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On traces of the Brandt-Eichler matrices

par JULIUSZ BRZEZINSKI

RÉSUMÉ. On calcule le nombre d’idéaux localement principaux
de norme donnée dans une classe d’ordres quaternioniques définis,
et la trace des matrices de Brandt-Eichler correspondant à ces
ordres. Pour application, on calcule ainsi le nombre de représen-
tations d’un entier algébrique comme la norme d’un ordre quater-
nionique défini de nombre de classes égale à un. On obtient aussi
des relations sur le nombre de classes pour certains corps à mul-

tiplication complexe.

ABSTRACT. We compute the numbers of locally principal ideals
with given norm in a class of definite quaternion orders and the
traces of the Brandt-Eichler matrices corresponding to these or-
ders. As an application, we compute the numbers of representa-
tions of algebraic integers by the norm forms of definite quaternion
orders with class number one as well as we obtain class number
relations for some CM-fields.

0. INTRODUCTION

Let R be the ring of integers in a global field K and let A be an R-
order in a quaternion algebra A over K. Recall that A is a central simple
algebra of dimension four over K and A is a subring of A containing R,
finitely generated as an R-module and such that KA = A. The paper
is concerned with numbers of locally principal one-sided ideals in A with
given reduced norm. These numbers play an important role in different
arithmetical contexts. In particular, they are related to the traces of the
Brandt-Eichler matrices corresponding to A and to the numbers of elements
in A representing a given element in R by means of the reduced norm.

In Section 1, we recall some necessary notions related to orders, in partic-
ular, to Brandt-Eichler matrices. In Section 2, we show how to compute the
traces of these matrices for a broad class of quaternion orders. In Section
3, we apply our computational results in two different ways.

First of all, if A is a totally definite order of class number one (for the
definitions see Section 1), we get exact formulae for the numbers of elements
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in A with given reduced norms. In particular, this gives a unified method
of proving formulae for numbers of integral representations by quaternary
quadratic forms when such formulae can be expected, for example, by sums
of four squares (Jacobi) or by x2 + y2 + 2z2 + 2t2 (Liouville) in the case
of the rational integers, and in similar cases over the integers in algebraic
number fields. Non-analytical proofs of such formulae in different special
cases over the rational integers can be found in [6], Chap. IX, [12] and [14].
The second application is related to Eichler’s trace formula for traces of

the Brandt-Eichler matrices corresponding to the order A. If A is totally
definite of class number one, then the trace formula (which we explain in
Section 1) relates the number of left ideals in A with given reduced norm to
the class numbers of some maximal commutative suborders of it. When the
number of left ideals with given norm is known, the trace formula gives a
class number relation. In the case of the rational integers, the class number
relations obtained in this way remind of the well-known class number rela-
tions proved by analytical means by Kronecker and generalized by Gierster
(see [7, 10]). We show how to get such class number relations for rings of
algebraic integers in CM-fields, that is, quadratic non-real extensions of
totally real finite extensions of the rational numbers. They give a recursive
method for computing class numbers of the rings involved in these relations.
An interesting point is that in some cases the class numbers of all CM-fields
containing a given totally real algebraic number field are involved in the
class number relations resulting from the trace formula.

I express my thanks to Stefan Johansson for reading the manuscript and
pointing out a computational mistake in [3] (see (3.3)).

1. QUATERNION ORDERS

Let R be a Dedekind ring with quotient field K. Assume that K is a
global field and A is a quaternion algebra over K. We denote by Tr the
reduced trace, and by Nr the reduced norm from A to K.

Recall that I is a locally principal left A-ideal in A if I, = A,a,,, where
IP and Ap are completions of I and A at non-zero prime ideals p in R and
ap E Ap, where Ap is the completion of A at p. The right order of I is
the R-order Or (I ) = ~a E A : I a C 7}. Let Ii = A,... Ih represent
all isomorphism classes of locally principal left A-ideals with corresponding
right orders A1 - A,... Ah. Here h = h(A) is called the class number
of A. Notice that the class number could be defined by means of locally
principal right A-ideals giving the same value of h(A).

If I is a A-ideal in A, then its norm Nr(I) is the R-ideal generated by
the reduced norms of the elements of I. Let a be an ideal in R. Let us
recall that the Brandt-Eichler matrix
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has as its elements Pkl (a) the numbers of locally principal left ideals in
Ak, which are isomorphic to and have norm equal to a for k, l =

1, ... , h(A).
Let a) be the number of locally principal left ideals in A whose norm

is equal to a. Observe that t (Ak, a) = Pkk (a). These numbers are finite,
since K is a global field.

One of the main objectives of the paper is to compute the traces of the
Brandt-Eichler matrices:

Notice that if a is not principal, then the sum is equal to 0. If a = Ra, we
shall also use notations TrA (a) a) instead of Tr A (Ra) and ¿(A, Ra) .

Eichler’s trace formula depends on finiteness assumptions on A. A will be
called totally definite if for each R-order A in A, the group ~1* /R* is finite,
where A* and R* denote the groups of units in A and R. It is not difficult
to prove that if there is one order in A having this finiteness property, then
A is totally definite. In fact, A is totally definite if and only if A does not
satisfy the Eichler condition (see [4], p. 718 for the definition of the Eichler
condition, and [9], Satz 2 for a proof of the equivalence).

Let

for a E R. It is not difficult to prove that for a totally definite A this
set is finite. Now let P(A, a) be the set of the minimal polynomials for
all A E N(A, a). If f is the minimal polynomial of B E N(A, a), then
let Sf = R[X]/(f) and L f = Sf OR K. Let Sf 9 S C L f, where S
is an R-order. An optimal embedding cp : S A, is an injective R-
algebra homomorphism such that A/cp(S) is R-projective. Let e(S, A) be
the number of orbits for the action by conjugation of A* on the optimal
embeddings: cp H for A E A*. Now we are ready to formulate
Eichler’s trace formula for the Brandt-Eichler matrices (see [9], Satz 10):
Theorem 1.2. Let A be an R-order in a central simple totally definite
quaternion K-algebra A. Then

where the sum is over all S such that S’ f C for f E 
a1 = a, ... , am represent all orbits f or the action by multiplication of R*2
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on the set R*a, 6a = 1 or 0 depending on whether a is a square in R or not,

h(S) is the class number of the locally principal ideals in S and eU(A) (S, A) =

Notice that a = 1 in the last theorem gives an expression for the class
number of A (see (1.1)).

2. NORMS OF LOCALLY PRINCIPAL IDEALS

In this section, we show how in some cases, it is possible to easily com-
pute the left hand side in Eichler’s trace formula. Throughout the whole
section, we assume that R is a complete discrete valuation ring with max-
imal ideal m = (7r) and finite residue field R/1rR. We also assume that
A is a quaternion K-algebra. Let q be the number of elements in R/1rR.
For simplicity, the number of principal left ideals in A whose norm is equal
to (1rm) will be denoted by L(A, m) (later we return to the notation from
Section 1: t(A, mm)). The following result is well-known (see e.g. [9], §2):

Proposition 2.1. Let A be a maximale R-order in A, and let m be a non-
negative integer.

(a) If A is a matrix algebra, then m) =1 + q + ... + qm.
(b) If A is a skewfield, then t(A, m) = 1.

It is well-known that if J(A) denotes the Jacobson radical of A, and A
is not a maximal order in a matrix algebra, then A /J(A) is isomorphic to
R/7rR x R/1rR or R/1rR or to a quadratic field extension of We
write e(A) =1 or 0 or -1, respectively, to distinguish between these three
cases. Let us start with the case e(A) = 1.

Proposition 2.2. Let A be a quaternion R-order such that e(A) =1 and

and if m &#x3E; n, then

Proof. The result may be proved by the same method as its special case for
n = 1 in [9] , §2. Such a proof is somewhat tedious but straightforward. D
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Assume now that A is a non-maximal R-order in A such that 1.

Then A/J(A) is a field and there is a unique minimal order M(A) containing
A (see (1~, (1.12)). If e(A) _ -1, then the number of principal (left) ideals
in A with given norm can be computed in the following recursive way:

Proposition 2.3. Let A be a non-maxirraal R-order such that e(A) = -1.
If m &#x3E; 2, then

Proof. Let the norm of Aa be (7r,), where m &#x3E; 1. It follows from (1.13)
- (1.15) in [2] that a = where a’ E M(A). Thus m &#x3E; 2 and Aa H
M(A)a’ is a surjective map on the set of principal left M(A)-ideals with
norm (1rm-2). It remains to show that the inverse image in A of an M(A)-
ideal M(A)a’ consists of [M(A)* : A*] elements. Let Il = and 12 =

be A-ideals such that M(A)a’ = M(A)a’. Then a2 = where
E E M(A)*. Notice now that if Ac/7r C A, then A£a’7r C M(A)£a’7r C
M(A)7r C A according to (2.2) in [Bl]. Thus Aea’7r are A-ideals for all
6 E M(A)* and a standard argument for counting the number of orbits
under a group action (here M(A)*) shows that the number of them equals
[M(A)* : A*]. The last formula is very easy to check (see [2] , (3.3)). D

The case of quaternion orders with e(A) = 0 is, as usual, more involved.
Recall that A is called a Bass order if each left A-ideal I in A is projective
over its left order Ol (I) = {a E A : al C 7} (the right version of this
definition gives the same notion - see [4], (37.8) and p.782). If A is maximal
or e(A) # 0, then A is a Bass order (see e.g. [1]), so regarding the Bass
orders, it remains to investigate the case e(A) = 0. Defining M~(A) =
M(M(A)), we have the following result:

Proposition 2.4. Let A be a Bass R-order such that e(A) = 0. 2,
then

Proof. If e(M(A)) ~ 1 and m &#x3E; 2, then the arguments are similar to those
in the proof of (2.3). The only difference is that if I = Aa has norm (~r’"‘),
then (2.19) in [2] gives a = 7ra’, where a’ E M2(A) for e(M(A)) = 0, and
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~x’ E M(A) for e(M(A)) = -1. In the first case, Aea is a principal ideal
in A for any 6 E M2 (A) *, since C A by [1], (4.6). In the second

case, similar statement follows for any e E M(A), since 7rM(A) C A by
~1), (4.1). Now the final conclusion is exactly the same as in the proof of
Proposition 2.3 with M(A)* replaced by M2 (A) * in the first case. (Notice
that A* need not be normal in M2(A)*.)
Assume now that e(M(A)) = 1 and m &#x3E; 2. In this case, it follows

from (1.1) and (4.2) in [1] that A is isomorphic to the order consisting of
matrices:

....

such that a, b, c, d E R and 7r/a -d. If I = Aa has norm (~r’n), where m &#x3E; 1,
then it is easy to see that a E J(A) = J(M(A))M(A)Q, where

Thus I defines an ideal in M(A) with norm (7rm-1). The argu-
ments now leading to the recursive relation are exactly the same as at the
end of the proof of Proposition 2.3.
Now let m = 1, and let the norm of I = Aa be (7r). Let us show

that J(A) = M(A)a. Since A/J(A) is a field and M(A)J(A) = J(A) (see
[I],(1.12)), we get a E J(A) and M(A)a C J(A). But the orders of the

(additive) groups M(A)/M(A)a and M(A)/J(A) are equal (see ~1~, (4.1)),
so J(A) = M(A)a. We now see that the extensions M(A)a and M(A)a’
of two principal ideals in A with norm (7r) must be equal, so using similar
arguments as before, we get that the number of them is [M(A)* : A*] .
The indices of A* in M(A)* and M2(A)* can be calculated by elementary
considerations (see [2] , (2.5) and (2.12)). D

In order to apply the trace formula to all quaternion orders with class
number 1, it is necessary to consider one more case.

Proposition 2.5. If A = R + 7rA’, where A’ is an R-order containing A,
then

for m &#x3E; 2, and ~(A, 1) = 0.

Proof. Assume that I = Aa C A has norm (~r~), where m &#x3E; 1. Expressing
a with respect to an R-basis for A’ and taking its norm, it is easy to see
that a = Jra’, where a’ E A’. Thus, m 2:: 2, and one can proceed as in
the proof of Proposition 2.3 considering a surjection of the left principal
ideals in A with norm (~rm) onto the principal left ideals in A’ with norm
(7rm-2). . 0
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3. APPLICATIONS

As noted in the introduction, we consider two applications of the com-
putations in Section 2. First, we show how to get formulae for numbers
of integral representations by norm forms of quaternion orders in a unified
way. As a special case, we get purely algebraic proofs of well-known classi-
cal results. The case of sums of four squares was studied by many authors
using both algebraic and analytical methods ([12, 6, 10, 8, 5]). The case
of forms corresponding to maximal orders over the rational integers was
treated in [14]. The second application, which combines the computations
in Section 2 with Eichler’s trace formula for the Brandt-Eichler matrices,
results in a series of class number relations for integers in CM-fields. These
relations also need the knowledge of the embedding numbers, which appear
on the right hand side of the trace formula.

Let R be a principal ideal ring whose quotient field K is global and let
A be a totally definite R-order of class number h(A) = 1. If a E R, then

where (a)) are the numbers of (principal) left ideals with norm (a) in
the completions Ap of A at all non-zero prime ideals p of R (see [4], (37.8)
and p. 782). Notice that (a)) = 1 if a 0 p, so the product above is
well-defined. Let

be the number of representations of a by the reduced norm from A to R.
Assume that each totally positive unit in R is the norm of an element of
A (according to Hasse-Schilling-Maass theorem such a unit is at least the
norm of a unit in KA). Then it is easy to see that

where A’ denotes the group of units in A whose reduced norm is equal to
1. In fact, our assumption easily implies that if a is totally positive and
(a) = Nr(I) for an ideal I in A, then I = (A), where a = Nr(A). The
number of different choices of B (when a and I are fixed) is, of course,
equal to IA11.

Let 1 be an ideal in R. Denote by Qa (a) the sum of the norms of the
ideals dividing (a), which are relatively prime to the ideal 9. Observe that
by the norm of an ideal 3 in R, we mean here the number of elements in
R/3. Using (2.1) (a) and (3.1), the last formula can be expressed as follows:
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where 1 (A) is the discriminant of the order A. This general formula gives a
very elementary proof of many classical results about the numbers of repre-
sentations of algebraic integers by some quaternary quadratic forms whose
coefficients are algebraic integers. The method for studying representations
by some integral quaternary quadratic forms using quaternion orders over
the integers is well-known and was applied by Hurwitz [12] for sums of four
squares and Dickson [6], Kap. IX, in many other particular cases of such
forms. Recently, it was also discussed in [14] in case of maximal orders over
the integers. Let us consider some specific examples.

Examples 3.3. (a) According to [3], there are 24 isomorphism classes of
definite quaternion orders of class number one over the integers’ - Among
them there are 5 maximal orders A with discriminants = (p), where
p = 2, 3, 5, 7,13. Since according to Proposition 2.1 (b), tp (A, (a)) = 1,
(3.2) gives

where up (a) is simply the sum of positive divisors of a, a &#x3E; 0, which are
relatively prime to p, and IA 11 = 24 for p = 2 and 8 for the remaining values
of p.

It is not difficult to prove that among the norm forms of the 24 isomor-

phism classes of orders with class number one, there are only 4 represented
by diagonal forms: x2 + y2 + cz2 + ct2 for c =1, 2, 3 
(see [3], Theorem 1).

For example, if c = 2, then f = x2 + y2 + 2z2 + 2t2 corresponds to the
order A f = with discriminant 1 (A f ) = 8, where
i2 = j2 = -1 and ij = - ji = k. We have

where A = Z + Zi + Z j + Zk is the minimal overorder of A f , which is
contained in the unique maximal order r = Z + Zi + Zj + 7~~ 

. Since e(A¡ Q9 Z2) = 0, using Proposition 2.4, we get

1 There is a mistake in [3] - the quadratic form x2 + y2 + 3z2 + xy defines a quaternion order
with class number two. Thus the number of isomorphism classes of definite quaternion orders
over the integers is 24 and not 25 as claimed there.
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Noting that I = 4, we get from (3.2) Liouville’s formula (see [7] , p.227):

A

is a Bass order with e(A 0 Z2) = 0. Therefore applying (2.4), we get

The formula (3.2) gives the well-known Jacobi theorem:

where f = x2 + y2 + z2 + t2.
Using the same methods, it is equally easy to get similar results for all

quaternary forms corresponding to other orders with class number 1 in the
case of rational integers (compare [6], Kap. IX for x2 + y2 + cz2 + ct2 with
c = 1, 3, [14] for the five maximal orders and [5]).

(b) All definite quaternion orders with class number one over the rings
of integers in totally real algebraic number fields are not known. However,
all maximal orders (or even hereditary) with this property over the real
quadratic extensions of the rational numbers are known (see [16], p. 155).
The formula (3.2) in these cases is very simple like in the case of rational
integers considered above. A more interesting case, which was studied
intensively by analytical methods (see [10, 8]) is the case of quaternion
orders whose norm forms are sums of four squares over the integers R in real
quadratic fields. Let A = R + Ri + Rj + Rk, where as before i2 = j2 = -1,
k = ij = -ji. We have 1(A) = (4), so A is never hereditary and its
properties depend on the ramification of (2) in R. It is well-known that
the genus of the quadratic + z2 + t2 consists of only one class
if R = or R = 7G1 2 (see [8], Satz 25). It is not difficult to check
that the class number h(A) = 1 only in the second case. This result may
be proved using Eichler’s trace formula (see (1.2)) or known results about
the number of classes in the genus of the quadratic form x2 + y 2 + z2 + t2
(see [8], Satz 25) in combination with a classical correspondence between
proper equivalence classes of quaternary quadratic forms and submodules
of quaternion algebras (see [13], Sec. 6).

If R = Z[1+2V5], then 1(A) = (2)2 is a square of a prime ideal in R. We
have



282

where r is a maximal order with = (1) and A’ a hereditary order. Let
a = 2’’za’, where 2 t a’. Using R(2)) = 0, (2.2) and (2.4), we get

Since IA 11 = 8, the formula (3.2) gives

This formula was proved by G6tzky (see [10]) and later by Dzewas (see
[8], Satz 35) using analytical methods.
As we noted in the introduction, Eichler’s trace formula can be consid-

ered as a relation between the class numbers of the maximal commutative
suborders of a totally definite order. Such class number relations become
explicit when the left hand side of the formula can be effectively computed.
Let us consider some examples.

Examples 3.4. (a) Let A = Z + Zi + Zj + Zk, where i2 = j2 = -1 and ij =
-ji = k. In order to apply (1.2), we have to consider all S corresponding
to the polynomials g = x2 + sx + N with negative discriminant. Moreover,
if s is odd, then S. can not be embedded into A, since the trace of any
element in A is even. So let 4N = _22r+2 f;ds, where Is is odd,
and ds is square-free. Then the overorders S of Sg = which
have an optimal embedding into A are exactly with and

7(mod 8). Assume for simplicity that N &#x3E; 1 is square-free. Using
the embedding numbers e2(S, A) computed e.g. in [2], (3.10), and the trace
formula, we get the following relations:

where

and E (1, 1) = 2e2(7G~~~, A) = 3/2. The right hand side is given by the
Jacobi theorem (see above), that is, U(2) (N) is the sum of the odd divisors
of N, and = 1 if N is odd and 3 if N is even.

(b) If A is a maximal order (there are only 5 isomorphism classes of
quaternion orders with class number 1 corresponding to d(A) = 2, 3, 5, 7,13),
then similar class number relations immediately follow from the original ver-
sion of Eichler’s trace formula and well-known results on norms of ideals in
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maximal orders gathered in Proposition 2.1. Let us formulate this general
result in a form suitable for applications.

Let d(A) = 1 be a prime and let s2-4N = where SGD(l, Is) =1
and As is the discriminant of Denote by XA the Kronecker
character of the quadratic field extension of Q with discriminant A. Let

be the maximal order in the field ~( Os). Define a(l)(N) as the sum
of all divisors to 1V relatively prime to l. With these notations, we have:

where 61 (f , OS) = A) for ( f, A.,) 0 (1, -4), (1, -3), that is,

and -4) are the one half of the above values, while -3) are the
one third of them.

It is interesting to note that comparing the relations for A = Z + Zi +
Zj + Zk in (a) with the relations for the maximal order containing it,
one gets new relations when N is odd. Of course, the same is true for
other discriminants, when the relations corresponding to maximal orders
with discriminant 1 are compared with relations corresponding to its unique
suborder of index 1 (see ~1~, (4.2)) for N not divisible by l.

(c) The class number relations are particularly simple when the quater-
nion algebra is unramified at all finite primes. For example, let R = Z [w] ,
where W = 1+~ and let A be a maximal order in the quaternion algebra
A = where i2 = j2 = -ji = k and K = Q(B/5).
One easily checks that a(A) _ (1). If a quadratic R-order S can be embed-
ded into A, then it must be totally definite over R. If it is generated over R
by a zero of g(x) = x2 + sx + a, then s2 - 4a must be totally negative, and
as a consequence, a must be totally positive. 4a where

f S E R and -~s is the discriminant of K( s2 - 4a). Let S be the
maximal order in the field - We have =1 according
to the known results on the embedding numbers (see ~2~, but observe that
in the present case all Ap are maximal in matrix algebras, so the situation
is very simple). Assume that a is not a square in R. Then the trace formula
gives

where Q(a) is the sum of the norms of the ideal divisors of (a), and
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The numbers As) correspond to different indices Let S’ and
Rl = ~ ~ 1 ~ be the groups of roots of unity in S and R. Then S* = 81 R*
according to [11], Satz 25, which shows that It is not
difficult to check that 1811 = 2r, where r = 1,2,3,5 and the last three cases
correspond to three extensions of Q( J5) by i, iV3 and -(2 + w).
The relations obtained in (a) and (b), as well as all other relations of that

type obtained by means of quaternion orders with class number one over
the integers, are similar to the well-known class number relations proved
by Kronecker and extended by Gierster (see [7], p. 108, and also [15]). The
relations in (c), as well as in other cases related to totally definite orders of
class number one over the rings of integers in totally real global fields may
be used in numerical computations of class numbers for CM-fields.
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