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On the Galois structure of the

square root of the codifferent.

par D. BURNS

Résumé - Soit L une extension abélienne finie de Q, et OL son anneau
des entiers. Nous poursuivons l’étude du seul idéal fractionnaire de OL qui
(s’il existe) est unimodulaire pour la forme trace de L/Q.

Abstract 2014 Let L be a finite abelian extension of Q, with OL the ring of
algebraic integers of L. We investigate the Galois structure of the unique
fractional OL -ideal which (if it exists) is unimodular with respect to the
trace form of L/Q.

Introduction

Let L be a finite Galois extension of the field of rationals Q, and let Gr,
denote the Galois group Gal(L /Q). Letting denote the ring of algebraic
integers of L we henceforth assume that there exists a fractional Or,-ideal
AT. the square of which is the codifferent of the extension L/Q. (This is a
mild condition on the ramification of L /Q which is certainly satisfied if, for
example, L/Q has odd degree.) This ideal Ar. is therefore ambiguous, i.e.
it admits an action of and is in fact the unique fractional OT,-ideal
which is unimodular with respect to the GT;-equivariant Z-bilinear form
Trr, : AT. x AT, - Z which is given by

There is by now a considerable literature dedicated to the problem of deter-
mining the structure of the Hermitian-Galois module over Z[(3yj.
Most notably, this structure (inter alia) has been explicitly described by
Erez and Taylor [9] in the case that L/Q is at most tamely ramified, and
by Bachoc and Erez [3] and Bachoc [1] under certain less restrictive ramifi-
cation hypotheses but with the condition that Gr. be abelian. In this note
we are not concerned with Hermitian structure and shall only study the
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structure of Ar; as Galois module in the case Gr, abelian but without any
ramification hypotheses on L/Q (other than that AT, exists). In fact Bachoc
has recently shown that the description of Galois structure which we shall
give here is for a large class of abelian extensions L /Q actually sufficient to
determine uniquely the full Hermitian-Galois structure of over

(her results are to appear in [2]). Henceforth therefore G T. is abelian.
In this case Aj. is known to be locally-free as a module over an explicitly
described Z-order Ar, C Q[Gr,]([8], Theorem 3.1) and so it defines a class
(Al;) in the locally-free class group Cl(Ar:) of Ar.-modules. Letting MT.
denote the maximal Z-order in we shall here explicitly describe the
image of (AT.) under the natural surjective map

which is induced by the map defined on each locally-free A r - module X by

Our description of will be given in terms of the standard Hom-
description of C£(MT.) (to be recalled in §1). As a particular consequence
we shall prove that, given any rational integer N, there are infinitely many
fields L as above for which the order of the class 7rT,(AT,) (and hence also
that of the class (Ar,)) exceeds N. This is a striking result given the
strong analogies between the Hermitian-Galois structures of and

(0 T,, Tr T.,) which are valid under the hypothesis of tameness (c.f. [8], Theo-
rem 1.3) together with the fact that, without any ramification hypotheses,
OT. is always free over an explicitly described Z-order in (this is
the famous Hauptsatz of Leopoldt [12] (for a simple proof of which see
Lettl [13])). Specifically therefore it follows that the (techniques and) re-
sults of [1] and [3] are no longer valid after any weakening of the ramifi-
cation hypotheses imposed there. Nevertheless our description does give a
uniformity-type result more general (but weaker) than that of Th6or6me
0.3 of [3].

Acknowledgements : The author would like to thank Christine Ba-
choc and Boas Erez for many stimulating conversations. Also, the final
version of this note was written whilst he benefitted from the generosity
and warm hospitality of the Institut fur Mathematik der Universitit Augs-
burg, Germany.

Notations : We fix an algebraic closure Qr- ofQ, and for each rational
prime p, an algebraic closure Qp of the field of p-adic rationals We
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let QQ (respectively denote the absolute Galois group (re-
spectively For any finite extension L of Q (respectively Qp)
which is contained in Q~ (respectively Q;) we let denote the ring of
algebraic integers (respectively valuation ring) of L, IT, the group of frac-
tional Or,-ideals, Prr, the subgroup of IT, consisting of principal fractional
OT,-ideals, and efT. the ideal class group of L. For any such fields

7~ C L we shall often identify the group Zl; with a subgroup of IT. in the

usual way (i.e. via inflation of ideals).

1 - The ’Horn-description’ of Cl(M T.).

Our description of the class xr, (A r, ) uses the characterisation of Cl(M T.)
in terms of QQ-equivariant homomorphisms defined on the set of irreducible
Q’-valued characters of Gr.. For the reader’s convenience we shall in this
section briefly recall this ’Hom-description’ of Cl(M T.). (For a thorough
discussion of this description as applied to the locally-free class group 
of any Z-order A of Q[Gr,] the reader is referred to Chapters 1 and 2 of

[10].)
We now let r denote an arbitrary finite abelian group, with rt its mul-

tiplicative character group Hom(r, ~~*~. A division of rt is then an equiv-
alence class of characters under the relation of QQ-conjugacy. For each

character 0 E rt we let Q(0) denote the field extension of Q generated by
the set (0(q) : q E ri. This field only depends upon the division D to
which 0 belongs and accordingly we shall frequently denote it Q(D), with
Z[D] = (9Q(D)(= 7G~B~~. For each character o E rt we define an idempotent
eo of the Q(0)-algebra Q(O)[r] by

and for each division D of rl we then define an idempotent en of by

The maximal Z-order of Q[r] is then
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with the sum taken over all divisions D of rt. Corresponding to the de-
composition (1) there is a direct sum decomposition of any Mr-module X
as

and hence we need only describe the structure of lattices over each of the 
’

rings ,Mn := Now for each division D the ring ,Mn naturally
identifies with the Dedekind domain Z[D]. The structure of each finitely
generated MD- lattice is thus determined up to isomorphism by its rank
and Steinitz class (c.f. Theorem (4.13) of [14]). The Steinitz class (Xn)n
of an n-lattice X n is the element of the ideal class group of the

ring ,M n which is characterised by

and, if XD and Yn are M rj-lattices which span the same Q[r]eD-space,
then

where here [:],~4~ denotes the n-module index as defined for any two
Mr)-lattices which span the same Next, we introduce the
character functions which will describe the locally-free class group D)
of the ring We consider functions g on D with values in the group
Zn of Z[D]-fractional ideals, and such that

for each character 0 E and each element w E Such functions form a

multiplicative group We let 7 denote the group of fractional M T)-
ideals. There is then an isomorphism

To describe this isomorphism note that any character 0 E ~ extends by
Q-linearity to give an isomorphism Q(D) which we shall denote
by Õ. Then for any ideal b E In, the function is defined at each
character 0 E D by 

- 

°
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To give an example, for any character 0 E rt and any Z[0]-lattice Z, we let
ZA denote the 0-isotypic component of Z which is defined by

LEMMA 4. If X n and YD are any lattices (which span the same
Q[r]e n-space) then, at each character 0 E D, one has

Proof : Exercise.

Now; denotes the subgroup of IQ, D consisting of those functions
g which only take values in then the isomorphism (3) induces an
isomorphism

which we shall denote by n. It is thus natural to say that an element

C E Cl(M D) is ’represented by’ a function g E IQ, D if the class of g
modulo PR(Q,D corresponds to C under the isomorphism R.

2 - Some reduction steps

In this section we shall reduce the explicit description of the Galois
structure of to a local computation. We here fix L and set G =
Gr,,.M = M r,, and Cl(L) = Cl(M). For any (right) Z[G]-lattice X we
shall let X ^ denote the S-Iinear dual-lattice considered as a

(right) Z[Gl-lattice in the usual fashion. For any such lattice X we write
X’" for the maximal sublattice of X which admits an action of ~1.

LEMMA 6 ([3], PROPOSITION 2.1 (1)). The ,M-lattices Ar.M and 
are naturally identified by means of the trace form ofL/Q. 

’

Thus to describe the structure of Ar.,M it suffices to describe that of

A-". Note further that, since MA is M- isomorphic to ~1~1, the classes of
the lattices Ar.M and Am in Ct(L) have the same order. In the remainder
of this note we are therefore content to give an explicit description of the
class of Am in C£(L).
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LEMMA 7 (c.f. [6], THEOREM 2.1 and LEMMA 2.3) 

Therefore, by using (2), Lemma 4, and the isomorphism R of (5), to
describe the class of in Cl(L) it suffices to explicitly describe the
function defined on Gt by

For each rational prime p we define a function on GI by

so that

and we shall compute each function g(p) seperately. For this we need to
know the localisation properties of the Z[G]-lattices and Or, . Thus we
now fix a rational prime p and let 7p (or simply I whenever the prime p is
clear from context) denote the inertia subgroup of G corresponding to p.
We set 7~ = LT. We fix a prime O,.-ideal P of residue characteristic p, and
we We let F (respectively E) denote the local completion
of L (respectively K) at the place corresponding to P (respectively p),
and we set 0 = OF, A = and 6 = We let D denote the

decomposition subgroup of p in G and, in the usual fashion, we identify
this with Gal(F/Qp).

Now, as is well known, there is a canonical Qp[G]-module isomorphism

which restricts to give both

and

(Concerning AT, see for example Proposition 7, Chapter 3 of [11].) Fur-

thermore, since D is abelian, in [5] Bergé has described an E[D]-module
isomorphism

which restricts to give

and also (although not explicitly mentioned in [5])

Thus one has
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LEMMA 8. The E[Gj-module isomorphism

restricts to give both

and

To proceed we now set . We define a function 9p on

for each character § E 

LEMMA 9. For each rational prime p, each embedding
each character 0 E G§ one has 

I

(where here the bar indicates closure with respect to the p-adic topology).

Proof : One has

(where here o indicates that the tensor product is taken with 
considered as a Z[0]-module via the embedding J
X (respectively X’) denotes either OT. or (respectively either 0 or A)
then

and, via the isomorphism y of Lemma 8, this is 6[0J][G]- isomorphic to

Thus, setting q
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LEMMA 10. If res " (0) has p-power order then g(j,) (0) E PrCQ(H).
Proof : If 0 = res? p (0) has p-power order then, for any embeddings

Jl , J2 : Qt~ ’---+- ~~; there exists an automorphism 77 E f2Qp such that 
§J2°° . Hence, by using Lemma 9,

Hence is inflated from a p-primary ideal in a cyclotomic field of p-
power conductor and is therefore an element 

Note that 12 is a 2-group and so in particular Lemma 10 implies that

Thus we need only describe for an odd prime p. In this case I is a cyclic
group of order p"r say, 0 and r an odd divisor of p - 1 (r must
be odd in order that A exists). We let P denote the Sylow p-subgroup
of 1 with C the unique subgroup of 1 of order r. The direct product
decomposition 1 = P x C leads to a corresponding decomposition of the
local character groups 1’oc = x C ~~~ . For each character § E 

For

each v E and A we define idempotents

and

For each non-negative integer i  n we let Pi denote the subgroup of P of
order pi, so that in particular Pn, = P. For each such integer i we let ei
denote the idempotent
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and for convenience we also set 0. For any (right) Z[I]-lattice X
and subgroup H  I we let X H denote the sublattice of X consisting
of those elements which are invariant under the action of each element of

H. We let N denote the maximal ð-order of the E-a,lgebra E[I]. Finally,
for any integer n we let ~(n) denote the order of the multiplicative group
Rn = 

LEMMA 12. 1" loc has order pir’ with i  n and r’lr then, setting
A = Oc and j = n - i, one has

where here we set

Proof : Since E /Qp is unramified one has Enop(§) = Qp and so letting
Do denote the division of to which Op belongs then

But for any (right) X and any character

short exact sequence of 6-lattices

with the third arrow indicating multiplication by e j+ 1. Thus the expression
(13) is equal to
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3 - The local calculation

In order to describe the class of in C£(L) it suffices, by using
the work of §2, to determine the behaviour of each of the lattices AN eÁ
and C?Nea under fixing by the subgroups P~ for all non-negative integers
i  n, and for all characters A E Since E/Qp is unramified we can
here use the techniques of Berge developed in [4]. For each non-negative
integer i  n we set Fi = FPi, Vi = and we let v. denote the valuation

of the field To be more precise concerning the character group we

fix a uniformising parameter 7r for F. The map defined on I 
induces an isomorphism 00 (which is independent of the choice of 7r) between
C and a subgroup of the roots of unity of the residue class field of E. We
let X,7/17, denote the (unique) element of which induces by passage to
the residue class field the isomorphism 8~ . Then is a generator of

and hence to each character X E one can associate an integer
u;~ E {I, 2, ..., r} defined by

Given the above definition the following lemma is not difficult to
prove.

LEMMA 15 (c.f. [4], PROPOSITION 1). be an element For

any (non-zero) element x E F one has

with equality here if and only if vn(x) -= -u. modulo (r). In particular,
for each integer i E {0,1,2,.... n~ if xeÀ ei z is non-zero then

LEMMA 16. each in teger i

Proof : This is obvious since ON = 0 ([4], Theoreme 1).

Since is unra.mified the complete ramification filtration of I is
known and so, by means of Hilbert’s formula ([15], Chapitre IV.1, Propo-
sition 4), one can explicitly compute the valuation The techniques
of Bergé ([4],§2.2) then easily prove
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Remark : Lemma 17(ii) is also a consequence of Proposition 2.3(4) of
[3] .

For each integer i E {0,1, ..~} the lattice Api identifies with a fractional
Oi-ideal which can also be explicitly computed. However, for our purposes
it is sufficient to note the following.

LEMMA 18. For each i E 10, 1, .., n - 1} one has

ifi is even ;

if i is odd.

if n is even ;

if n is odd.

Proof : If i = 2j + 1  n then the claimed result for i follows easily
from that for 2 j . On the other hand if i = 2j  n then Aei = A Pi (Lemma
17 (ii)), and using the characterisation of as the unique fractional
Oj- ideal which is unimodular with respect to the trace form of this

implies that Api = (By an induction on 11.) it therefore suffices
to prove the claimed results only for the case i = 0, and in this special case
the result is easily verified using the explicit formula of Hilbert mentioned
above.

LEMMA 19. Let A c be non-trivial. If i E {O, 1, ..n~ is odd then

for an explicitly computable integer ai which is independent of A. If i E

{0, 1, ..~} is even then

where ai is an explicitly computable integer which is independent of A, and
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Proof : For each non-negative integer i  n we let ~~ denote the max-
imal ideal of the valuation ring O;, and we let tci be any uniformising pa-
rameter of the subfield Ki = By Lemma 18 there exists an (explicitly
computable) integer ai such that

with

Thus, if A E C§ is non-trivial then from Lemma 15 one has

Thus, if i is odd or if 2u x  r then one has

But on the other hand if i is even and 2u x &#x3E; r then

4 - The explicit description

By Lemmata 9,12,16,17(i) and 19 we have now computed each fractional
ideal g~r~(B). To state this result explicitly we must label the p-primary
prime ideals of Z[0]. For each positive integer n we now let Q(n) denote
the splitting field (in Q’) of the polynomial X" - 1 E Q[X]. For each

character 0 E Gt we set 9p = E It and we denote the order of
Op by for integers no  n and rolr. Lemma 9 implies that g(p)(B) is
inflated from an ideal of Since p splits completely in Q(ro)/Q and
totally ramifies in Q(0p)/Q(ro) the p-primary prime ideals of Z[0p] are in
bijective correspondence with the elements of the group We use the

labelling E for the p-primary prime ideals of where
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here for each class u E Rr6 the prime ideal corresponds to a field
embedding j : ~~ ~ ~~; for which

We also define a function h(p) on the character group It by

where here, for each element u E we write u for the least strictly posi-
tive integer with residue u. In terms of this labelling Lemmata 9,12,16,17(i)
and 19 together give the following explicit description of each function 
(For convenience we shall now also set =0.)

THEOREM 1. F’or each character 0 E and for each rational prime p
vvhich ramifies in L/Q, = (0) has order p7l.6 rA with p f rA then

Note that

for each character 0 E Gt, and so the class of A" ’- in Cl(L) is in fact repre-
sented by the function on G§, , which has p-primary parts 0 H 

COROLLARY 1. For any character 8 E Gf.;, if resZ (0) has order coprime to
p then E 3’rQ(.9). 

Proof : In this case E PrQ(fJ) as an easy consequence of
the factorisation properties of Jacobi sums (c.f. ~11~, Chapter IV, Theorem
11) as first used in this context by Erez in [7].

Following Erez [7] a rational prime p is said to be weakly ramified (peu
ramifi8e) in L/Q if either #Ip = p or p ~’ #Ip, and is otherwise said to be
very wildly ramilied in L/Q. From Lemma 10, (11), and Corollary 1 we

now need only consider functions for odd rational primes p which are
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very wildly ramified in L/Q. To consider this case more carefully we shall
assume for simplicity that p is totally ramified in L/Q and that all other
rational primes are weakly ramified in L/Q.

If now L/Q has degree p"r with n &#x3E; 1 then, defining a natural number
c(p, n, r) by

(this is indeed dependent only upon p, n and r and not on the particular
field L within the stated conditions), one has

COROLLARY 2. If p is totally ramified in the extension and all other
rational primes are weakly ramified in L/Q then the order of the class of

in Cl(L) 

Remarks (0) : Recall that the classes of AT. M T. and have the
same order in CE(L) (c.f. Lemma 6 and the remarks which follow it).

(i) : If n = 1 then AT,,MT, may or may not be free over Indeed
it is certainly possible that is trivial so that necessarilly is

free, but on the other hand for example the unique subfield L of Q(169)
which has absolute degree 39 satisfies the conditions of Corollary 2 with
p = 13, n = 1, and r = 3 and yet c(13,1, 3) = 2 ([8], Theorem B.3).

(ii) : From Corollary 2 it follows immediately that given any rational
integer N there are infinitely many absolutely cyclic fields L for which the
order of the class of AT.,MT; in Cl( L) exceeds N. (This result was first
stated as Theorem 3.6 in [8].)

Proof : We shall first prove a prelimina.ry lemma concerning the be-
haviour of certain ideal classes. For each integer n &#x3E; -1 and for each

integer d &#x3E; 3 we set kd(n) = Q(pn+1d) (but we shall henceforth not ex-
plicitly indicate the dependence on d). For each such integer we let C(n)
denote the ideal class group of ken) with A(n) its p-primary subgroup. We
let J denote the automorphism of k(n) (and hence of C(n) etc...) which is
induced by the action of complex conjugation. We also define an integer
s = ~(d)/2.

LEMMA 21. For each integer n &#x3E; -1 the prime ideals of (9k(n) lying
above p are of the form pi (n), 1’1 (n)r, ...,1’.,( n), ~,,(n)v for distinct prime
ideals 1’1 (n), ..., p,q(n). Furthermore the subgroup of A(n) generated by the
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classes of the ideals ...,p.,(n)l-.1 contains a subgroup isomorphic
to 

Proof : Only the remark concerning the subgroup of A(n) which is

generated by the classes of the ideals Pl ( n ) 1 -.1 , ..., P.1f ( n ) 1-.1 is not obvious.
Thus suppose that for some integers a. one has

for some element a of k(n) - we must show that for each i with

1  i  s. Let /3 = a-’ so that = (a)2. Let 1] = (3"-1 for a a
generator of Gal(k(n)/k(0)). Then 77 is a unit of k(n) all of whose conju-
gates have absolute value equal to 1, and hence is a root of unity. Also

= 1 and hence by Hilbert’s Theorem 90 there exists an
element ( of k(n) such that q = easy to check that in fact ( must
also be a root of unity. But Q(~~ E k(0) and therefore (a)2 = ({3) = ((3(-1)
is in fact an element of Ik(o). Hence pnlai for 1  i  s, as required.
Now to prove Corollary 2 by using Theorem 1 we need only consider the

ideals for those characters 0 E Gl, for which both 1 and 1

(c.f. Lemma 10 and Corollary 1). GT, is any such chara.cter we let ao
denote the order of the class of in so that in particular

But on the other hand, if ~ is any p-primary prime ideal of Z[0] then
if and only if P-1 f h(p)(0) (c.f. (20) for the definition of h(p) and

so, using the notation of Lemma 21 (with d = rg), one has

with di E ~-+-1, -1} for each i E ~ 1, ...~}. Thus by Lemma 21 the conditions
(22) and (23) together imply that ao = p"~ -~ aA for some natural number
aA. But setting 0" = 8~’’~~ ~ then

and so the order of the class of A r M r in C£(L) is equal to
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By a straightforward exercise this last expression is indeed equal to
c(p, n, r).

5 - A uniformity result

We are grateful to Christine Bachoc for helpful remarks concerning the
material of this section.

Let L and L’ be finite abelian Galois extensions of Q of groups G and G’
respectively. For each rational prime p we let Ip (respectively I’) denote
the inertia subgroup of G (respectively G’) at the prime p. We shall say
that G and G’ are inertia isomorphic if there exists a group isomorphism 0 :
G ~ G’ which is inertia-preserving, i.e. such that = I’ for all rational
primes p. In this final section we shall briefly remark on implications of
Theorem 1 concerning the question

24. If L/Q and are odd degree abelian Galois extensions witfi
inertia-isomorphic Galois groups is there necessarilly an inertia-preserving
isomorphism between G and G’ with respect to which there exists a Galois
equivariant isomorphism between the lattices and AT.’MT.’ ?

Under certain restrictive ramification hypotheses the answer to (24) is

already known to be affirmative. Indeed, even more strongly, from Bachoc-
Erez [3] and Bachoc [1] one has

THEOREM 2 (BACHOC-EREZ, BACHOC). Assume that L/Q is abelian of
odd degree and that, for each rational prime p, the inertia subgroup Ip has
order which is either a power of p or is coprime to p. Then there exists a
Gr.-equivariant isometry between (AT., Trj ) and (AT., nc,,) for an explicitly
described GT.-equivariant Q-bilinear form nefT. on Q[GT,]. Moreover if L’ /Q
is any other Galois extension for which Gr. and GT,, are inertia isomorphic
then any inertia-preserving isomorphism between GT. and GT,~ induces a
Galois equivariant isometry between and (~4~/,~~~~).

Theorem 2 also implies that if L/Q and are any odd degree abelian
extensions with inertia-isomorphic Galois groups then, at each rational

prime p, there is a Galois-equivariant isometry between the localised Galois-
Hermitian modules and (AT.’, @z , ([8], Theorem
3.3). Thus, since there are no local obstructions, question 24 is the first

problem one encounters when attempting to generalise the result of Theo-
rem 2 to the case in which there are wildly ramified rational primes p for
which #Ip is not a p-power.

To be more precise we shall now fix an abstract finite abelian group r
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of odd order, and for each rational prime p, we fix a subgroup r such
that = 1 for almost all p. We let E denote the set of Galois extensions
L of Q for which there exists an isomorphism

such that, for all rational primes p,

For each L we let AT, denote the set of isomorphisms A as in (25). We
now let denote the maximal Z-order in the Q-algebra Q[F]. For each
L E 6 and A e AT. we let [L, A] denote the element of the locally-free class
group which corresponds to AT,M T. under the isomorphism A. For
each L E E we then set

The question (24) is then

(26) (i)
For any two fields L, L’ E C is it necessarilly true that cr, f’1 0?

or equivalently

(2G) (ii) For any two fields L, L’ E 6 is it necessarilly true that cr, = C T.’ ?

We shall now show how the description of Theorem 1 easily implies a uni-
formity result similar to (but still considerably weaker than) an affirmative
answer to (26). For this result we pass from L to its absolute genus field

L. To be more precise here, if L E E then for each rational prime p which is
ramified in the extension L/Q we let L~, denote the unique abelian exten-
sion of Q which is ramified only at p and is of order #Ap, and we then let L
denote the compositum of all such fields Lp (so that in particular L C L).
We also set G T. Gi,.

COROLLARY 3. If L and L’ are any elements of E then there exists an
inertia- preserving isomorphisme Gj. -~ which induces a natural

bijection
- - - - .. -.-
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Proof : We let (pi : 1  i  t~ (respectively lp. : 1 1  i  s}) be the set
of rational primes which are ramified (respectively very wildly ramified) in
the extensions and L’/Q. For each i C {1, ...t} we set I; = and

it = so that

and

For each i E {1, ...s} we fix a prime ideal p~ of Oi, lying over 11 and then
let F; (respectively Ei) denote the local complection of L (respectively 
at the place corresponding to j5,. NVe similarly define local fields FI and
E~ coming from L. Since each subgroup I; is cyclic the existence of an
inertia-preserving isomorphism between Gr a.nd Gr,, irriplies the existence
of isomorphislns

such that

(c.f. the remarks preceeding (14) for the definition of the characters 
Let now r denote an abstract abelian group which is isomorphic to GT
and let M then denote the maximal Z-order in By (27), (28), the
description of Theorem 1, and the result of Lemma 6 the inertia preserving
isomorphism 

I

induces an equality of sets

Butnowif. then LIE is unramified and

theoretic map tracer
and therefore
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But if E’ = L’~~ H~ then E’ ~ ~ and L’/E’ is unramified so that again one
has

But given (29) and (30) the map E ~ E’ now gives the bijection of Corol-
lary 3.

N AI

Of course if L = I’ then the assertion of Corollary 3 is trivially satisfied .
It is however possible that a stronger uniformity result is true -for example,
Th6or6me 0.3 of [3] does not seem to be a special case of Corollary 3.

Nevertheless, given the description of Theorem 1 (and in particular the
dependence of the function on the field L (c.f. (20)), it seems to us

very unlikely indeed that the answer to (26) is always affirmative. IIowever
to decide this would at some stage involve an analysis of the behaviour of
certain ideal classes and we do not consider this any further here.
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