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On the almost Goldbach problem of Linnik

par JIANYA LIU, MING-CHIT LIU, et TIANZE WANG

RÉSUMÉ. On démontre que sous GRH et pour k ~ 200, tout en-
tier pair assez grand est somme de deux nombres premiers impairs
et de k puissances de 2.

ABSTRACT. Under the Generalized Riemann Hypothesis, it is

proved that for any k ~ 200 there is Nk &#x3E; 0 depending on k only
such that every even integer ~ Nk is a sum of two odd primes and
k powers of 2.

1. INTRODUCTION

In 1951 and 1953, Linnik [L1,L2] investigated the following "almost Gold-
bach" representation for even integers N:

where (and throughout) p and v, with or without subscripts, stand for a
prime and a positive integer respectively. He showed that there is a constant
1~ &#x3E; 0 such that every large even integer N can be written as (1.1). This
result was generalized by A.I. Vinogradov [Vi] in several directions. In 1975,
Gallagher [G] considerably simplified the proofs of Linnik and Vinogradov,
and established the following result: For any integer k &#x3E; 2 there is a positive
constant Nk depending on k only, such that for each even integer N &#x3E; Nk,

where rk(N) is the number of representations of N in the form of ( 1.1 ) .
Here log N and 1092 N in (1.2) correspond to the terms p and 2v in ( 1.1 )
respectively.

In the above results of Linnik, Vinogradov, and Gallagher, a numerically
acceptable value for 1~ still remains unspecified. It is therefore not clear
that how many powers of 2 are needed to ensure rk(N) &#x3E; 0. From (1.2)
we see that adding more powers of 2 does not change the constant 2 in
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the main term N log2 N in (1.2) but gives a better error term only.
However, due to the sparsity of the sequence of powers of 2, a desirable error
term needs a large number of them. Furthermore, in view of the Hardy-
Littlewood theorem [HL] on the exceptional set of the Goldbach conjecture,
one may anticipate that even under the Generalized Riemann Hypothesis
(GRH) a small k in (1.1) or (1.2) is not sufficient to give the positiveness of

Recently, the present authors showed that k = 770 is sufficient under
the GRH [LLWI] , and unconditionally k = 54000 is acceptable [LLW2].

The purpose of this paper is to reduce the acceptable value of k to 200
under the GRH. More precisely, we shall prove

Theorem 1. Assume the GRH. For any integer k &#x3E; 200 there exists a

positive constant Nk depending on k only, such that if N &#x3E; Nk is an even

integer then

In particular, each large even integer is a sum of two primes and 200 powers
of 2.

In a letter to Goldbach, Euler asked, and later answered by himself neg-
atively, the problem of representing each sufficiently large odd integer as a
sum of a prime and a power of 2. However, Romanoff [R] showed in 1934
that a positive proportion of the odd integers can be written in this way.
And Gallagher [G] proved that the density of odd integers n, which can be
written as

tends to 1 as k - oo, and from this he deduced his result (1.2) for the
almost Goldbach problem.

Unlike in [LLW1] where we followed the above approach of Gallagher [G],
here we use Linnik’s original idea [LI,L2] (see §4 below), a lemma due to
Kaczorowski-Perelli-Pintz [KPP] and Languasco-Perelli [LP] (see Lemma 1
below), and a well- known result of Chen [C] obtained by sieve methods
(see our Lemma 3).
As usual, cp(n) stands for the Euler function, ti(n) the M6bius function,

and A(n) the von Mangoldt function. Throughout this paper, L always
stands for 1092 N. Let X mod q and Xo mod q denote a Dirichlet character
and the principal character modulo q respectively. The letter C with sub-
scripts denotes absolute constants, and e denotes a positive constant which
is arbitrarily small.

The authors would like to thank the referee for useful comments and

suggestions.
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2. THE MAJOR ARCS OF THE GOLDBACH PROBLEM

Let N be a large integer, and P, Q parameters satisfying

By Dirichlet’s lemma on rational approximation, each
be written in the form

for some positive integers a, q with 1  a  q, (a, q) = 1, and q  Q. We
denote by .M(a, q) the set of a satisfying (2.2), and put

When q  P we call A4 (a, q) a major arc. Note that, by (2.1), all major
arcs are mutually disjoint. Let e(a) = exp(i27ra) and

The purpose of this section is to establish the following

Theorem 2. Assume the GRH. Let M be an even integer with NL-2 
M  N, and specify the P and Q in (2. 1) by putting

Then we have

where

In the Hardy-Littlewood method, the wider of the major arcs will usually
give the better results. Here, we can see the influence of the GRH on the
width of the major arcs. Under the GRH we can now widen the length
of the major arcs in (2.2) by setting our Q = N’12; otherwise, we have
to considerably narrow them, e.g. in [LLW2], (4.1) and (2.1) we set Q =
N179/180L-3.

To prove Theorem 2, we need the following lemma.
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Lemma 1. Assume the GRH. Let 6x be 1 or 0 according as X = XO or not.
Then

uniformly for any X mod q and q  Q  M.

Proof. This is [KPP, Lemma 1] and the first paragraph of [LP,§51.
Now we can give

Proof of Theorem 2. Let

It suffices to prove

since (2.5) follows from (2.7) via partial summation.
Introducing the Dirichlet characters (see [D, §26, (2)~), we have

where

and
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with and 6x as in Lemma l. Thus,

Now we proceed to estimate h, I2 and I3. Clearly,

Using the orthogonality of characters, the bound IT(X)12 ::; q, and then

Lemma 1, one gets
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Applying Cauchy’s inequality and then using the elementary estimate

one has

It therefore follows from (2.9) that

Now we treat the main term 7i. Let
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Applying the elementary estimate (2.10) again, one obtains

The contribution of the last 0-term to h is

Since

we have

Inserting (2.13) and (2.14) into (2.12), we obtain

Therefore we conclude from (2.8), (2.9), (2.11), and (2.15) that

By (2.4) and NL-2  M  N, the last O-term is W M log-1 M. This
proves (2.7) and hence Theorem 2.
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3. AN EXPONENTIAL SUM OVER POWERS OF 2

The results of this section do not depend on the GRH.
Let

Lemma 2. Letq  1/(7e). Then the set E of a E (0, 1] for which 
(1 - q)L has measure  L5/2 NB-1, where

Proof. This is [LLWI, Lemma 3].
Lemma 3. Let h be any even integer, and N sufficiently large. Then the
nurrtber of solutions of the equation h = pi - P2 with pj  N is

uniformly for all even integers h =A 0. Here Co is as in (2.6).

Proof. This is [C, Theorem 3].
Lemma 4. We have

where C1  24.4189.

The above integral is trivially » N, so the upper bound in (3.1) is of
correct order of magnitude.
The inequality (3.1) with an unspecified constant in the upper bound

was obtained by Romanoff [R] (see also [P], Satz 8.1 on p.173). Therefore
Romanoff completed the qualitative estimate for the integral in (3.1) which
is, in fact, the sum of squares of the representations of those integers of the
form p + 2’, with p and v in suitable ranges. From this he deduced, by
Cauchy’s inequality, that a positive proportion of the odd integers can be
written as p + 2’. What we do in our Lemma 4 is to obtain a quantitative
result of Romanoff’s inequality, i.e. a numerical constant in the upper bound
in (3.1).
Proof of Lemma 4. Let s(N) be the number of solutions of the equation



141

satisfying

(3.3)
Then we have

By Lemma 3 one has, uniformly for even integer h,

where Co is as in (2.6),

Thus for fixed ml, m2 with m1 ~ m2, one sees that

If m2 &#x3E; m 1, then

Similarly, for m2  ml. Since for fixed

one has

Also, by the prime number theorem, the number of solutions of (3.2) with
m1 = m2 in (3.3) is
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if N is sufficiently large. This in combination with (3.6) gives

The sum on the right hand side of (3.7) can be transformed as

where for odd d, denotes the least integer (} 2: 1 for which 2e - 1(mod
d). Hence (3.7) becomes

By [HR,p.1281, Co &#x3E; 0.6601. Also by (3.5), a straightforward computation
gives C2  7.8342 x 1.8998.
Now we proceed to estimate C3. For positive integers x, put

Then for x = 1, 2, ..., 9, we have

To bound c(x) for x &#x3E; 10, we let
x &#x3E; 9,

, and prove that when

where 7 is Euler’s constant (so 1.7810  e7  1.7811). In fact, according
to [RS,(3.42)], for every d &#x3E; 3 we have

Since the function u(d) increases as d &#x3E; 30,
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If x &#x3E; 9, then we have

and (3.9) follows. Thus if x &#x3E; 10, then

Obviously, this estimate also holds for non-integral x &#x3E; 10.

We therefore conclude that

Consequently, (3.8) becomes

with

as stated in the lemma. This in combination with (3.4) gives (3.1). The

proof of Lemma 4 is completed.
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4. PROOF OF THEOREM 1

Lemma 5. Assume the GRH. Let P, Q be defined as in (2. 1). Then for
a ~ 

Proof. This is a consequence of [LLW1, Lemma 1].
Lemma 6. Let tk(n) be the number of solutions of the equation n = 2"1 +

Proof. The first sum under consideration is the number of k-dimensional
vectors (vl, ..., Vk) such that 2v1 + 2V2 + ... + 2vk  N. Thus,

and the first estimate follows. The second estimate can be established as
follows:

This completes the proof of Lemma 6.
Now we give
Proof of Theorem 1. Let tk (N - M) be as in Lemma 6, S as in Lemma 2
and M as in (2.3) with P, Q determined by (2.4). Then we have
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Now we estimate Ji , J2, J3 in (4.1) respectively. 
-2To estimate J1, we bound the contribution from M  lV L-2 as follows:

on using the first estimate of Lemma 6. The contribution from other M can
be estimated by Theorem 2 and the second estimate in Lemma 6, which
give

provided k 2: 2 and N &#x3E; Nk,é. Thus &#x3E; 2 and N &#x3E; then

To estimate J2, one notes that

By Lemma 5, we have S(cY, N) « N3/41og2 N for a E C(M). Let 17 =

0.0161 so that the definition of e in Lemma 2 gives O  0.4998  1~2.
Thus Lemma 2 gives
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On using Lemmas 2 and 4, the last integral J3 can be estimated as

Inserting (4.2), (4.3) and (4.4) into (4.1), we get

if k &#x3E; 2 and Also when 200 and E = 10-6, one has C1 (1 -
r)k-2 + 3E  0.9818. Consequently if k &#x3E; 200 and Nk, then (4.5)
becomes

on recalling that Co &#x3E; 0.6601. This proves (1.3) and hence Theorem 1.
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