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On the order of vanishing of modular Z-functions
at the critical point

par HENRYK IWANIEC

1. Introduction

The nonvanishing of L-functions at special points is an attractive area
of research in contemporary number theory, see [7]-[11]. One example
is the Rankin-Selberg zeta-function L(f ® g;,s) associated with a holo-
morphic cusp form f of weight 2 and Maass cusp forms g; of eigenvalue
Aj = s;(1 —s;). In this case the nonvanishing of L(f ® g;,s) at s = s;
plays a role in the work of R. Phillips and P.Sarnak [6] on deformations of
groups and was proved to be true for infinitely many cusp forms g; by J.-M.
Deshouillers and H. Iwaniec [3]. Another example is the Birch-Swinnerton-
Dyer conjecture which asserts that the rank of the group of rational points
on an elliptic curve £ defined over  is equal to the order of vanishing of
the associated Hasse-Weil L-function L(s, E) at s = 1 (the center of the
critical strip).

Recently V.A. Kolyvagin [4] has proved that the group of rational points
on a modular elliptic curve E is finite if L(1, E') # 0 and that the L-function
L(s, E, xq) twisted by a suitable real character x4 has simple zero at s = 1.
The latter condition was subsequently proved to hold true for infinitely
many discriminants d by D. Bump, S. Friedberg and J. Hoffstein [2] and
independently by K. Murty and R. Murty [5]. In these notes we establish
(from scratch) quantitative results on Kolyvagin’s condition.

2 - Statement of results

Let E be a modular elliptic curve defined over @ and

oo

L(s,E) = Z apn”*

1

be the Hasse-Weil L-function associated with E. Thus

[ o]

f(z) = Z ane(nz)

1
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is a cusp form of weight 2 which is a newform of level N, where N is the
conductor of E. The L-function is entire and it satisfies the functional
equation

(T\/ﬁﬁ) T(s)L(s, E) = w (g) [(2~-s)L(2 -5, E),

where w = x1. We are interested in curves E for which L(1, E) # 0, so
the functional equation holds with the sign w = 1. The twisted L-function

o0

L(Sa EJ Xl') = Z anXd(n)"—ﬁa

1

where x4 is a real primitive character to modulus d prime to N is also entire
and it satisfies the functional equation

s 2—s
(1) (‘d_\/—‘]\i) I'(s)L(s, E,xa) = wa <d\/]7) ['(2—-s)L(2—s,E,xd)

2 27

with the sign wq = wxq4(—N). In the sequel we let d range over the set
D ={d:0 < d=—v?(moddN) for some v prime to 4N}

and we let x4(n) = (=2) be the Kronecker symbol. Thus if d is squarefree
Xa is the primitive character to the modulus d which is associated with
the imaginary quadratic field Q(\/—-_d) Every prime dividing N splits in
Q(v/—d). Moreover we have wy; = —1, so by (1) it follows that

(2) L(1,E,xa) = 0.

Our aim is to prove that L(s, E, x4) has a simple zero at s = 1, i.e.
L'(1,E,xq4) # 0 for infinitely many d in D. To this end we shall evaluate
two sums of type

(3) Sa(Y)y= D' IL'(L,E,xa)l*
deD,dLY
and
(4) Si(Y)=>_" L'(1,E,xa)F(d/Y),
deD

where Zb means that the summation is restricted to squarefree numbers
and F' is a smooth function, compactly supported in Rt with positive mean
value.
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THEOREM. For any ¢ > 0 andY > 1 we have

) Si(Y) << Y+
and
(6) 51 (Y) =aY logY + /BY + O(Y13/14+f)

with some constants a # 0 and  which depend on the curve E and the
test function F.

CoOROLLARY. Suppose € > 0 and Y > c(e). Then L'(1, # 0 for at

E,xa1) #
least Y2/3=¢ real primitive characters y4 to modulusd € D,d <Y

3. Estimates for the coefficients of f

The Fourier coefficients a,, of the cusp form f are multiplicative. More
exactly, for Re s > 3/2 we have the Euler product

(7) L(s,E) = [J(1 = app™) ' (1 = Bpp™") "

P

with a, = 0,21,8, = 0 if p|N and |op| = |Bp| = p'/2 if p + N. In the
latter case the result was proved by M. Eichler and P. Deligne. It yields the
following bound for the coefficient a,, (known as the Ramanujan conjecture)

(8) lan| < n'/27(n),

where 7(n) denotes the divisor function, 7(n) << n‘. This bound can be
slightly improved on average. Indeed, arguing as G. Hardy and E. Hecke
with Parseval’s formula and using the boundedness of yf(z) we get

(9) Y laml* < M.

m<M

Similarly we get

(10) Z ame(am) << M log M
m<M

for any real @ and M > 2, the implied constant depending on f only. In
this section we derive three variations on (10).
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LEmMMA I. Let « be real and i be a periodic function of period r. We then
have

(11) 37 amp(m)e(am) << WM log M,
m< A

v=2 Y Y el

a(mod r) b(mod r)

where

Moreover, if || < 1 and s Is a positive integer then we have

(12) Z amp(m)e(am) << T(s)r%Mlog M
m<M,(m,s)=1

and

(13) D" amip(m)e(am) << 7(s)r* M (log M)’
m<M,(m,s)=1

ProoF: The sum on the left-hand side of (11) is equal to

S T w0 T amello - Hym),

a(mod r) \bh(mod r) m< M

whence the inequality (11) follows by (10). If |1)| < 1 we obtain ¥ < r'/2
by Cauchy’s inequality. For the proof of (12) we can assume that (r,s) =1
by changing ¢ suitably. Then we apply (11) for ¥xq in place of 1, where
Xo 1s the principal character to the modulus s. We obtain

== Y Y wwe®)

a(mod 1) h(mod r)

o> X(,(d)é(c—jn <<§ Yoo > d=r(s)r7,

e(mod s) d(mod 3) c(mod 3) d|(e,3)

which gives (12). Finally we derive (13) from (12). The sum on the left-
hand side of (13) is equal to

ZZ p(v)ay2mp(vim)e(av®m)

v2m <A, (vm,s)=1

= Z Zp(z/)a,,z,\ Z am (v Am)e(av? Am)

(v,8)=1 Ay m<AM[Av?
v2A<M (m,vs)=1

3 T(v)

L 7(s)r7 M(log ]\/[)( E)_] ME 00Ia,,a,\l e

VIASM
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Hence (13) follows by (8).

4. Approximate formulas for L'(1, E, x4)

We shall express L'(1, E, x4) in terms of the rapidly convergent sums

o
2mn

AX, ) = 3 anx(m)n ™ V(SE),

1

where V is the incomplete gamma function defined by

V(X) :/ e "t dt = -—}—/ lS)X_"ds.
(3/4)

e 2 s
We have
A(X, xa) = = L+ 5, B, xa) X (2T
y Xd) = omi S, Ly Xd s X S.
(3/4)
Moving the integration to the line Re s = —3/4 we pass a simple pole

at s = 0 with residuum L'(1, E|xq) by virtue of (2). On the other hand
the integral over the line Res = —3/4 is equal to —A(d? NX ', x,4) by the
functional equation (1). This gives

(14) L,(17E7Xrl)=A(Xeri)+A(d2NX_1aXd)

for any X > 0 and d in D which is squarefree. In particular we have

(15) LI(I)E)Xd) = QA(dW)Xd)

By (9) we infer trivially that A(X, x4) << X'/% for any X > 0 and inserting
this to (14) we obtain

(16) L'(1,E, xa) = A(X,xa) + O(dX~'/?).

5. Estimation of the fourth moment of L'(1, E, x4)

By the large sieve inequality (see [1]) together with (8) we get

Z Z*lA(X,X)|4 << (X _|_}7)2+r‘

d<Y x(mod d)
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On the other hand by (14) we have for any d € D,d <Y, d squarefree that
NY
EE ol << [ 4G Xl XX,
1
Combining both results we infer the upper bound (5) for S4(Y).

6. An approximate formula for the first moment of L'(1, E, x4)

By (15) we obtain

$1(¥) =2 3 P AW/E XD F(5).

deD

Now we relax the condition that d is squarefree by introducing the factor
Z"»’I'l p(a), then we split the sum according to whether a < Aora > A
and in the latter case we return to squarefree numbers by extracting square

divisors of a~?d. We obtain $;(Y) = S + R, say, where

S=2 Z p(a) Z A(a®dVN, Xx424)F (%)

a<A, (a,4N)=1 deD

and

R=2 E Z p(a) Z *»AB2dV'N, xp2q)F (b d)

(b,4N)=1 \alb, a>A deD

Here A is a large number to be chosen later. In the term A(X, xp24) with
X = b2dV/N we return to L'(1, E, x4) by reversing the arguments as follows

AX,xpa) = ) anxa(n)n” 1‘/(2;{”)

(n,h)=1

_Zza ,Bx,,(kf)ﬂ(k)“(z) (M’X)

k|b ¢|b

=20 B [T (1- 602 ) (1- 002 ) +0rmax—)

plb
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the second line being obtained by (7) and the third line by (16). Finally
applying (5) and the Holder inequality we conclude that

(17) R<< D0 D0 DOy b7y Hy << a7y 44y v,
b alha>A
7. A transformation of S

It remains to evaluate S. For (a,4N) =1 and d € D we have

A(a2dV'N X a2q) = E ann” xa(n)V(2rn/a®dV'N).

(n,a)=1

Every n can be written uniquely as the product n = kf?m, where k has
prime factors in 4N, #m is prime to 4N and m is squarefree. For n written
this way and d in D we have x4(n) = xa(m) subject to (d,£) = 1. The last
condition is detected by the familiar formula of Mobius giving

S=2Y p(a) Y ann™'D u(e) Y, x(:q(fﬁ)F (@) 14 (%) :

a<A n=kf2m qle dq€D
(2,4N)=1 (n,a)=1

Next, by means of Gauss sums we write

4ANrd

Xa(m) =Emm™3 Y xwe(m)e(——),

2|r|<m

where €,, = 1 if m = 1(mod 4), ¢, = i if m = —1(mod 4) and 4N4N =
1( mod m). This gives

S=2) > u(a)ann Emm Ty p(g) Y x,vrq(m)z

a<An=kf?m qlt 2|r|<m
(a,4Nn)= 1

where

adq ™ 4Nrd
Y= ¥ v I,

dq€D

We put A = min(1/2,a2qY ") and split S = Sq+ 51452, where Sy, S1, 52
denote the partial sums restricted by the conditions r = 0,0 < |r| < Am,
Am < |r| < m/2 respectively.
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8. Estimates for S; and S,

LEMMA 2. Suppose g(z) is a smooth and integrable function on R with
derivatives g\(z) << (|z| 4+ X)™7 for all j > 1 the implied constant de-
pending on j only. Suppose «a is real and q is a positive integer such that
aq is not an integer. We then have

X(_a \
(18) 2 almel )«q(xuaqu)

n=v(mod q)
for any j > 2, the implied constant depending on j only.
PROOF: By Poisson’s formula the sum is equal to
1 < uv u
PR OUCHE
4 U=—00 q q

where §(y) denotes the Fourier transform of g(z). We have
§(y) << X(Xy)~? by the partial integration j times, whence (18) follows
by trivial summation over u.

To estimate S, we sum over d first by an appeal to (18). For any j > 2
we get Y << (n+Y)™/, whence 52 << 1.
d

To estimate S; we sum over m first using (13) and partial summation
together with the relation

. 4Nrd rd mrd
m 4Nm 4N

and then we sum over r trivially getting

ZZ“ n=lz  m—% (m)V 2mn . ANrd
n m XNrq anq\/N m

0o<|r|<Am

<< k-gf 343 2Yf——

Hence we conclude that

S1<< 2 20 F (a dq) kTR ?Y TR << ATY T

alA kf2 q|f d
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9. Evaluation of S,

Since r = 0 we have yyp,(m) = 0 for all m > 1 and the terms with

m=1 yield
So =2 Z p(a) Z apn™" Zﬂ(Q) Z,
d

a<A n=k¢? qlf
(a,4N)=1 (n,a)=1

> () ()

dg€D

where

;:

We split the summation over d into residue classes modulo 4N. Each class
contributes

Z%E/F(t)v (tj’;v_"y) dt + O ((1+ %)"j>

for any 7 > 2, and the number of relevant classes is

v(4N) = #{d(mod 4N) : d = —v*(mod 4N), (v,4N) = 1}.
Hence
anp(f) _ 2mn erl
So = Y(AN)Y LnPl) (a)a~?) [ F)V dt +0 (Ay<+3
Y n;;? INnf (ag,:i,‘tm)_—.) / (t\/ﬁy) ( )

=cnY / F(t)BVNY)dt + O((AY? + A7'Y)Y"),

where 3,(4N) )
Y
N 2N H (1- _2)
Pl4N
and b 0
n ™
5= ¥ v (%)
n=k¢?
with
b, = a, H (1 + -1-) .
pln, pt 4N p

To evaluate the series B(X) we appeal to analytic properties of the zeta-

function
L(s)= ) ban™".

n=kt?
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The required properties are inherited from the properties of the Rankin-
Selberg zeta-function
H(s)= Z InT* .

The Rankin-Selberg zeta-function is meromorphic on C, holomorphic on
Re s > 1 except for a simple pole at s = 2 with residuum

H:rggH(s))O,

and it satisfies a functional equation which connects H(s) with H(2 — s).
Moreover, as shown by G. Shimura [12] the function

¢(2s)
(s)

is entire. By the Phragmén-Lindelof principle, using the functional equa-
tion, 1t follows that

L(s,sym?) = H(s+1)

L(s,sym?) << |s| if Res>1/2.

Since L(s) agrees with L(2s — 1,sym?)/((4s — 2) = H(2s)/{(2s — 1) up to
an Euler product P(s), say, which converges absolutely in Re s > 3/4 we
conclude that L(s) is holomorphic in Re s > 3/4, it satisfies

L(s) << |s|> if Res>3/4
and that
(19) L(1)=HP(1) #0 .

Now by the contour integration we get

B(X):Qiﬂ/mm L(s +1)P(S) (ﬁ) ds

r s
=res L(s+ 1)ﬂ (ﬁ) + -—-1—-
s=0 ) 2T 2w (=1/4)

= 20 (los 2~ 7) + Z'0) 40X

by the expansion I'(s) = s™! — 4 + ..., where v is the Euler constant.
Integrating against F'(t) we conclude that

So=aYlog Y + BY + O((AYZ + A7'Y)Y")
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with
(20) a=cyL(1) /F(t)dt #0
and

tvVN

™

(21) ﬁ:cN/F(t) L(1) (log —y |+ L' dt .

10. Evaluation of the first moment of L'(1, E, x4). Conclusion
Collecting the established evaluations we infer that

S1(Y) :SO+S] +S‘2+R:aY]0g Y_*_ﬂy
+O((AYT 4+ A7'Y + A%V 7 + A73Y % 4 A%V YY)

which gives (6) on taking A = Y*/14.
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