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Galois Structure of Ideals in Wildly Ramified

Abelian p-Extensions of a p-adic Field,
and Some Applications

par NIGEL P. BYOTT

RÉSUMÉ. Soit K une extension finie de d’indice de ramification e, et

soit L/K une p-extension abélienne finie de groupe de Galois 0393 et d’indice

de ramification pn. Nous donnons un critère en termes des nombres de
ramification ti permettant de décider lorsqu’un idéal fractionnaire de

l’anneau de valuation S de L peut être libre sur son ordre associé 
En particulier, si tn - [tn/P]  pn-1e, la codifférente ne peut être libre sur
son ordre associé que si ~ -1 (mod pn) pour tout i. Nous déduisons de
cela trois conséquences. Premièrement, si S) est un ordre de Hopf et
si S/R est une S)-extension galoisienne, où R est l’anneau de valua-
tion de K, alors ti = -1 (mod pn) pour tout i. Deuxièmement, si K = kr
et L = km+r sont des corps de points de division d’un groupe de Lubin-Tate,
avec m &#x3E; r et k ~ Qp, alors S n’est pas libre sur S). Troisièmement,
ces extensions km+r/kr possèdent deux structures galoisiennes de Hopf
différentes, mettant en évidence des comportements différents au niveau
des entiers.

ABSTRACT. Let K be a finite extension of with ramification index e, and
let L/K be a finite abelian p-extension with Galois group 0393 and ramification
index pn. We give a criterion in terms of the ramification numbers ti for
a fractional ideal of the valuation ring S of L not to be free over its
associated order In particular, if tn - [tn/P]  pn-1e then the
inverse different can be free over its associated order only when ti = -1
(mod pn) for all i. We give three consequences of this. Firstly, if S)
is a Hopf order and S is S)-Galois then ti ~ -1 (mod pn) for all i.
Secondly, if K = kr, L = km+r are Lubin-Tate division fields, with m &#x3E; r

and k ~ Qp, then S is not free over S). Thirdly, these extensions
km+r /kr admit two Hopf Galois structures exhibiting different behaviour
at integral level.
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1. INTRODUCTION

Let p be a prime number, and let K be a finite extension of the p-adic
field We write e = for the absolute raxnification index of K.
If L is a finite normal extension of K, with Galois group r = Gal(L/K) say,
it follows from the Normal Basis Theorem that L is a free module of rank
1 over the group algebra Kr. Let R (respectively, S) denote the valuation
ring of K (respectively, L), and let p (respectively, fl3) denote its maximal
ideal. Then S, or more generally any fractional S-ideal is a module
over the integral group ring Rr. In general, Th is not free over Rr. Indeed,
it is well-known that S itself is a free Rr-module if and only if L/K is at
most tamely ramified. In this case every ideal q3h is a free Rr-module (see
(U]). To investigate the Rr-structure of q3 h more generally, one considers
the associated order

This is indeed an R-order in the group algebra Kr, and q3l is an 21(Kr; q3h)_
module.

If K = Qp and L/Qp is any abelian extension, then S is free over its
associated order (see [L]). This is not true for more general K, even if
K is unramified (see [Be]), and there are relatively few cases where the
associated order is known explicitly (e.g. [B-F], [F], [Byl], [Tl]). There
are however a number of results on the structure of S or q3 h as a 7GPI’-
module, both describing its module structure completely in certain cases
(e.g. [RC-VS-M], [E-M], [E]), and giving more general results regarding
the associated order in Qpr (e.g. [BI-Bu], [Bul], [Bu2]). In a somewhat
different direction, the existence of Rr-isomorphisms between fractional
S-ideals was investigated in [By2].

In this paper, we will be concerned only with associated orders in Kr,
and will not require any hypothesis on the absolute ramification of K. We
take L/K to be an abelian p-extension with ramification index pn, and we
give in Theorem 3.13 a criterion in terms of the ramification numbers ti for
an ideal q3h not to be free over its associated order. This takes a somewhat
simpler form in the case that 93 h is the inverse different (Theorem
3.10); under a mild restriction on the largest ramification number, Z-1
cannot be free over its associated order unless ti - -1 (mod p") for all i.
Our method requires only knowledge of the ti, and does not involve any
explicit calculations with associated orders. We do however make essential
use of Vostokov’s criterion for the Rr-indecomposability of S-ideals.
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We give three interrelated applications. Firstly if, for the abelian p-
extension L/K, the associated order 2t = is a Hopf order, and
if furthermore S is a Galois 2(-extension of R, then ti == -1 (mod pn).
This is already known in the special cases where r is cyclic of order p2
(see [G]) or elementary abelian (see [By3]). Secondly, we take K = kr and
L = hm+r to be Lubin-Tate division fields obtained from an extension k of

When m  r, these provide one of the few families of extensions where
the associated order 21 is known explicitly (see [Tl]), and in this case S is
free over 2(. It is also known that S is free over 2( when m &#x3E; r and k = Qp
(see [C-L]). We complete these results with Theorem 5.1, which shows in
the remaining case m &#x3E; r, k ~ Qp that S is not free over its associated
order. Our final application concerns the comparison of different Hopf
Galois structures at integral level. The Lubin-Tate extensions km+r/kr
admit both their classical Hopf Galois structure and another Hopf Galois
structure, arising from the Kummer theory of formal groups. In the first
Hopf Galois structure, Theorem 5.1 tells us that S is not free over its
associated order, while in the second structure, S is automatically Galois,
and hence free, over a Hopf order in the underlying Hopf algebra.

2. A NON-FREENESS CRITERION

In this section, we give a very general criterion for a lattice in a module
over a finite-dimensional commutative K-algebra A not to be free over
its associated order. This uses only some rather elementary commutative
algebra.

Let v: K -~ Z U be the valuation on K, normalised so that v is
surjective. We fix once and for all p E K with v(Jl) = 1.

Let V be a free left A-module of rank 1. An R-submodule M of V is a
lattice if it is finitely generated and spans V over K. The associated order

M) of a lattice M is defined by

Since A acts faithfully on V, it follows that 2l is indeed an R-order in A.
Clearly M is an 2l-module.

THEOREM 2.1. With the above notation, suppose that

(i) 2l is a local ring;
(ii) there exists a generating set {~i,... for M as an 21-module,

with the property that M for 1  i  n.
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Then M is not free as an %-module.

Proof. Suppose for a contradiction that M is free over Comparing R-
ranks, M must then be free on one generator, m say. For 1  i  n we

have mi = aim for some ai E 2t. Since 2laim = M but 2tm = M,
it follows that ai is not a unit in 2t. Thus each ai lies in the Jacobson
radical J of the commutative local ring ~t, and we have

Hence M = 0 by Nakayama’s Lemma, contradicting the fact that M spans
the A-module V of rank 1. D

The next result enables us to verify the condition M in Theorem
2.1 without a complete knowledge of 2t.

LEMMA 2.2. Let m E M, and suppose that there exists a E A such that

(i) am E pM;
(ii) am’ 0 pM for some m’ E M.

Then Qtm # M.

Remark.. It is not assumed that a E 2t.

Proof. We write M = M/pM and 2t = and use a bar to denote the

image of an element of M (respectively, 2t) in M (respectively, 2t) .
As R is a principal ideal domain, there is a basis ,1,... 7d of 2t over

R. These elements also form a basis of A over K, so a = Ei ci-yi for some
ci E K. Let

and let Q = It; a. Then Q E 2t and /3 # 0 in 2t. Now by (ii) we have a 0 p2t,
and hence ci 0 p for some i. Thus j &#x3E; 0, and it follows from (i) that
13m = E pM, so that 73 m = 0 in M. Since M and 2t both have the
same dimension d over the residue field R/p, this implies that M,
and hence that M. D

Remark. In this section we could have taken K to be the field of fractions
of any discrete valuation ring R (not necessarily complete, and with no
assumption on the characteristic).
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3. IDEALS IN ABELIAN p-EXTENSIONS

In this section, we assume that L/K is a finite abelian p-extension, and
we apply Theorem 2.1 to the fractional ideals q3 h of the valuation ring S
of L. This gives a condition on the ramification numbers which guarantees
that q3l is not free over its associated order. The result is strongest, and
also easiest to state, when q3 h is the inverse different. Since this is the
case which will be needed for our applications, we will discuss this case
separately before considering a general ideal q3 h
We first recall some ramification theory. For this we take L/K to be any

normal p-extension, not necessarily abelian. The ramification subgroups of
r = Gal(L/K) are defined to be

Thus f -1 = r, and Fo is the inertia subgroup of r. Also, Fi = Fo since
is a p-extension. Let U denote the valuation on L,

normalised so that vL is surjective. From [S2, IV §2 Exercise 3(a)] we have

PROPOSITION 3.1. and x E L then

with equaIity if and only if =1. 13

Let If 1 = pn. Thus p’~ = e (LIK) is the ramification index of the exten-
sion L/K. We assume that LIK is ramified, so n &#x3E; 1. The ramification
numbers of L/K (in the lower numbering) are the integers t &#x3E; 1 such that

It is convenient to adopt the following notation for these:

Thus 1  tl  t2  ...  tn, and ti = ti+1 for some i if the index of 
in rj exceeds p for some j &#x3E; 1.

The inverse different Z-11 is the fractional S-ideal defined by

where denotes the trace from L to K. It can be expressed in terms of
the ramification numbers by means of Hilbert’s formula [S2, IV §2 Propo-
sition 4]:
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Let a E {0, ... ,p - 1} be the least non-negative residue of ti modulo p.
Then from [S2, IV §2 Proposition 11 and Exercise 3(f)] we have

PROPOSITION 3.5. ti = a (mod p) for 1  i ~ n, and if a = 0 then

We now recall a result of Vostokov. For any real number we write L~~
for the unique integer satisfying Lxl :5 x  + 1.

THEOREM 3.6. ([Vl, Theorem 3], [V2, Theorem 4~) Let L/K be an abelian
p-extension with ramification index pn. If the largest ramification number
tn satisfies the condition

then every fractional S-ideal is indecomposable as an Rr-module. 0

The hypothesis on tn is rather mild, as the next result shows.

PROPOSITION 3.7. For any normal p-extension L/K with ramification in-
dex pn, we have

with equality if an d only if

If equality occurs in (3.8) then a - e (mod p - 1) and one of the following
holds:

Moreover is cyclic and is elementary abelian.
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Proof, By [S2, IV §2 Exercise 3(c)],
As (p - I)tn = -a (mod p), it follows that

Wrlting tn = a, we therefore have t  , with equality if and
p-1

only if equality holds in { 3 .9 ) . Thus

with equality if and only if equality holds in (3.9). This proves the first sen-
tence of the Proposition. If equality holds in (3.9) then p"e - a (mod p-1)
since tn is an integer, and hence a - e Moreover, since ti - a
(mod p) for 1  i  n by Proposition 3.5, the above argument, applied to
suitable subextensions Lt/K of L/K, shows that, for each i,

If equality holds in (3.8), it now follows from [Vl, Proposition 1] that
(i) occurs, except in the case p = 2, tl - 1. In this case, if tn = 1 then

equality in (3.8) implies that n = 1, e = 1, and again (i) holds. We may
therefore assume that p = 2, and that for some k E ~ 1, ... , n -1 ~ we have
tk = 1, tk+1 &#x3E; 1. Let F be the fixed subfield of L under rtk+l. Applying
[Vl, Proposition 1] to L/F, we find that f tk+l is cyclic and the ti for
i &#x3E; k are as stated in (ii). (Note that our t2 does not necessarily coincide
with Vostokov’s h2, because of our convention (3.2).) Finally, 

and this is elementary abelian by [S2, IV §2 Corollary 3 to
Proposition 7~ . 0

We are now ready to apply Theorem 2.1 to the inverse different =

THEOREM 3.10. Let L/K be an abelfan p-extension with ramification in-
dex pn and ramifcation numbers tl, ... , tn. Suppose that
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is free over its associated order then ti = -1 (mod pn) i  n.

Proof. We assume that some ramification number t = ti satisfies t ~ -1
(mod pn), and apply Theorem 2.1 with M = ZL’KL A = Kr, V = L to
show that is not free over its associated order 2t. (Note that L is
indeed a free Kr-module of rank 1 by the Normal Basis Theorem.) Thus
we must verify conditions (i) and (ii) of Theorem 2.1.

As spans L over K, the ring of Rr-endomorphisms of Z-1 is
precisely 2t. But Z-1 is indecomposable by Theorem 3.6, so 2{ contains
no idempotents except 0 and 1. As R is complete, this implies that 2( is a
local ring, and condition (i) of Theorem 2.1 is satisfied.
We now turn to condition (ii) of Theorem 2.1. From the definition (3.3)

of Ð£I K’ we have

and hence

Thus is a unit in R for some x E Since

x ft we may extend x to an R-basis zi = x, x2, ... , xd of 

Let z = TrL/K (x), and define YI = x, and Yj = xj - for

2  j  d. Then y1.... , Yd is again an R-basis of Z-1 yd}/
is certainly a generating set for as an 2t-module. We must show, for

each i, that 

Comparing R-ranks, it is clear that if Z-1 = 2tyi then Z-1 must be
free over 2t on the generator yi. If this occurs then yi also generates L as
a free .Kr-module, and this is not the case for i &#x3E; 2 since q) yi =
TrLIK(Yi) = 0. To show that 2lYl ~ we use Lemma 2.2. Let

t = pnb + t with 0 t pn-1. then a=0, so

by Proposition 3.5, and hence we have equality in (3.8), contradicting
(3.11).
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Since t 0 -1 (mod pn) by assumption, we therefore have 1  t  p’~ - 2.
Let a = ~-b(y - 1) E Kr, where y E Then, since vl(yi) =

= pn - 1 - w, it follows from Proposition 3.1 that

so condition (i) of Lemma 2.2 holds for yl . To show condition (ii) of Lemma
2.2, choose y’ E with valuation 1 - w if w is divisible by p and
valuation -w otherwise. In either case, (vL(y’),p) = 1, so by Proposition
3.1,

Thus LIK and by Lemma 2.2, is not

free over 2t. 0

COROLLARY 3.12. Let L/K be an abelian p-extension with ramification
index pn and ramification numbers tt,... , tn . Suppose that (3.11 ) holds
and that w = 0 (mod pn) . If S is free over its associated order then ti - -1
(mod p’~) for 1  i  n.

Proof. We have w = p~c for some integer c, so ~L / 1K = Thus 

and S are isomorphic as Rr-modules. These modules therefore have the
same associated order and if S is free over 2t then so is ~L / 1K. The result
is now immediate from Theorem 3.10. D

We now apply Theorem 2.1 to a general ideal In the case h = -w,
Theorem 3.13 below reduces to Theorem 3.10. For any integer h, we write
h for the least non-negative residue of h modulo p’~ .

THEOREM 3.13. Let L/K be an abelian p-extension with ranfification in-
dex pn and ramification numbers tl, ... , tn, and suppose that (3.1I) holds.
Let 93 h be an arbitrary fractional S-ideal. Suppose that for some ranfifi-
cation number t we have t &#x3E; h + w. If p divides h, suppose further that
i:A pn - 1. Then q3 h is not free over its associated order.

Proof. For any integer c, we have as .Rr-modules.
We may therefore assume that -w  h _ p’~ -1- w. Then h + w = h + w,
and R.

We now proceed much as in the proof of Theorem 3.10. Again, the
associated order 2t of 93 h is a local ring, and there is an element x in 93 h of
valuation pn - 1 - w whose trace is a unit in R. As before, this enables us
to construct an R-basis yl = X, y2, ... , yd of q3h with VL (Yl) = pn - 1 - w
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and with = 0 for 2  i  d. Then Zyi 0 q3 h for 2  i  d.

The result will follow from Theorem 2.1 once we verify that 2lYl =f:. We

shall again do this using Lemma 2.2.

Let t = pnb + t and let a = ~,-b(~y - 1) E Kr where y E Then

by Proposition 3.1 we have

since t &#x3E; h + w. Thus ayl E and condition (i) of Lemma 2.2 is

satisfied for yl. To check condition (ii), take y’ E with valuation h if

(h,p) = 1 and with valuation h+1 otherwise. In either case = 1,
so

by Proposition 3.1, since by hypothesis t  pn - 2 if p divides h. Thus

pq3 h as required. D

We illustrate Theorem 3.13 with some special cases.

COROLLARY 3.14. With the notation of Theorem 3.13, suppose that (3.11)
holds. Let q3 h be an arbitrary fractional S-ideal.

(i) If ti = -2 (mod Pn) for some i, then q3 h cannot be free over
2t(Kr; unless h - -1 - w or - 2 - w (mod pn).

(ii) If tt - -1 (mod pn) for some i, then cannot be free over

2t(Kr; unless either h - -1 - w (mod pn) or h - 0 (mod p).
(iii) Ifti - -1 (mod p’~) for all i, then q3hcannot be free over ~3h)

unless either h - -1 (mod p") or h - 0 (mod p).

Proof. (i) and (ii) are immediate from Theorem 3.13. (iii) is a special case
of (ii), since if ti - -1 (mod pn) for all i then w - 0 (mod pn) by (3.4). D

Remarks. (i) Our method gives no information on the excluded ideals in
Theorem 3.13. For a ramified cyclic extension of degree p, Ferton [F] has
determined the structure of all ideals over their associated orders. Assuming
that ti  2, it follows from her results that when tl - -1 (mod p)

p -
the ideal q3h is free if and only if h - 0 or p -1 (mod p), and when tl - -2
(mod p), the ideal q3 h is free if and only if h - p - 3 or p - 2 (mod p). In
these cases, Corollary 3.14 therefore gives all the ideals which are not free
over their associated orders. In the case p = 7, e = 3, tl = 1, however, q3 h
is free if and only if h - 0,1, 5 or 6 (mod 7), but Theorem 3.13 only tells
us that q3 h is not free if h = 2 (mod 7).
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(ii) Burns [Bu2] has recently obtained necessary and sufficient conditions
for the existence of an ideal q3 h which is free over its associated order

in QpF. For a totally ramified abelian p-extension (p ; 2)
satisfying (3.11), this occurs if and only if either ti = 1 for all i, or r is
cyclic and e = 1.

(iii) If we relax the restriction that L/K be a p-extension then the asso-
ciated order will no longer be local, as it will contain the trace idempotent
of the maximal subgroup of r of order prime to p. We can therefore no
longer apply Theorem 2.1 directly. We can however still show that certain
ideals are not free over their associated orders. To do so, let F/K be the
maximal p-subextension of L/K, and let II = Gal(F/K). If q3 h is free
over 2t(Kr; q3 h), then is free over its associated order in KII,
since L/F is at most tamely ramified (cf. [By-L, Lemma 6]). We can then
apply Theorem 3.13 to noting that if L/F has degree m then
ti(L/K) = mti(F/K) for I  i  n by [S2, IV Proposition 14]. This could
be used to obtain a general criterion that guarantees q3h is not free over
its associated order, although such a result would be rather cumbersome
to formulate.

4. OCCURRENCE OF HOPF ORDERS AS ASSOCIATED ORDERS

In this section, we investigate the ramification numbers of abelian p-
extensions L/K for which the associated order 2t(Kr; S) is a Hopf order in
xr.

We endow the group algebra Kr with its usual structure as a Hopf
algebra over K. Thus the comultiplication A: KF - Kr (i9K Kr, the
augmentation e: K and the antipode 0’: Kr -~ Kr are the K-linear
maps determined by

An order 2t in Kr is called a Hopf order if these operations make 2l into a
Hopf algebra over R. For this, it is sufficient that 9 2l ~R 2l, where
21 0p 2t is identified with a lattice in Kr ©K Kr in the obvious manner,

Let 2t be any Hopf order in Kr. Then S is a tame 21-extension of R
in the sense of [C] if and only if 2t coincides with the associated order

S) of S. When this occurs, S is automatically free over 2t (see [C,
Theorem 2.1], or, for non-abelian r, [C-M, Corollary 1.2]). If moreover the
map
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is bijective, then we say that S is a Galois 2l-extension of R. If the Hopf
order 2l is a local ring then any tame 2t-extension is automatically Galois
(see (W~; cf. also Theorem 4.4 below).

If S is a Galois 2t-extension of R then by [By3, Proposition 2.11], 
g-1S for a certain R-ideal g , and hence

Furthermore, it is known that the ramification numbers must satisfy certain
congruence conditions:

PROPOSITION 4.2. Let L/K be a totally ramified p-extension with rami-
fication index pn, and let r = Gal(L/K). If S is a Galois extension of R
over some Hopf order 2t then

(i) ti - -1 (mod px) for 1  i  n. In particular, with the notation of
Proposition 3.5, a = p - 1.

(ii) If r is elementary abelian of order pl then ti - -1 (mod pn) for
1in.

(iii) If r is cyclic of order p2 then tl t2 = -"1 (mod p ) .

Proof. (i) and (ii) are [By3, Theorem 3 and Corollary 6.3]. For (iii), see
[G, remarks after Theorem 11.3.2]. D

As noted in [By3], these congruences suggest that, more generally, if S
is a Galois extension over a Hopf order then ti - -1 We shall

prove this in Theorem 4.4 below, as a consequence of Corollary 3.12. First,
we consider certain Hopf orders which are not local rings.

PROPOSITION 4.3. Let r be a cyclic group of order p’~ and let 21 be a Hopf
order in Kr containing the trace idempotent

Then 21 is the unique maximal order in Kr, and is unramified as an R-
algebra. Moreover, the absolute ramification index e of K is divisible by
(p - 

Proof. Since ~r lies in the ideal of integrals of 2t, and e(Er) = 1, it follows
as in the proof of [By3, Corollary 1.7] that 2t is an unramified R-algebra.
Hence 2t is the unique maximal order in Kr. As K-algebras,
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where ~Ps is a primitive pith root of unity. Since the maximal order in
this algebra is unramified, the maximal order in each component must
be unramified. In particular, K 0Qp contains an unramified or-

der, so K(pn)/K must be unranffied. Thus e = is divisible by

THEOREM 4.4. Let L/K be an abelian p-extension with ramification index
pn and Galois group 2t(Kr; S) is a Hopf order then one of the
following holds:

(i) S is a Galois 21-extension of R, and ti - -1 (mod Pn) for 1 ~ i  n;

(ii) S is not a Galois 21-extension of R, ti = p pie 0 (mod p’) forp- 1
1  i  n, and Fi is cyclic.

Proof. If S is a Galois 2l-extension of R and tn -  then (i)
holds by (4.1) and Corollary 3.12.

Before dealing with the remaining cases, we show that L/K may be
taken to be totally ramified. Let Ll = Lrl be the inertia field in L/K,
and let Sl be its valuation ring. Then L/Li is totally ramified of degree
p’~, with Galois group ri, and L/Ll has the same ramification numbers
tl, ... , tn as L/K. Let 2t, = Sl 0p (21 Then 211 is a Hopf order
in Llrl. Our assumption is that S is a tame 21-extensions of R, and this
implies that S is also a tame 211-extension of Sl (see [By3, Remark 5.4]).
Moreover, by [By3, Theorem 2], S is a Galois 21-extensions of R if and only
if it is a Galois 2ti-extension of 81. Thus K may be replaced by Li , so
there is no loss of generality in assuming that L/K is totally ramified.
We next show that (i) again holds when S is a Galois 2t-extension of R

but tn - [tn /p J = pn-le. Here a = p - 1 by Proposition 4.2(i), so

by Proposition 3.7. Moreover, one of (3.7) (i), (3.7) (ii) holds.
We claim that (3.7) (ii) cannot hold. This is clear if n = 1. If n &#x3E; 1

then, since L/K is totally ramified, it has a normal subextension L’/K
of degree p2 with ramification numbers tl, t2. Let r, = Gal(L’ / K). The
valuation ring S’ of L’ is a Galois 21’-extensions of R, where the Hopf order
2t’ is the image of 21 in Kr, (see [By3, Lemma 4.5]). As r’ has order p2, it
is either elementary abelian or cyclic of order p2. Thus ti - -1 (mod p2)
by Proposition 4.2(ii) or (iii). Hence ti ~ 1, and 3.7(ii) does not hold, as
claimed.



214

We are therefore in the case 3.7(i). Since %L j K(S) = pnR, it follows
that Er is in 2(, so e - 0 (mod (p -1)pn~’1) by Proposition 4.3. Thus for

and (i) holds.

Finally, we consider the case where S is not Galois. Since L/K is totally
ramified, [By3, Theorem 5] gives all the assertions of (ii) except for ti = 0
(mod pn). The same result shows that Qt is the maximal order in Kr. This
implies that the trace idempotent Er again lies in 21, so by Proposition 4.3
we have e = 0 (mod (p - 1)pt-1), and hence ti == 0 (mod p’~). 0

Now (3.11) fails in case (ii) of Theorem 4.4, so Theorem 4.4 and Corollary
3.14(iii) together give

COROLLARY 4.5. Let L/K be an abelian p-extension for which (3.1I)
holds, and suppose that 21 = S) is a Hopf order. Then a fractional
S-ideal ph cannot be free over unless either h m 0 (mod p) or
h - -1 (mod pn). 0

5. LUBIN-TATE EXTENSIONS

Let k be a finite extension of Qp , and let o be its valuation ring. Let
~ be a fixed generator of the maximal ideal in o, and let q = pf be the
cardinality of the residue field o/7ro. A formal power series f (X ) E o[[X]]
is a Lubin- Tate series associated to k and x if it satisfies the two conditions

By standard theory, as given for example in [Sl], there is then a unique
1-dimensional formal group F over o with f (X) as an endomorphism. The
endomorphism ring End(F) of F is canonically isomorphic to o, and, writing
[a] (X) E o [[X]] for the endomorphism corresponding to a E o, we have

[~] (X ) = f (X ) ~
Let k~ be a fixed algebraic closure of k, and let p’ be the maximal ideal

of its valuation ring. For n &#x3E; 0, let Gn = = {~ E = 0}.
Then Gn is an o-module, where addition is via the formal group F, and
where a E o acts via [a] (X ). For n &#x3E; 1, let kn be the field obtained by
adjoining all elements of Gn to k, and let on be the valuation ring of l~n.
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Then kn is a totally ramified abelian extension of 1~ of degree
( q - and any element of generates the maximal ideal
of On. The isomorphism between o and End(F) induces an isomorphism
between (0/(1 + 7rno)) x and 

In this section, we consider extensions L/K obtained by taking K = kr
and L = for integers r, m &#x3E; 1. Here we have r = 

where U~ denotes the subgroup 1 + 7rnO of the units of J~ . In the
case m  r, Taylor [Tl] determined the associated order 2l = 21( Kr , S) of
the valuation ring S of L, and showed that S’ is free over ~t. In fact, 2t is a
Hopf order (see [T2]). In the case m &#x3E; r, Chan and Lim [C-L] showed that
S is again free over its associated order when k We now show that
these are the only cases where S is free:

THEOREM 5.1. Let K ---- kr, L = and r = Gal(L/K) be as above.
If m &#x3E; r and k ~ Qp then the valuation ring S of L is not free over its
associated order in Kr.

Proof. The extension L/K is totally ramified of degree q’n = pfm. We first
determine its ramification numbers. It follows from [Sl, p. 156] that, in
the isomorphism between r and the ramification subgroup ri
corresponds to ( Uk n qs" 1 -1  j  qS - 1. Hence the
ranflfication numbers ti of L/K are given by

By (3.4) we have Z-1 - IP-1 where

As r &#x3E; 1, we conclude that w - 0 (mod q"’). Also tl = q’’ - 1 ~ -1
(mod since m &#x3E; r by hypothesis. Corollary 3.12 then shows that S is
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not free over its associated order, provided that (3.11) holds, i.e. that

It remains to verify that (5.2) holds whenever k ~ Qp. Since =

1 and e = e(K/Qp) = (q - we may rewrite (5.2)

which simplifies to p -1  Clearly this inequality holds
unless q = p and = 1, and these last two conditions together imply
that k = Qp. 0

Remarks. (i) As 0, -1 (mod qm) for m &#x3E; r, it follows from Theorem
4.4 that the associated order is not a Hopf order, even in the case k = Qp.

(ii) The proof of Theorem 5.1 gives very little information about the
associated order. In [By5] we determine the associated order explicitly in
the case r = 1, m = 2, under the hypothesis e &#x3E; q2.

6. COMPARING HOPF GALOIS STRUCTURES

In this final section, we consider the implications of Theorem 5.1 for the
integral module structure in field extensions admitting more than one Hopf
Galois structure. If LIK is any finite extension of fields which is normal and
separable, then of course L is a Hopf Galois extension of K over the group
algebra Kr of r = Gal(L/K). Greither and Pareigis [G-P] investigated
when, given a finite separable field extension L/K, there exists a Hopf
algebra H making L into a Hopf Galois extension of K. If this occurs,
then L is necessarily a free H-module of rank 1. Some, but not all, non-
normal extensions admit a Hopf Galois structure. It is common for a given
extension to have more than one Hopf Galois structure, corresponding to
different Hopf algebras H. Indeed, it is shown in [By4] that if L/K is normal
of degree n, and if (n, 0(n)) &#x3E; 1 (where 0 is the Euler totient function), then
there are always non-classical Hopf Galois structures admitted by L/K, in
addition to the classical one corresponding to H = Kr.
Now let K again be a finite extension of Qp . If L/K admits more than

one Hopf Galois structure, we may consider the integral module structure
for each of the corresponding Hopf algebras. The valuation ring S of L has
an associated order in each of these Hopf algebras. Just as in the classical
case, this might or might not turn out to be a Hopf order. The question
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then arises as to how the integral module structures for the different Hopf
algebras are related.

This was briefly considered by Childs and Moss [C-M], who investigated
the non-normal extension Q2(V2)/Q2’ Here there are precisely two Hopf
Galois structures. Both Hopf algebras are commutative and cocommuta-
tive. In the first Hopf Galois structure, the associated order of the valuation
ring s = 22[ @i] is a Hopf order, while in the second it is not. Both associ-
ated orders are, however, maximal orders, and S is free over its associated
order in both structures.

The extensions of the previous section provide a large family
of examples where we can compare Hopf Galois structures at integral level.
One Hopf Galois structure on is the classical one, and for m &#x3E; r

the behaviour of S in this structure is given by Theorem 5.1. The same
extension can also be endowed with a Hopf Galois structure by
means of the Kummer theory of formal groups, as developed in [C-M, §3].
We resume the notation of the previous section, so in particular K =
and L = Let cvr E and let cv,.,z+T be any zero of

[7rm](x) - wr. Then E and Wr (respectively, 
generates the maximal ideal of R = Or (respectively, of S’ = Now

G.~, is the kernel of the formal group homomorphism [7rm] : F -~ F defined
over R (in fact, defined over o ) . It follows by [C-M, Theorems 3.5 and 3.1]
that S is free, and indeed is a Galois extension, over some Hopf order 21.
The dual Hopf order to 2l is o[[X]]/([7rn](x)), which may be viewed as a
Hopf order in the Hopf algebra MapOK (Gm, kc) of functions from Gm to kC
respecting the action of the absolute Galois group Q K = of K.
Thus 21 itself is a Hopf order in a form of the group algebra kGm, namely
in the Hopf algebra of fixed points in kcgm under f2K (acting
simultaneously on k’ and Gm) .

If m  r we may identify r with Gm via the Kummer isomorphism

where -F denotes subtraction in the formal group F. In this case we also
have G~ C K, so 2l can be viewed as a Hopf order in Kr. Thus for m  r,
the Kummer theory approach specialises to the classical situation, and we
recover the freeness assertion of Taylor’s result [Tl] .

If m &#x3E; r, however, then and we obtain a new Hopf Galois
structure in which the integral module structure exhibits better behaviour
than in the classical case. We summarise the above discussion, along with
Theorem 5.1, in our final result:
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THEOREM 6.1. Let k be a finite extension let m &#x3E; r &#x3E; 1, let K = kr
and L = km+r be the corresponding division fields for a Lubin-Tate series
for k, and let r = In the classical Hopf Galois structure for

corresponding to the Hopf algebra Hl - KT‘, the associated order
2(l of the valuation ring S of L is not a Hopf order, and if k ~ Qp then S
is not free over The extension L/K also admits another Hopf Galois
structure, corresponding to the Hopf algebra H2 = (kCGm)OK, in which the
associated order 212 of S is a Hopf order. In this structure, S is a Galois
2t2-extension of the valuation ring R of K, and S is a free 212-module of
rank I . 0
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