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Substitution invariant Sturmian bisequences

par BRUNO PARVAIX

RESUME. Les suites sturmiennes indexées sur Z, de pente a et
d’intercept p, sont laissées fixes par une substitution non triviale
si et seulement si o est un nombre de Sturm et p appartient 3
Q(a). On remarque aussi que les suites de Beatty permettent de
définir des partitions de ’ensemble des entiers relatifs.

ABSTRACT. We prove that a Sturmian bisequence, with slope «
and intercept p, is fixed by some non-trivial substitution if and
only if a is a Sturm number and p belongs to Q(a). We also
detail a complementary system of integers connected with Beatty
bisequences.

1. INTRODUCTION

Beatty sequences (|na + p|)nen and ([na + p])nen have been studied
extensively. Many papers deal with the case p = 0, see [1, 9, 10, 14, 15, 28,
29]. The inhomogeneous case is also discussed from several points of view [6,
7, 16, 20, 21, 22]. By the way, this Note provides a new contribution about
complementary systems of integers. This problem arose, in various forms,
in the works of A. S. Fraenkel [13], R. L. Graham [17] and R. Tijdeman
[30, 31].

A natural way to examine Beatty sequences is to consider the class of
Sturmian words defined by G. A. Hedlund and M. Morse in the context
of topological dynamics, see [25, 26]. For further details, both [3] and [§]
contain extensive lists of references. Here we are especially interested in
substitution invariant Sturmian words. In [27] we elicited properties about
some right-sided infinite Sturmian words the intercept of which is a particu-
lar homography of the slope. We therefore obtained a partial generalization
of Crisp et al.’s main Theorem concerning cutting sequences [12]. The aim
of this Note is the full characterization of Sturmian bisequences which are
fixed by some non-trivial substitution.
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2. DEFINITIONS AND NOTATIONS

Let N = {0,1,2,...} and N~ = {-1,-2,...}. Let Z = N" UN and
N* = N\ {0}. We consider the sets Zgs = {|kB+ 6] | Kk € Z} and
245 ={[kB+6]| k € Z}, with B irrational and § real. As usual |z] is the

integer part and [z] the ceiling of any real number z. Let 755 and 7 5 be
the generating bisequences of Zg s and Zb,éz we set

[ lifne Zg; ' _ [ lifneZ;
as(n) = { 0 otherwise 224 mpe(n) = 0 otherwise

for each n € Z. We say that two subsets of Z are a complementary system
if they form a partition of Z.

Let A* be the free monoid generated by the two-letter alphabet A =
{0,1}. The set of right-sided infinite words is denoted by A% and “A is
the set of left-sided infinite words. A bisequence is a doubly infinite word
and “A¥ is the set of bisequences over A. We say that the bisequences
. V_2U_10V1V2 ... and ...v vl ujvivh ... are equal if there exists an
integer k € Z such that v; = v, for each ¢ € Z. In this event, we note
e V_QU_1UUIV2 - L. v Ul upvl vy .

Let a be irrational and p be real. Consider the bisequences z, , and z;’p
defined by

Zap(n) = L(n + D)o+ p] — [na+p] - [a]
and
2a,5(n) = [(n + 1a+p] — [na +p] — o]

for each n € Z. A bisequence  is said to be Sturmian if z ~ 2,y or z =~ 2z, ,

for a suitable choice of a and p. It is clear that z4,(n) = 2ze+1,(n) and
Zg,p(N) = Zg41 ,(n) for each n € Z, so without loss of generality, we may
take 0 < a < 1. Finally, a right-sided infinite word y is Sturmian if there
exist a Sturmian bisequence z and a left-sided infinite word %’ such that
z ~ y'y. Noting that Sturmian words are intimately related to straight
lines in the plane, the number « is the slope and p the intercept.

A substitution f is a map from A* into itself such that f(uu') = f(u)f(u)
for all finite words v and u’. Let w = wowiwsy... be a right-sided infi-
nite word. Let Inv be the operator defined by Inv(w) = ...wewiwy and
Inv(Inv(w)) = w. As usual, we set f(w) = f(wpo)f(w1)f(wz)... and
f(Inv(w)) = ... f(wy)f(wy)f(wp). The image of ...v_gv_1v9v1v2... un-
der fis ... f(v_2)f(v=1)f(vo)f(v1)f(v2)... A one-sided infinite word y is
fixed by f if f(y) = y, and a bisequence z is fixed by f if f(z) ~ z.

Moreover a substitution f is Sturmian if f(w) is a right-sided infinite
Sturmian word whenever w is. F. Mignosi and P. Séébold proved that a
substitution f is Sturmian if and only if f is a composition of the three
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01 001 .. 0~—10
150°%% 1m0 M9 1,0
and number [24]. A substitution f is locally Sturmian if there exists a
right-sided infinite Sturmian word w such that f(w) is Sturmian. J. Berstel
and P. Séébold stated that any locally Sturmian substitution is actually
Sturmian (4, 5].

Furthermore a substitution is non-trivial if it differs from the identical
transformation over A. In [27] we proved that if a right-sided infinite Stur-
mian word is fixed by some non-trivial substitution then its slope «, with
0 < a < 1, is a Sturm number, that is, there exists an integer n > 2 such
that:

a=1[0,1+kn, kn_1,-.., ko, k1 + kn | with (k1,ks) € N?\ {(0,0)}

substitutions E : in any order

or

a=1[0,1,kn, kn_1,--., k2 k1 + kn | with (ky, k) € N*2
where the partial quotients ks,...,k,—1 belong to N*. Remark that these
numbers were introduced, in a slightly different way, by Crisp et al. [12].

3. RESULTS

As usual, for any quadratic irrational o, let Q(a) = {p+qa | (p,q) € Q*}
be the splitting field of a over Q. The main result of this Note is the full
characterization of Sturmian bisequences which are invariant under some
non-trivial substitution:

Theorem 1. Let z be a Sturmian bisequence with slope 0 < o < 1. The
word x is fized by some non-trivial substitution if and only if o is a Sturm
number and p belongs to Q(a).

In [27], we computed the slope and the intercept of f(z) for any Sturmian
substitution f and any right-sided infinite Sturmian word z. Lemma 2 is a
translation of these formulas for Sturmian bisequences:

Lemma 2. Let a be irrational with 0 < o < 1 and let p be real. Then

E(za»P) - 21 a,l—p and ‘p(za p) - zl —a l-p — @(za,p)-

—a’2—a

Moreover

E( ,p) = Zl-a,1-p and L,O( ap) E21la 1-p = @(zfx,p)'

—a’2—a

The proof of these properties requires a careful study of generating bise-
quences of Beatty bisequences:

Lemma 3. Let 8 > 1 be irrational and § be real. For each n € Z, we have

r55(n) = 2\ _s(n) and Tb,5—1(") =z1 =s(n).
BB BB
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As an immediate corollary, we can characterize the occurrences of a letter
in any Sturmian bisequence. More precisely we remark that

{(n€Z|zy(n)=1}= l_uland{nEZIz' n)=1}=2
Y

>

~2|:-

for each + irrational with 0 < v < 1 and v real. This result is a general-
ization of earlier work of A. S. Fraenkel, M. Mushkin and U. Tassa dealing
with the homogeneous case [15]. From Lemma 3 we also obtain a property
about complementary systems of integers:

Proposition 4. Let 8 > 1 be irrational and 6 be real. Then Zgs; and
Z’E%’ =5 as well as Z'g5 and Z ra are complementary systems
of integers.

s
p—pp-1tl’

4. PROOFS

First of all, we examine the generating bisequences of Beatty bisequences:

Proof of Lemma 3. Let n € Z. If 2/, _s;(n) = 1 we state that

5B

n_d_ [__ﬂ [n“_é]_lwi_é

B B~ I8 B g B B B
thusn<[5—-g—]ﬂ+5<n+l Next comes H%—%]ﬂ+6j=nand
rﬁ,g(n)-—-l.

Conversely, if r3 5(n) = 1 there exists an integer k € Z such that |kS + ¢
= n. We therefore observe that

n 6 n 6 n+1l 0 n+1l 6
55 -1<5-ssr<"5 555 ]
0 n+l 0
It follows that B_B]Sk<[ 3 —E] andzé,%;(n)—l

The truth of the first statement is now clear, and we turn to the second

part of the proof. Let n € Z. If ! _Ts(n) =1 then

E_£<lﬁ_£}+l_ln+l_éj<n+1_£
B B B - B8 B

hence we have

that is H—g—l——ﬁ—}ﬂﬂ—d—ll = n. This implies that r5;_,(n) = 1.
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Conversely, if T/B,a—l n)

( 1 then there exists k € Z such that [k8+d—1] =
n. Thus we check z;
B

—s(n) =1 since
B

El

a

In order to describe the complementary system of integers, connected with
a Beatty bisequence, we need to introduce the following Lemma:

Lemma 5. Let 0 < o < 1 be irrationnal and p be real. Then E(zq4,) ~
2—q1-p and E(zy ;) ~ 21-01-p-

Proof. We only detail the proof concerning the first result. Let n € Z. Since

the relation |a] = —[—a] holds for each real number a, we verify
Z_a1-p(n) = 1= ([—na—pl - [=(n+1)a—p]) = 1 - 2a,(n) = E(2q,p(n))-
a
Proof of Proposition 4. Let n € Z. From Lemma 3, we remark that
ne Zgs e rﬁ,g(n) =1% Z,L :é(n) =1
BB
Then Lemma 5 implies that
nEZga@zEp_H(n)=0¢>7"ﬁ B+S (n)=0¢>7‘lﬁ 5 (n)=0
’ BB A1 A1 p-1 -1

In other words, we get

neZﬁ’(s@ngZ’_L s 1
B-1""B-1"
Furthermore, since 8 > 1 we can affirm that any integer occurs at most one
time in Zg 5. Clearly this property also holds for Z’ , 5y In short, the

P17 B-1"
sets Zg5 and Z', s __, are a complementary system of integers. The
B-1""B-1"

part of proof concerning Z’g 5 and Z —s . is similar in all respects. O
1

B
ﬁ_l,ﬂ_

From now on we study properties of substitution invariant Sturmian bise-
quences.

Proof of Lemma 2.  Assume first that 0 < p < 1. We split the bisequence
Za,p into the words

w = Za,p(o)za,p(l) .. Za,p(m) e e A

and
w = ... zap(—m) ... 2a,p(—2)2Za,p(—1) € “A.
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Let o(w) = yoy1 ... with y; € Afor j =0,1,... We observe that 59 =0 =
2o 1-,(0). Let ngy1 be the (¢ + 1)-th occurrence of the letter 0 in the

2—a’2-a

word ¢(w) for each ¢ > 1. We easily check:

g—-1

ngr1 = (q+ ) (1= Zap(i)) +1) =1 =2q - [ga + p| = [¢(2 — a) — p].
1=0

For each n > 1 we state that:
yn=0 & JgeN n=[q2-a)-)p]
& 3q€Z n=1[q(2-a)-p]
& 14 ,n)=1

& 21 pi(n)=1

T—aia
From Lemma 5, we prove that y, = 0 if and only if 2| _, ,_,(n) = 0. In
short we obtain p(w) = (2_o 1=, (n))nen. To computé_;,(g’a), we remark
that e
w' = zg0-p(m) . 251 p(1) 24,1 ,(0).
Indeed, for each n € N* it is clear that
zap(=n) = [(=n+Da+p) - [—na+p| - |af
= —[(n—1Da—pl+[no-p] - |
hence

Za,p(—n) = Z&,—p(n -1)= (,x,l—p(n - 1).
If we write w' = ...ap ...ajap over “A, we get
ow') =...0117%  g1l-e1p1l-ao
because (0) = 01 and (1) = 0. We can deduce that
Inv(p(w')) = 117%0117%10... 117970 ... = B(agay ...am...)

and p(w') = Inv(p((2,1_,(n))nen)). Much as above, we verify
W((Z&,l—p(n))neN) = (z%:—‘;,?_@;(n))neN-

Moreover we observe that @¢(a) = 11720 and ¢(a) = 01! for each a €
{0,1}. Next comes p(u) = 0@(u) for any u € A, and consequently
¢(w') = Inv((21-a 1-ats (n))nen). Bearing in mind that z,, ~ w'w, and
2—a’ 2—a
noting that z1-a 1-a+,(n) = 2\_4 1-,(—n — 1) for each n € N, we finally
2—a’2

2—a’ 2-a 5 L e

obtain ¢(zq,,) ~ 214 1-,. To conclude, we must prove that the relation

2—a'2—a
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o(za,p+k) = z’_ 1—(o4%) holds for each k € Z. Since z;x,6+1 ~ Zb,é ~ zf@,6+ﬂ

2:2 } 22—«
for arbitrarily 3 irrational and § real, we directly claim:
Zloa 1=(eth) T Ploa 1-(tk) o ploa = Zlze 100 = P(Za,0) = P(Zaprk)-
a 2—a

2—a’ 2~ 2—a’ 2- - 2—a’2—a
The computation of ¢(z4 ,+k) becomes trivial because we have @(v) =~ ¢(v)

for each v € “A¥. Finally, the part of proof concerning Z«'x, o 18 similar in all
respects. [

For each Sturmian substitution f it is therefore clear that f(z) is a Sturmian
bisequence whenever z is. Now we turn to the proof of Theorem 1. Some
preliminaries are required. Let x and y be two Sturmian bisequences. Let
f be a substitution such that f(z) ~ y. There exist a word =’ € “A
and a right-sided infinite Sturmian word z” such that z ~ z'z”. Since
we have y ~ f(z')f(z"), the word f(z") is a right-sided infinite Sturmian
word. Thus f is locally Sturmian and consequently f belongs to the monoid
{E, 0,0}

Let us recall some basic properties about Sturmian bisequences. For any
irrational o we set Z + Za = {a + ba | (a,b) € Z?}. Let A be the set
of couples (3,0) with 0 < 8 < 1 irrational and 0 real. We also set U =
{(B,0) e A|VkeZ kB+6 ¢Z}. Let (a,p) € A and (¢, p') € A. We
have zq,p ~ zy p if and only if @ = o/ and p — p' € Z + Za, see [26]. A
similar result can be stated from the relation 2, , ~ 2, - Furthermore,
if 2ap = 2, ,y then (o, p) belongs to U and 24, =~ 2 ,. In short, if two
Sturmian bisequences are equal then they have the same slope in ]0,1].
Bearing these remarks in mind, we therefore obtain:

Lemma 6. Let x be a Sturmian bisequence with slope 0 < a < 1. If x 1is
invariant under some non-trivial substitution then « is a Sturm number.

Proof (Sketch). Assume that there exists a non-trivial substitution f such
that f(z) ~ z. Then f belongs to {E,,$}*. Let 8 €10, 1] be the slope of
f(z) which is obtained by Lemma 2. Clearly this computation can be done
regardless of intercepts, and there exists an homography h, with integer
coefficients, such that 8 = h(a). Therefore it only remains to solve the
equation « = h(a). In this context, we have yet observed that « is a Sturm
number: for a full characterization of the homographies connected with
Sturmian substitutions, see the proof of Theorem 1in [27]. O

In order to prove our main result, we add here a new necessary condition-
of invariance:

Lemma 7. Let x be a Sturmian bisequence, with slope o and intercept p.
If z is invariant under some non-trivial substitution then p belongs to Q(«).
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Proof. Assume, without loss of generality, that 0 < a@ < 1. Let f be a
non-trivial substitution such that f(z) ~ z. Lemma 6 implies that « is a
Sturm number. Since « is a quadratic irrational, the image of o under any
homography, with integer coefficients, belongs to Q(a). Using Lemma 2, we
compute the image of z under f. Let 3 be the slope and § be the intercept
we obtain. It is clear that 8 € Q(a) and 0 < § < 1. We also remark that
d € Q(a)+pQ(a). Since f(x) ~ z, we must check = aand §—p € Z+Za.
Next comes p € Q(a). O

Combining Lemmas 6 and 7, we establish the “only if part" of Theorem 1.
Now we turn to the proof of the “if part™ the idea is to use some properties
that we reported in [27]. First of all, a technical result concerning Sturmian
continuations is required [26].

Definition 8 (cf. [26]). Let y be a right-sided infinite Sturmian word. A
Sturmian continuation of y is a left-sided infinite word 3’ such that y'y is a
Sturmian bisequence.

Lemma 9 (cf. [26]). Let a be irrational with0 < a < 1 and p be real. Each
right-sided infinite Sturmian word y, with slope o and intercept p, admits
at least one and at most two Sturmian continuations. In the case where y
admits different Sturmian continuations there exist two integers ky € Z and
ko € N* such that p = k1 + ksa.

Definition 10 (cf. [27]). For each m > 1, we set
C'(m)={(a,b) €22|0<a+b<m, 0<a<m}\{(m0)}
A right-sided infinite Sturmian word y is said to be permitted if there exist

an irrational o with 0 < a < 1, an integer m > 1 and a couple of integers
(a,b) € C'(m) such that y = (2, 2 4 5 4(n))neN o y = (2] o, 5 ())neN.

m

Proposition 11 (cf.[27]). Let a be a Sturm number. Each permitted word
y, with slope «, is invariant under some non-trivial substitution.

Proof of Theorem 1. Let a be a Sturm number and p € Q(«). Let = be a
Sturmian bisequence such that z ~ z, ,. Clearly there exists (a,b,n) € Z3
with n > 1 such that p = 9‘;& Moreover, since zq 41 =~ 20,6 =~ Za,6+a
for each real d, we actually have z ~ Z,, @ (mod n)+(b (mod ) - As usual, the

residue ¢ (mod n) is the integer j, with 0 < j < n, such that there exists
an integer k € Z satisfying j = ¢ + kn. For each real J we set

2} 5= 20,5(0)2a,5(1) ... and ... za6(=2)za6(—1) = 2 5.

We first assume that a (mod n) + b (mod n) < n. Then

— 7t
Y= za a (mod n)+(b  (mod n))ax

n
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is a right-sided infinite permitted word. From Proposition 11, it follows
that there exists a non-trivial Sturmian substitution f such that f(y) = y.
Noting that

r = za a (mod n)+(b (mod n))a
’ n
~ o +
= za a (mod n)+(b (mod n))a Za a (mod n)+(b (mod n))a
) n ? n

we have

f(.’l?) = f(z;,a. (mod n)+(b (mod n))a )Z: a (mod n)+(b (mod n))a

n

Hence the word y admits Z @ (mod n)+(b (mod n))a and f( a_(mod m)+(5 (mod n))a )

as Sturmian contlnuatlons If the relation

f(z; a (mod n)+(b (mod n))a) = Z;’u (mod n)+£lb (mod n))e

’ n

is not valid then Lemma 9 implies that there exists (k1, ko) € 7.2 with ky > 1
such that

d n)+(b (mod _
a (mod n) Sl (mod n))a =k + koav.

In this event, since « is irrational we observe that k2 = 0, which leads to a
contradiction. We therefore obtain f(z) ~ z.

Ifn+1 < a (mod n)+b (mod n) we state that (¢ (mod n), (b (mod n))—n)
belongs to C'(n). Since z =~ 2, & (mod n)+((b (mod m)=m)a We easily verify that

there exists a non-trivial substltutlon g such that 9(z) ~ z.

There are no other possibilities and the truth of the claim is now clear for
the word 2, ,. The proof concerning z;’ , is similar in all respects. O
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