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Heegner cycles, Modular forms and Jacobi forms

NILS-PETER SKORUPPA

Résumé

Nous présentons une interprétation géometrique d’une loi arithmétique
pour deduire des formules explicites pour les coefficients des formes modu-
laires elliptiques et des formes de Jacobi. Nous discutons des applications de
ces formules etcomme exemple nous dérivons de manière algorithmique un
critère analogue au critère de Tunnell concernant des nombres congruentes.

Abstract

We give a geometric interpretation of an arithmetic rule to generate
explicit formulas for the Fourier coefficients of elliptic modular forms and
their associated Jacobi forms. We discuss applications of these formulas and
derive as an example a criterion similar to Tunnel’s criterion for a number
to be a congruent number.

1. Introduction

This report is intended to interpret and to make more explicit a result
concerning effective, closed formulas for the Fourier coefficients and periods
of modular forms of arbitrarily given level. These formulas may be con-
sidered as a new contribution to one of the "Grundprobleme der Theorie
der elliptischen Modulfunktionen ... : Die Konstruktion der Integrale 1-ter
Gattung der N-ten Stufe und die Bestimmung ihrer Perioden." (cf. [H,
p.461]).

So far only two methods have been known to produce explicitly a basis
for the space Mk(m) of elliptic modular forms of (even) weight k on the
group ro(m): theta series or the trace formula (and variations of these).
The advantage of the new method in comparison with the method of theta
series is that it is valid without any restriction on the level m. The new
method yields an arithmetic rule to build the Fourier coefficients of the
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modular forms in Mk(m) for any given m and k without any cumbersome
requirements. It is more explicit than the trace formula method since it

provides formulas for the Fourier coefficients of modular forms which can
simply be written down and do not have to be generated by a slightly
unpredictable process.. Recall that the trace formula method to generate
a basis for Mk(m) consists in applying sufficiently many Hecke operators
to that modular form whose n-th Fourier coefficient is the trace of the n-th
Hecke operator acting on Mk(m). Explicit formu

However, probably the most interesting property of the new method is
the fact that it does not only produce for arbitrarily given level and weight
the Fourier coefficients of a basis of the corresponding space of modular
forms, but that it produces as well, via the Shimura lift, the associated
Jacobi forms. Jacobi forms serve as a mediator for the two important
arithmetical data attached to a modular form f : its Fourier coefficients

af (n) and its periods (0  1  k, ~.T E GL+(2, Q)). In particular,
combining (the generalization to Jacobi forms of) Waldspurger’s theorem
and the new method one can produce in an algorithmic way theorems
similar to Tunnell’s theorem on congruence numbers.

To give a flavour of the kind of explicit formulas that the new method
produces one may apply it to literally the sa.me situation as originally con-
sidered by Tunnell [T] in connection with the congruent number problem.
Here the new formulas lead to the following (see sec. 6. for details):

THEOREM. If a positive fundamental discriminant D - 1 mod 8 is a con-
gruent number, i.e. the area of a right triangle with rational sides, then
v+(D, r) = v_(D, r), where r denotes any solution to r2 - D mod 128
and

From the point of view of explicit calculations our formulas seem to be
not a priori computationally less expensive than, say, the trace formula
method. But because of their simple structure they are at least very easy
to implement on a computer.

It is an open problem to construct infinite series of Hecke eigenforms,
aside from those which are obtained by the process of twisting. The new
method does not do this either, at least not in an obvious way. However,
as we shall indicate below, it is not quite hopeless to try the new method
to generate explicitly Hecke eigenforms.
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In the following we shall restrict throughout to the case of weight 2. We
do this to save notation and technicalities. All of the following results hold
true, mutatis mutandis, for arbitrary even weight (cf. [S2]).

Remark on notations

If E is a set we use for the vector space of all formal linear combi-
nations ~ nT(x) where x runs through E and the nx are complex numbers
which are zero for all but finitely many x. By deg we always mean the linear
map C[E] 2013~ C which takes each element of E to 1, and by C[E]° we always
mean the subspace of of elements of degree 0, i.e. the kernel of deg.
If a group G acts on E* then we always view as a representation space
for G by extending the action of G on E by linearity to ~~E~. If G acts on
the complex vector space V then Ho(G,V) is the space of G-co-invariants
of V, i.e the quotient V/V’ where V’ denotes the subspace generated by all
elements g - v - v with g and v running through G and V, respectively.

Throughout m denotes a fixed positive integer, and we use the abbrevi-
ations 

, ,/ rn rn ~

A pair of integers A, p is called m-acfmjssjMe if A = r2 mod 4m.

2. Heegner cycles and intersection numbers

We describe first of all the arithmetic rule mentioned in the introduction
for generating the Fourier coefficients of elliptic modular forms or Jacobi
forms. This rule is essentially given by counting intersection numbers of
Heegner cycles.

Let H denote the Poincar6 upper half plane, i.e. the set of all complex
numbers T with positive imaginary part. Let IHI* = 1HI U (Q) be the
extended upper half plane obtained by adjoining the cusps Q U

The group GL+(2, R) of 2 x 2-matrices with real entries and positive
determinant acts on H by

The action of GL+(2, Q), the subgroup of matrices in GL+(2, R) with ra-
tional entries, extends to an action on H* which preserves the cusps.

By a (hyperbolic) line in IHI we understand either a semicircle with center
on the real axis or a vertical line perpendicular to the real axis. In order
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to deal with intersection numbers we need oriented hyperbolic lines. We
orient the hyperbolic lines by indexing them by real binary quadratic forms
with positive discriminant. To any such form

we associate the hyperbolic line CQ given by the equation

CQ is oriented from ifa$ 0, and if a == 0, from 2013~ to
0o for positive b, and from oo to -§ for negative b. The group GL+ (2, R)
acts on these oriented hyperbolic lines CQ by the action induced from the
action on IHI, and it acts from the right on the set of real binary quadratic
forms with positive discriminant by

The orientation of CQ is chosen in such a way that one has

for all Q and A. Let IL denote the set of all oriented hyperbolic lines CQ.
Let CQ and CR be two oriented hyperbolic lines. We define their inter-

section number CQ . CR by the formula

Here, for any R, the numbers aR denote those elements of (R) such that
CR is the line running from to For any A E ]Fl (R) we use Q(A)
to denote the number Q(A, 1) if A is real, and the number Q(l,0) if A = oo.
By sign A we denote the sign of the real number A, the sign of 0 being 0.

It is easy to verify that CR = -CR ~ CQ, in particular CQ . CQ = 0.
Two given different lines CQ and CR may intersect or they may not. If they
intersect then they do so in exactly one point, and then CQ . CR equals the
usual intersection number at that point, i.e. the sign of where tQ
and tR are the tangent vectors to CQ and CR (expressed as complex num-
bers) at their common point, respectively. If they do not intersect then
they may have a common boundary point in or they may not. If
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they have no such common boundary point then their intersection number
is 0. If they have a common boundary point then the usual argument of
infinitesimally shifting suggests for the intersection number either 0 or a
fixed non-zero value accordingly to which side one moves C(2. The above
intersection number is just the arithmetic mean of these two possible as-
signments.

As agreed above, let C[IL] and be the complex vector spaces
of all finite formal linear combinations ¿CELnc’(C) 
with complex numbers nc’ and na which vanish for all but finitely many
C and A. We extend the action of GL+ (2, R) on IL and JFl (R) to and

(R)], respectively, and we extend by linearity the intersection number
to an antisymmetric bilinear form on C[IL]. Let

be the linear map taking (CQ) to (~1~~,~ ) - (AQ,o). We have

PROPOSITION 1. Let C2 be elements and A E GL+(2, R), then
one has

Proof. This is immediate from the definitions.

Thus the intersection pairing on C[IL] induces an intersection pairing on
C[IL]/ ker( 8). The latter space may be identified with 8(C[JL]), which equals
the subspace of (JR)] consisting of those elements E nx(A)
with degree E na equal to zero. Thus, we have an antisymmetric pairing
"." on which is invariant under the action of GL+(2,R).
To obtain something more arithmetical we restrict to Heegner cycles.

These are those oriented hyperbolic lines CQ where the quadratic forms Q
have rational coefficients. Special Heegner cycles are split IIeegner cycles,
i.e. those CQ where the discriminant of Q is a square of a rational number.
The set of all split Heegner cycles coincides with the set of all oriented
hyperbolic lines joining two cusps.

We choose now once and for all a positive integer rn.
Let Q(m) denote the set of all integral quadratic forms [a, b, c] such that

m divides a. We recall that a pair A, p of integers is m-admissible 
mod 4m. To each such pair we can associate the subset
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The set Q(m) is the union of all these p). Note that Q(m) as well as its
individual subsets Q(A, p) are preserved under tlie action of the subgroup
r = ro (m) of GL+(2, Q).

To each fundamental discriminant D which is a square modulo 4m there

corresponds a generalized genus character

If, for a given Q, the discriminant A of Q is divisible by D such that A /D is
a square modulo 4m, and if there are integers x, y and a positive divisor m’
of ni such that n := is relatively prime to D, then one has

( ~ ) , where we use ( * ) for the Dirichlet character modulo D with
r, = Legendre symbol for odd primes p; otherwise one has 0

(cf. ~GKZ~, where this genus character was first introduced). Note that x D
is invariant under r, i.e. Xn(QoA) = XTJ(Q) for all Q and all A E r.

Fix now an m-admissible pair D, r, such that D is a fundamental dis-
criminant, and a split Heegner cycle C. For each m-admissible pair of
integers 0, p with DA &#x3E; 0 we can then consider the number

If DA is not a perfect square then this sum is actually finite, i.e. one has

CQ . C = 0 for all but finitely many Q. In fact, since C is a split Heegner
cycle it is running from a cusp p to a cusp q, and if we choose a matrix A in
GL+(2, Q) which maps 0 and oo to p and q, respectively, then C = ~~1C.~-~~ .
By Proposition 1 the intersection numbers are invariant under the action of
GL+ (2, Q) and hence = [a, b, c] and assume
CQo/t ’CX)- 0 0. Then it is immediate from the definition of the intersection
numbers that a and c have opposite signs, so = b2+4Iacl. Since
b and det(A) are rational numbers and since DA is not a perfect square we
deduce that ac ~ 0, whence the inequalities:

The a, b, c are rational numbers whose denominator is bounded by the
square of the common denominators of the entries of A. But there are

only finitely many rational numbers which have this property and satisfy
the listed inequalities. Note that this argumentation yields as a side result
an effective upper bound for the number of forms Q with CQ intersecting C.
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In particular, we recognize that p) grows in 0, for fixed C, D, r,
at most like and that this is also the order of magnitude of steps
needed to compute this number.

Also note that the argumentation in the last paragraph does not hold
for non-split Heegner cycles C. Indeed, the fact that the stabilizer in r
of a non-split C is infinite causes infinitely many Q in Q(A, p) to have
non-vanishing intersection with C. If A is a perfect square, then the sum
defining Ic(A , r) is not finite either. There is an infinite contribution arising
from those Q such that Q o A has a or c equal to 0. There is a sensible way
to fix the latter problem (cf. [S2]). However, here we restrict to the case
that DA is not a perfect square.

Before we discuss the arithmetic nature of the numbers p),
we introduce some more formalism in order to state some of their formal

properties. By linearity we can extend the definition of the p) to
all C from the subspace of C[IL] generated by split Heegner cycles. It is

then immediate from their definition and Proposition 1 that these numbers
depend only on C modulo the subspace ker ~, i.e. they depend only on
a(C). The image under a of the subspace generated by all split Heegner
cycles equals i.e. it is the space of all formal linear combinations

E np(p), where p runs through the cusps JIPl (Q), where np is zero for all but
finitely many p and whe re 1: np = 0. Secondly, we note that the numbers

for fixed D, r, A, p, depend only on the r-orbit of C. This is
immediate from the original definition using (AC) = C and the
fact that Q(DA, rp) and xD are invariant under A for any A in F. Thus,
let Co(m) denote the space of F-co-invariants i.e. set

Then we can state

PROPOSITION 2. The number p) depends only on the r-coinvari-
ance class of b(C) in Co(m).

The space Co(m~ is finite dimensional and it is possible to pick a rather
natural set of generators of this vector space. Nlore precisely, one has

PROPOSITION 3. The r-homomorphism C[r1] i -~ taking an el-
ement A E p to (Aoo) - (AO) defines by passage to quotients an exact
sequence
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(where we are tacitly identifying the space of co-invariants Ho (r, C [r, ]) and
C[rBf1J via the obvious isomorphism). Here

and for any A in r1, denotes the subspace of A-invariants in
C[rBr1] with respect to right multiplication by A.

Proof. Clearly Co(m) is generated by co-invariance classes of the form ((c)-
(oo with c E Q. Thus, to show that the third map is onto it suffices

to exhibit a pre-image for any such class. Let C-l = oo and let Co =

[c], c~, ... , cr = c be the convergents of any of the two continued fraction
decompositions of c. Then

and by well-known facts from the theory of continued fractions, there exists
for each i a matrix in r1 which takes oo and 0 to ci and ci-1, respectively.

To prove exactness at the middle space let Ii denote the kernel of the

third map and let k be the second space in the short sequence. Note

that K contains k. In fact, if D E is fixed by S’T, then D =

~ (D + D . ST + D . (,5’T)2) and the right side of this is obviously mapped
to the zero class in Co(m); if D is fixed by ,S’ then D = 2 (D + D - S) and
again it is obvious from the right side that this is mapped to 0.

To prove equality we compute dimensions. First of all one verifies by
elementary group theory that, for any subgroup H of one has

, "........,,-, , ,

i.e. the dimension of the subspace of H-invariants equals the number H-
orbits of rBrl, which is the number of double cosets above. Secondly, it is
well-known that r1 is generated by ,S’ and and hence the intersection
of the subspaces of S and ,5’T invariants in C[rBr1J is the subspace of r1-
invariants which, by the last equation, is one-dimensional. Combining these
formulas we find a formula for dim k, and using the fact that K contains k
we find
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( ~A~ , for any A in r1, denoting the subgroup generated by A) . In the next
section we shall obtain as a by-product the inverse inequality (cf. the proof
of Theorem 2) which thus proves the Proposition. _

To explain the arithmetic nature of the intersection numbers I we shall
consider generating functions of a sort for the sequences {(7~D,r(*)’)}. It

will turn out that these functions belong to a very distinguished class.

3. Jacobi forms, modular forms, periods

Before we can make the latter statement precise we have to review the
notions appearing in the title of this section and how these objects are
connected. By definition, a Jacobi form (of weight 2), index m and sign
E (= ±1) is a smooth function on H x C, which has the following
three properties:

(1) The function § is periodic in each variable with period 1 and its

Fourier expansion is of the form

where e.,p denotes the function

(2) The Fourier coefficients depend on p only modulo 2m, i.e.
= 21n) for all fl, p, and they vanish for 6A  0.

(3) The function ~ satisfies the transformation law

= r2 if c = -1 = lf E = +1.

If c,(0, r) = 0 for all 0 mod 4m then 0 is called a cusp form. The set
of all such cusp forms is denoted by P2 ~,~~ if c = -1, whereas we reserve the
symbol for a slightly smaller space which we will explain below. Like-
wise, we call a Jacobi form of sign -1 holomorphic, and skew-holomorphic
if it has sign -E-l. Holomorphic Jacobi forms have been studied in [E-Z],
skew-holomorphic were first introduced in ~51~,~53~ (a more thorough study
of these is in preparation and will appear elsewhere).
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By we denote the space of modular cusp forms of weight 2 on
ro(m). By definition, this is the space of all holomorphic functions f(r)
defined on the upper half plane If~ such that for all A E r one has = f ,
and for all A E Fi the function + iv) tends uniformly to 0 for v
tending to infinity. Here refers to the (right) action of GL+(2, R) on
functions defined on the upper half plane given by

For any modular form f in and any A E GL+(2, Q), the function
If A is periodic and has a Fourier expansion of the form

for a suitable positive integer N. The Dirichlet series

converges for &#x3E; ~ and can be continued to a holomorphic function on
C. The space S2(m) decomposes into the direct sum of the two subspaces
S2 (1n) and consisting of those f such that L( f, s) satisfies the
functional equation

with c = -1 and c = +1, respectively. For details cf. [H, in particular
p.644 ff.] (or, for more modern terminology, cf. [Sh])

The third main space participating in this section is a subspace of the
space Co(m) of r-co-invariants of We set

where i* is the map induced by the inclusion i :

Let 
J ,
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The matrix g acts on (Q)] by linear extension of its natural action
on Since it normalizes r, this action induces an involution 9* on
Co(m) and, as it is easily checked, on CCo(m) too. Thus the space CCo(tn)
decomposes into the direct sum of the (-1) and (+1) eigenspaces 
and CCo-(rra) of g*. More explicitly, CCof(m) consists of those classes
~~ np (p)] that satisfy

On each of these three kinds of spaces introduced in this section one
has Hecke operators, a sequence of natural operators T(n) (n = 1, 2, 3, ... ,
gcd(n, m.) = 1), whose action on a Jacobi form 0, a modular form f and a
co-invariant o- = [Z], respectively, is given by

Here the first sum is over those divisors d of n2 such that ~2 0 is an integer
and such that there exists a p’ with np m dp’ (mod 2rn gcd(d, n)) and

~2 0 - p’2 (mod 4m) (these two congruences uniquely determine p’ modulo
2m), and ~,~ (d) = f ( ~ lf 2 ~ if gcd(d, A) = f 2 with - 0,1 mod 4
and = 0 otherwise. In the third sum, the A run through a set of
representatives for the F left cosets of the set of all 2 x 2-matrices with
integral entries, determinant n and left lower entry divisible by m, and
A ~ Z refers to the action of GL+(2, Q) on (Q)]o. That the operator on
co-invariants is well defined, i.e. that the right side of the defining equation
does not depend on the particular choice of the representatives A, can be
easily checked. For the Hecke operators on Jacobi and modular forms we
refer to the above references for modular and Jacobi for

An element of any of these spaces is called a Hecke eigenform if it is

a simultaneous eigenform of all Ilecke operators T(n) (n = 1, 2, 3, ... ,
gcd(n, m) = 1). There exists a basis consisting of Hecke eigenforms in
the case of Jacobi and modular forms ([E-Z], [Sh]). In the case of skew-

holomorphic Jacobi forms there exist certain trivial cusp forms. These are
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those Jacobi cusp forms of index m such that c(A, p~ is different from 0 at
most if A is a perfect square. By we denote the subspace spanned by
all Jacobi cusp forms of index m and weight 2 which are Heckc eigenforms
and are not trivial.

The three types of objects introduced in this section are connected by
the following two theorems.

THEOREM 1. Let c E For any fixed fundamental discriminant D
and any fixed integer r such that D - r2 mod 4m and sign D = E there is
a Hecke equivariant map

gi ven by

There is a linear combination of these maps which is injective. For each
Hecke eigen form f in 32 ( m ~ there exists a IIecke eigen form ~ J2",,,, which
has the same eigenvalues as f under all Hecke operators. 

Remark. It is possible to give a simple description of the sum of all the
images of the i.e. of the the image of any injective linear combination
of the S TJ,r ([S-Z]).

Proof. For the case c = -1 the theorem was proved in [S-Z]. For the case
E = +1 it was proved in [S2] that the SD,r map into That

they are Ilecke equivariant is immediate from the definition. The remaining
assertions for the case E = +1 will be published elsewhere.

where A is any matrix in GL+(2, Q) taking 0 and oo’to p and q, respectively.
It is easily checked that this does not depend on the choice of A, that the
integral is absolutely convergent, and that one has
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ZFrom the last identity we see that the symbol f7’ dr can be linearly
continued to From the definition it is immediate that the map

dr is r-invariant. Hence the symbol fZ depends only
on the r-co-invariance class o- = [Z] of Z. We denote it by (f Likewise,
we can use the (easily proved) identity

to rewrite this symbol as

where

THEOREM 2. Let e E f ±11. The association

defines a perfect pairing between and CCof(m). One has

for all n &#x3E; 1, gcd(m, n) = 1. 
’

Proof. We have to show that the correspondence f - (f I .) defines an

isomorphism between and C).
To prove injectivity, assume that f is orthogonal to CCof(m). Then we

have in particular (f I ~ZA~~ = 0 for any A E r, where

(with g as in the definition of CCof(m)). But, for any f, by a simple
calculation,

where M denotes any matrix in GL+(2, Q) taking oo and 0 to AO and 0,
respectively. It is well-known that these integrals vanish for all A E r only if
f = 0 (cf. [Sh], or [Sl, proof of the Lemma]; the idea of the proof is that for
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any antiderivative F of the ha.rmonic differential f (T) dT + E f (-T) dT, one
has F(AT) - F(r) = ( f I ~ZA~~, so F would be a r-invariaiit antiderivative
if the right hand side of the last identity would vanish for all A, and so
would induce a harmonic function on the natural compactification of

the Riemann surface TB1HI which tlms has to be a constant).
¿From the injectivity we deduce that the dimension of is greater

or equal to the dimension of The latter is knoBvn to be

where we use the notation of Proposition 3 (cf. e.g.[Sh], or apply the
Riemann Ilurwitz formula to the natura.l ma.p ~1’(r) -: ¿Y(r1) and use the
facts that cusp forms in S2(m) correspond to holomorphic differentials on

and that has genus 0). But this formula implies a lower bound
for

and a short computation shows that this lower bound is equal to the upper
bound that we gave in the proof of Proposition 3. Thus we have equality
everywhere. Note that this also completes the proof of Proposition 3.

The compatibility with Hecke operators is easily checked noticing that a
set of representatives for the r-left cosets of a set of all 2 x 2-matrices with
integral entries, determinant n and left lower entry divisible by m is given
by

, . ,

that for any such matrlx

and that

(a, b, d varying in the above range). This completes the proof of Theorem 2.
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Reiiiark. The perfect pairings of the theorem ca.n also be viewed as in-

jections from ,S’2(m) into Ho the dual space of

Co( 111). They are, in essence, variations of tlle classical Eichler-Shimura

isomorphism which establishes a connection between S‘2 (rn) and the first
cohomology group H1 (r, C) ([Shl]). That there has to be a natural map
between H1 (r, C) and the dual of Co(m,) can immediately be recognized by
looking at the long exact sequence of cohomology groups derived from the
dual of the short sequence of r-modules

(with the obvious maps).

4. Closing the circle

So far we have described three types of correspondences, the the

pairings between S2(m) and the and the correspondences u -
p). The are linked by the fact that the latter give, roughly stated,

the adjoints of the former maps with respect to the pairings.
To make this precise we have to introduce two more notions. Denote by

J2’,,,,, the space of all Jacobi forms of weight 2, index m and sign c, and by
the subspace of cusp forms (which, of course, equals P2,,,,, for E = -1).

Then there is the Petersson scalar product 

a map which is linear in the first and antilinear in the second argument,
whose restriction to S2,m, x ,S’2~", defines a positive definite scalar product
so that the Hecke operators become hermitian, i.e

for all ~, ’lj;, T(n) ([E-Z],[S2]). It is easily checked that

defines an antilinear operator on J2,,,,,. We denote this operator by t.

The precise connection between the three types of correspondences can
now be formulated as follows.
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THEOREM 3. For a fixed E = ±1, o- E CCot«n1.), and m-adrni.ssible D, r
with fundamental D and sign D =,E, there is one and only one Jacobi form

who.se (A, p)-th Fourier coefficients, for any A such that
neither A is a perfect square, equals the number

introduced in sec. 1, where C is any chain of split Reegner cycles with
[8C] = ~. There is a constant c, depending only on c and m such that

for all 0 E P2,,,,, E CCO’ (m ) .

Proof. The uniqueness follows from the fact that any non-trivial

0 has a non-vanishing Fourier coefficient c,,6(A, p) with A and
DA not being a square (this is an easy consequence of [S-Z,Lemma 3.2] for
c = -1 and the analogous statement for skew-holomorphic Jacobi forms
will be published elsewhere).

It remains to show the existence with the claimed properties.
In we constructed for any A in r1 a Jacobi in J2,n, whose

Fourier coefficient (AD not being a squa.re) equals P),
where CA is a chain such that (9CA = Z~ with

It was shown ([Sl, end of sec. 2]), that

for all cusp forms 0 and all A, with a constant c depending only on c and
m. According to Proposition 3 we can write any cr C CCO’(m) as

with suitable numbers nA and A running through a set of representatives
for If we set
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then pr(~~ satisfies c(o for all 0, where pr denotes

orthogonal projection from J2 m, to P2,..
Clearly, the (A, p)-th coefficient of ik equals for DO not

a square. To investigate the result of applying pr to V) we cite that the
0, r-th coefficient of is of the form v(Aoo) - v(AO) for a r-invariant
map v on Thus, since is in CCo(m), i.e. in the kernel of the

natural map Co(m) - (Q)i, we see that the (0, r)-th coefficients of
~ vanish, i.e. that V) is a cusp form. Therefore the effect of applying pr to
qb is adding a trivial cusp form, i.e. a cusp form whose (A, p)-th coefficients
are 0 except for A being a square. Thus, setting = pro proves
Theorem 3.

There are two important corollaries to this theorem.

COROLLARY 1. Let E = tl. Then for any fixed m-admissible pair D, r,
D being a fundamental discriminant and sign D = c, the correspondence
m--~ defines a Hecke equivariant map

There is a linear combination of these maps which is surjective.

Proof. By Theorem 1 there is a linear combination S = ¿i niSn¡,r¡ which
is injective. Since, by Theorem 2, the pairing between S2(m) and 
is perfect, we deduce from the identity of Theorem 3 connecting and

£D,r that the orthogonal complement of the image of ,C := Fi 
equals the kernel of S. HenceC is surjective. Via the identity of Theorem 3
we deduce also the Hecke equivariance from the Hecke equivariance
of and the compatibility of the Hecke operators with the pairing and
scalar product ocuring in this identity.

The image of is the orthogonal complement of the kernel of Sn,r.
We can give a more explicit statement if we restrict to newforms.

A Hecke eigenform in f E S2(m) is called a newform of level m if the
subspace of all modular forms in S2 (m) having the same eigenvalues as
f under all Hecke operators T(n) (gcd(n, m) - 1) is one dimensional. It

is a well-known fact that any Hecke eigenform in ,S’2 (m) is of the form
with a newform f of a level m’ dividing m, suitable numbers ni,

and d running through the divisors of m/m’. Thus, for studying modular
forms, it suffices to focus on newforms. Let f be a newform, say in ,5‘2 (m),
i.e. let E denote the sign in the functional equation of L( f, s). Theorem 1
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implies that there is one and only one Jacobi form 0 (up to multiplication
by a constant) having the same eigenvalues as f with respect to all T(n).
The Jacobi eigenforms in P2",,,,, having the same eigenvalues as the newforms
in S2(m) are called Jacobi newforms.
When does a Jacobi newform 0 occur in the image of ,C ~,T? It is a fact

that the first coefficient a (I) of a modular newform f is always different
from zero. Thus SD,r(§) = 0 if c,,6(D, r), the first Fourier coefficient of
Sn,r(Ø), vanishes. On the other hand = 0 is equivalent to ~ being
orthogonal to the image of ~C ~,r, which, for a newform, is easily checked to
be equivalent to 0 not being in the image of ED,,. Thus, we have proved

COROLLARY 2. Let E = :i:1 and D, r an m-admissible pair, D being a
fundamental discriminant, sign D = f. Then a Jacobi newform 0 in 
can be obtained as with a sutable u if and only if its Fourier
coelficient c6 (D, r) is differen t from 0.

5. What is it good for ?

What can one do with Theorem 3 and its Corollaries? The main point
in Theorem 3 is that the are given by explicit, surprisingly simple
formulas. There are three applications of this which come immediately to
mind.

APPLICATION 1. It is possible to compute closed formulas for all the Hecke
eigen forms i n S2(m) an d P+ ED with fairly mild comp u t a ti on aI ex-
penses. 

~ 

Indeed, it suffices to compute the IIecke eigenforms in CCO(ni). The

claimed closed formulas for Jacobi Hecke eigenforms are then obtained,
according to Corollary 2, by applying sufficiently many maps ED,, to these
eigenforms. Applying the maps Sn,r to the Jacobi Hecke eigenforms so
obtained yields (at least) the newforms in S2(m) (which, by the remarks in
the foregoing section, suffice to produce all Hecke eigenforms if so desired).

In passing it should be noted that one can compute an explicit bound for
the D’s at most needed to be sure that every Jacobi or modular newform is
hit at least once by the images of the and Sn,r- This bound is obtained
by applying Corollary 2 (and the remarks preceding this Corollary) and
the fact that for a Jacobi newform the nonvanishing of a (D, r)-th Fourier
coefficient with IDI below an effectively computable bound (depending only
on the index m and the weight 2) is guaranteed.
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To compute the Hecke eigenforms in or rather those eigen-
forms which correspond to newforms in 52 (m), choose a basis for the space
CCo(m). This is easily done using the map

described in Proposition 3. Indeed, compute a basis b1 , ... , bg for

where p(A) denotes right-multiplication by the matrix A on C[fBr1]. Then
choose r := [Fi : cosets rA; such that the rA?, b, (1  i  r, I 

j  s), considered as elements of are linearly independent. From
Proposition 3 we deduce that the 7r(r Ai) = [(,4,oJ) - (1  i  r)
form a basis for Co(m).

Next, as step 2, choose a number N and compute the matrices of all

T(p) with p prime, p not dividing 111 and p  N, with respect to the above
basis. This is easily done using the formula

Here p(M) for any Af denotes that operator on which maps a

coset r a b ) to that coset which contains a matrix with second row(c d)
congruent to (c, modulo m, and the C,,,,,, are defined by

where § = [ao~’.. ? is the continued fraction decomposition of § (with
ar’L &#x3E; 2 if ~ ~ 0). The stated formula can be easily checked using the
procedure described in the proof of Proposition 3 to express a co-invariant
class in terms of the generators ~(Aoo) - (-640)].

In the third and final step, dia.gonalize the matrices of the T (p) to find
the canonical decomposition of Co(m) considered as a module over the
algebra generated by the T(p) with p  11T.

Each one-dimensional piece in this canonical decomposition corresponds
to a newform in S2(m). Thus, if the canonical decomposition contains as
many one-dimensional components as there are newforms in S2(m) (whose
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number is given by a well-known explicit formula) then our task is fullfilled
and we stop. Otherwise one increases N and restarts at step 2 with the
new T(p). 

Each newform in S2(m) corresponds to a one-dimensional component
of the canonical decomposition ofCCo(m) with respect to 7i, the algebra
generated by all Hecke operators T(n) (gcd(n, m) = 1). Since CCo(m)
and hence x is finite dimensional it is thus clear that the above algorithm
eventually stops. (Here one also needs that each T(n) can be written as a
polynomial in the T(p) where p runs through the prime divisors of n; this
fact is also the reason why we compute only the T(p) with p prime.)

The r-cosets in the above algrithm can be easily handeled by using the
bijection 

J - "

We would like to stress that the main point of the Application 1 is that

it yields closed formulas for the Jacobi and modular forms by applying the
£D,r and to the eigenforms in CCo(m). If one is solely interested
in tabulating Fourier coefficients of modular forms, then, of course, one
does not have to use the and Sn,r at all, but one can simply apply
the Hecke operator T(n) to an eigenform in CCo(m) to find the n-th Forier
coefficient of its corresponding modular form. The latter method (including
the above algorithm to compute the eigenforms in CCO(m)) can be found
in a slightly different formulation in [M].

The.described procedure to find explicit formulas for Jacobi and modular
forms requires only computationally mild expenses in the sense that it starts
from scratch using only linear algebra, and that it does not require any
delicate tool to be launched, like ,e.g., the trace formula for the T (n~ .

Before stating the next application we explain one more reason why it
is interesting to compute Jacobi forms at all. The Jacobi form § in 
having the same eigenvalues as a given newform f in ,5’2 (m~ carries not
only the information about the Hecke eigenvalues of f , but it carries also
information about the arithmetically interesting values L( f , D,1~, where
L( f , D, s~, for any discriminant D, denotes the L-series attached to the
tvvisted modular form 

More precisely, if D is a fundamenta.l discriminant which is a square mod
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4m, and relatively prime to m then one has

with a constant depending only on c and m. Here r is any solution
of r2 - D mod 4m and (f I f) denotes the Petersson scalar product of
f on S2(m) (cf. [G-K-Z, Corollary 1 in sec.11.3] for the case E = -1, and
[S2, Proposition 1] from which the above identity for the case c = +1 can
be deduced analogously to the reasoning in [G-K-Z]; the above identity is
the translation to the language of Jacobi forms of a well-known theorem of
Waldspurger). Thus, given that one needs the values of the L(,f, D, 1), one
will be interested in describing as explicitly as possible the 0 attached to
the newform f . Such an explicit description can be calculated.

APPLICATION 2. Given sufficiently many Fourier coefficients of a new-
form f in possible to compute explicit formulas for the val-
ues D,1) where D runs through the set of fundamental discriminants
which are squares modulo 4m and relatively prime to m.

. Indeed, having sufficiently many Fourier coefficient means that we have
sufficiently many Hecke eigenvalues of f for identifying it by these finitely
many eigenvalues. Hence, we simply have to compute a co-invariant cr in
CCo(m) having the same eigenvalues with respect to the corresponding
(finitely many) Hecke operators. Then the explicitly given Fourier coeffi-
cients of any (non-vanishing) provide the desired information.

Finally, applying the to the ,C ~~ ~r~ (cr) so obtained we recover the
newform with which we started. Thus, we may formulate this as

APPLICATION 3. Given sufficiently many Fourier coefficients of a newform
f in it is possible to compute from these finitely many coefficients
a completely explicit formula which gives all the Fourier coefficients of this
form.

It is not yet clear whether Theorem 3 and its Corollaries can also pro-
vide new theoretical insights. Yet the space of r-co-invariants CCo(m)
of rather handy, as is confirmed, for example, by Propo-
sition 3, and any Hecke eigenform extracted from it can be immediately
translated, via Theorem 3 and Corollaries, into a closed formula for the
corresponding Jacobi and modular Hecke eigenforms. Thus, it seems to be
worthwhile to investigate more closely the co-inva.riants and the action of
the Hecke operators on it, and perhaps one may hope to find (non-trivial)
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families of Hecke eigenforms in passing. Another point is that the space
CCo(m) has a natural Q-structure (replace C by Q in the definition of
CCo(m) and related spaces) and a.pplying the SD,r o yields Hecke
invariant subspaces of S2(m) which can be explicitly described. One may
try to exploit this for obtaining information about the decomposition over
Q of the algebra generated by the Hecke operat

6. An example: Tunnell’s theorem

Let f denote a non-vanishing element of the one dimensional space
S2(32~. It is known that if a positive integer D is a congruent number, i.e.
if it is the area of a right triangle with rational sides, then L(f, D, 1) = 0.
A general conjecture in the theory of elliptic curves would imply that the
converse statement holds true for squarefree D. These observations are the
starting point of [T] where then modular forms of weight 2 correspond-
ing to f via Shimura’s liftings were computed to obtain via Waldspurger’s
theorem explicit formulas for L( f, D, 1). It may be amusing to mimic this
procedure, but here with modular forms of weight 2 replaced by Jacobi
forms. The formulas so obtained are different from the one obtained by
Tunnell. It may be interesting to investigate whether the formulas ob-
tained here can be converted into those given in [T] by elementary means,
i.e. directly without going through the theory of modular and Jacobi forms.

To find a formula for the Jacobi form 0 and in particular for the L( f, D, 1)
attached to f, we note first of all that SZ(32) = 5~(32), so that

Moreover, it is known that L( f,1) does not vanish, i.e. that the (1, 1)-
th coefficient of § does not vanish. Hence, if u is a non-zero element of

CCo+ (m), then § = ,C~ ,~ (~) and I = STJ,r.c1,1(U) for any D such that
r) # 0 (up to multiplication by constants).

If we pick
......

then the coefficient of £1,1(0-) (A not a perfect square) equals

which, by a short calculation, can be rewritten as
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where we put

We find I(17, 23~ = 1, hence o- ~ 0. So the above reasoning can be applied
to this o- to obtain closed formulas for § and f . In particular, we find

for any odd positive fundamental discriminant D which is a square modulo
8 (and hence mod 128), and where r is any solution of r2 - D mod 128.
Here I is a constant, not depending on D, r. From this formula we deduce
as in [T] the Theorem stated in the Introduction.
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