~ E Z[X] range through
Z/48Z. In doing so we recover several results from ~1~, [4], and [7].
We lift the action of GL2(Z/3Z) to by the Chinese remainder the-

orem. First we need to embed the generators S3,T3 E in
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SL2(Z/482) as

Define the action of S3 and T3 on functions h E F48 as
- - - - - .

G3, let Ud be the action on F48 obtained by lifting the auto-
morphism of ~(~4$) determined by (3 H (16 ~ (16 . We define

The explicit action of GL2 (Z /32) on Q((48, f, fn f2) is given by

Proposition 12. = generate the imaginary quadratic order
of fundamental discriminant d  -4. The group GL2(Z/3Z) acts trivially
on Furthermore we have

Proof. By the transformation rules (14) every matrix in GL2(Z/3Z) acts
trivially on Q( f3 , ff , f~). °

Suppose that 3 divides B. We use the generators of W3,(J found in sec-
tion 8 to compute the action of W3,o on Q((48, f, fu f2)’ The second column
in the table below indicates the discriminants d for which a matrix in the

first column appears as a generator for W16,(J. The images of ~3, f, fl, and
f2 respectively are displayed in the remaining columns.

From the table it is clear that if 3 does not divide d then W3,B acts trivially
on Q(j, ji , j2) . Therefore the statement of the proposition holds in the case
that B is divisible by 3.
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is again a generator of C~. The transformation rules (14) give

and we note

Since

W3,O-16B acts trivially on h O W3,g acts trivially on h o T3 B
holds for any function h E F4g, the proposition holds for all integers B E Z.

D

We lift the action of GL2(Z/16Z) to F48. First we embed Sl6,Tls E
SL2(Z/16Z) in SL2(Z/48Z) according to the Chinese remainder theorem

and define the action of Sl6 and T16 on h E F48 as

define

where ad is the action on F48 obtained by lifting the automorphism of
Q((48) determined by as (3 (3 and (16 l--t (f6. The GL2(Z /16Z)-action
on Q( (48, J,fij2) is given by

In the remainder of this section we calculate the action of W16,0 on
Q((48, f, fl, f2) as the discriminant of 0 = Z [0] ranges through the funda-
mental imaginary quadratic discriminants d. The cases where 2 is split,
inert, or ramified in will be dealt with separately. In each instance our
goal is to find W16 g-invariant functions in Q((48, f, fl, f2) which fulfil the
additional condition Q( j) C Q(h) .
We begin with the split case.
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Proposition 13. Let C~ be an imaginary quadratic order of fundamental
discriminant d  -4 and let 0 = We have

Proof. If d - 1 mod 8 then has structure (C~/16(~)* - (Z/4Z x
~G/27G)2. It turns out that the matrix group W16,0 is determined by the
coefficients of f~ modulo 8.
We calculate the action of generators for W16,Ø as ranges over Z/8Z.

The second column indicates the discriminants d for which a matrix in the

first column appears as a generator for W16,g.

Observe that each the automorphisms in the above table fixes (ï65f2. D

We continue with the inert case.

In the case that C~ is an imaginary quadratic order of discriminant d -
5 mod 8, we have group structure ((~/16C~)* = Z/8Z x Z/4Z x Z/6Z. The
matrix group W16,6 does not fix any of the functions f24, fî4, or f~4.
One can of course determine functions h E Q((48, f, f1, f2) which are in-

variant under W16,0 but which might not satsify the extra condition Q(j) C
Q( h). One could then use Lemma 18 of Section 11 to determine whether

the function value h(O) nonetheless generates the Hilbert class field over K.
We will not do this in this paper.

For d - 5 mod 8, we choose the generator 0 = C O. The following
table provides the action of the generators for W16,Ø on ~(~4a~ f, fl, f2).
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We now consider the case when 2 ramifies in 0 = 

Proposition 14. Let C~ be an imaginary quadratic order of fundamental
discriminant d = -4m  -4 with generator 0 = The following
functions are Wls,e-invariant.

Proof. When d is even, ((~/16C~)* is a group of order 27. The group struc-
tures for W16 g which arise are

We first determine generators for W16,Ø in the case that m is even and then
compute the action on of these generators on The second

column of the table indicates the m for which a matrix occurs as a generator
for W16,Ø.
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We see that all of the matrices listed in the table above act trivially on
fi. It’s easy to verify that we can do a little better and provide a W16,O-
invariant function by using some suitable element of (16 ) to normalize j( .
Since f 1 takes on real values along the imaginary axis of the complex upper
half plane, we choose the normalizations

I

These are both W16,0-invariant and real-valued at 8.

We now perform a similar calculation when m is odd.

Here we see that each of the automorphisms in the above table stabilizes f4~
In the case of m == 1 mod 8 we can actually do a little better by normalizing
f2 using some suitable element of Q(16). The function J2. f2 is W16,O-
invariant and real-valued at 0. D

Theorem 15. Let K be an imaginary quadratic numbers field of discrimi-
nant d  -4 and let 0 = If d - 1 mod 8 then we have

is a class invariant

is a class invariant

In either case, the given class invariants is also invariant under Gal(K/Q) .
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Proof. Apply Propositions 12 and 13 to (3(ï65f2 = ~48 f2. Note from defini-
tions (7) and (10) that if z e IHf with J22(z) = -~, then we have (48j2(z) e R.
D

Theorem 16 (2 ramified). Let K be an imaginary quadratic number field
of discriminant d = -4rrt  -4 and let 0 = The following is a table
of class invariants.

The modular function values given above are also invariant under Gal(K/Q).

Proof. Apply Proposition 12 and 14. D

9. SHIMURA’S RECIPROCITY LAW

In this section we discuss a modification of the exact sequence (1)

so that one can describe all of Aut(F) instead of only Gal(F / Fl). This

allows the Shimura reciprocity law to be stated in its full generality, which
we will need in Section 11.

Let denote the ring of finite rational adeles. Here, the

restricted product is taken with respect to Zp C Qp. We write 

fl) GL2 (Qp), where the restricted product is taken with respect to GL2 (Zp)
C GL2(Qp). We consider GL2(Z) C to be a subgroup by means
of the embedding

p p

Let denote the group of rational 2 x 2 matrices with positive de-
terminant. Embedding Q along the diagonal of Ab we view c

to be a subgroup. In particular, we identify Q* with the scalar
matrices Q* C GL2(Q) c GL2(Ab).

One can show that every x E can be written as

This decomposition is not unique since SL2 (Z) = GL2(Z) None-

theless, the decomposition x, = u. a determines a group action of GL2 (Af )
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on .~ given by h’ = h’ oa. Here, u E GL2(Z) acts via (1) and a E GLt(Q)
acts as a transformation on the complex upper half plane.

Theorem 17 (Shimura exact sequence). The sequence

is exact.

Reference. [5; Theorem 6.23].
Recall the from (5) the embedding

and consider the diagram

Theorem 18 (Shimura reciprocity law). Let be the ring of integers of
an imaginary quadratic number field K with 0 in the complex upper half
plane. For h E .~ and x E Jk we have

If G C is an open subgroup with fixed field F C T, then the

subgroup of JK that acts trivially on K(F(9)) with respect to the Artin map
is generated by K* and 9¡¡1(G).
Reference. [5; Theorem 6.31, Proposition 6.33]. 0

10. ACTION OF THE CLASS GROUP ON CLASS INVARIANTS

Let K be the imaginary quadratic number field of discriminant d with ring
of integers 0 = 7L(B~. For an ideal a C 0 the formula

gives the action of the Artin symbol for a on the class group CI(O) -
Every primitive reduced quadratic form of discriminant d corresponds

uniquely with an ideal class in If (a, b, c~ is a primitive form of
discriminant d then for T = the Z-lattice L = [a, aT] is an integral
0-idea. The Galois action of the Artin symbol for [a, -b, c] on K( j (0) ) /K
is given by
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Suppose h E J’ is a modular function for which h(B) E K(j(B)). In this
section we give a formula

such that

We begin by producing an id6le Zr E JK such that the Galois action of the
Artin symbol [zr, K] satisfies

If p E Z is prime, let Lp = L 0z Zp so that Lp c Op. We need to produce
a finite idele (zp)p E KP such that

holds. It turns out that one can always choose zp to be among {a, aT, aT-a}.
Lemma 19. Let K be the irnaginary quadratic number field of discriminant
d with ring of integers C~ = 7~(9~. If [a, b, c] is a primitive quadratic form
of discrirrainant d let T = and L = [a, aT]. For every prime p E Z
define zp E L as

For zT = (zp)p E JK the Galois action of the Artin symbol [ZT’ K] satisfies

Proof. The inclusion zpop C Lp follows from zp E L. Note that has
index ~C~ : L] = a. For every p E Z we compute

and since (a, b, c) = 1, one obtains I From

we conclude zpC7p = Lp.
Given an imaginary quadratic discriminant d, fix
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and given [a, b, cJ, let z be as stated in Lemma 19. For a class invariant

~(9), the Shimura reciprocity law states

Let M E G Lt (Q) satisfy . Explicitly, one computes

The action of via (15) gives

component of u, at p. Then the determinant of

is given by

"’"

Writing out up for d - 0 mod 4, one obtains

On the other hand for d - 1 mod 4, we get

We observe that in either case, up E GL2 (Zp) and we conclude Ur E GL2(Z).
We have demonstrated the following statement:
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Lemma 20. Let Z[0] be the ring of integers of an imaginary quadratic num-
ber field K of discriminant d and let [a, b, c] be a primitive quadratic form
of discriminant d. Define

, be defined according to the local formulas
if d is even or (17) if d is odd. It follows

for any h E T such that ,

11. FORMULAS OF MORAIN AND ZAGIER

We can use Theorem 20 to verify some conjectural formulas of Morain and
Zagier regarding conjugates of class invariants arising from some classical
functions. The following proposition is Morain’s Conjecture 1 from [3].

Proposition 21. Let d - 1 mod 4 be an imaginary quadratic discriminant
and = The action of the class on 73 (B) is given by the
formula

where [a, b, c] is a primtive quadratic form of discriminant d and

Proof. By Theorem 20, the matrix M E GL2(Z/2Z) given by

satisfies

We decompose M in terms of S and T modulo 2



70

Using (9), we calculate

A routine check shows that in each case, the above formulas are equivalent
to the formula given by the proposition. D

We prove Zagier and Yui’s conjectural formula (2?) regarding the conjugates
of the class invariant (48j2(0) from [8].

Proposition 22. SuPpose d - 1 mod 8 is an imaginary quadratic discrim-
inant such that 0 mod 3. We let B = Let [a, b, c] be a primitive
quadratic form of discriminant d and let T = -btv’d. The action of the
class group on ~48f2(B) is given by the formula

Proof. Theorem 20 gives a matrix M E GL2(Z/48Z) that satisfies

The residue classes M3 E GL2(Z/3Z) and M16 E GL2(Z/16Z) of M are
respectively

and

We write Then

gives the action of M on on 4gf2 First we compute (32 M3 = &#x3E;3j2 using
(14). Here, ~3 is the third root of unity
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In a similar fashion, we find

where

The expressions (19) for M16 have been simplified using the condition d =
1 mod 8. We conclude

We need to check that the formulas in (18) and (20) coincide in the case
3 ~’ d and d - 1 mod 8. The condition d ~ 0 mod 3 implies

and we easily check

Similarly, under the restriction d - 1 mod 8, one verifies that

holds.
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