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On the order of vanishing of modular L-functions
at the critical point

par HENRYK IWANIEC

1. Introduction

The nonvanishing of L-functions at special points is an attractive area

of research in contemporary number theory, see [7]-[11]. One example
is the Rankin-Selberg zeta-function L( f ~ associated with a holo-

morphic cusp form f of weight 2 and Maass cusp forms gj of eigenvalue
Aj = In this case the nonvanishing of L( f 0 at s = sj
plays a role in the work of R. Phillips and P.Sarnak [6] on deformations of
groups and was proved to be true for infinitely many cusp forms 9j by J.-M.
Deshouillers and H. Iwaniec [3]. Another example is the Birch-Swinnerton-
Dyer conjecture which asserts that the rank of the group of rational points
on an elliptic curve E defined over Q is equal to the order of vanishing of
the associated Hasse-Weil L-function L(s, E~ at s = 1 (the center of the
critical strip).

Recently V.A. Kolyvagin [4] has proved that the group of rational points
on a modular elliptic curve .E is finite 0 and that the L-function

L(s, E, ~~) twisted by a suitable real character x~ has simple zero at s = 1.
The latter condition was subsequently proved to hold true for infinitely
many discriminants d by D. Bump, S. Friedberg and J. Hoffstein [2] and
independently by K. Murty and R. Murty [5]. In these notes we establish

(from scratch) quantitative results on Kolyvagin’s condition.

2 - Statement of results

Let E be a modular elliptic curve defined over Q and

be the Hasse-Weil L-function associated with E. Thus
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is a cusp form of weight 2 which is a newform of level N, where N is the
conductor of E. The L-function is entire and it satisfies the functional

equation

where w = ~1. We are interested in curves E for which L(1, E~ ~ 0, so
the functional equation holds with the sign w = 1. The twisted L-function

where Xd is a real primitive character to modulus d prime to N is also entire
and it satisfies the functional equation

with the sign Wd = wxd(-N). In the sequel we let d range over the set

D = {d : 0  d - for some v prime to 4N}
and we let be the Kronecker symbol. Thus if d is squarefree
Xd is the primitive character to the modulus d which is associated with

the imaginary quadratic field Every prime dividing N splits in
~(~~. Moreover we have w,~ _ -1, so by (1) it follows that

Our aim is to prove that E, Xd) has a simple zero at s = 1, i.e.
0 for infinitely many d in D. To this end we shall evaluate

two sums of type

and

where ¿b means that the summation is restricted to squarefree numbers
and F is a smooth function, compactly supported in R+ with positive mean
value.
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THEOREM. For any c &#x3E; 0 and ~’ &#x3E; 1 we have

and

with some constants a ~ 0 and Q which depend on the curve E and the
test function F.

COROLLARY. Suppose E &#x3E; 0 and Y &#x3E; c(e). Then 0 for at

Ieast Y2~‘~-f real primitive characters Xd to modulus d E D, d  Y.

3. Estimates for the coefficients of f

The Fourier coefficients a~ of the cusp form f are multiplicative. More
exactly, for Re s &#x3E; 3/2 we have the Euler product

with ap = = 0 if piN and lapl = 1,3pi = pl /2 In the
latter case the result was proved by M. Eichler and P. Deligne. It yields the
following bound for the coefficient an (known as the Ramanujan conjecture)

where denotes the divisor function, T(n) « nF. This bound can be
slightly improved on average. Indeed, arguing as G. Hardy and E. Hecke
with Parseval’s formula and using the boundedness of y f (z~ we get

Similarly we get

for any real a and M &#x3E; 2, the implied constant depending on f only. In

this section we derive three variations on (10).
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LEMMA I. Let a be real and V) be a periodic function of period r. We then
have

where

Moreover, if 11/’1 (  1 and s is a positive integer then we have

and

PROOF: The sum on the left-hand side of (11) is equal to
I I

whence the inequality (11) follows by (10). If  1 we obtain T  r’/2.
by Cauchy’s inequality. For the proof of (12) we can assume that (r, s) = 1
by changing 0 suitably. Then we apply (11) for in place of where

xo is the principal character to the modulus s. We obtain

which gives (12). Finally we derive (13) from (12). The sum on the left-
hand side of (13) is equal to
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Hence (13) follows by (8).

4. Approximate formulas for L’(1, E, Xd)

We shall express L’(1, E, Xd) in terms of the rapidly convergent sums

where V is the incomplete gamma function defined by

We have

Moving the integration to the line Re s = -3~4 we pass a simple pole
at s = 0 with residuum L’(1, E, Xd) by virtue of (2). On the other hand
the integral over the line Res = -3/4 is equal to -.A(d2 NX -~ , Xd) by the
functional equation (1). This gives

for any r1’ &#x3E; 0 and d in D which is squarefree. In particular we have

By (9) we infer trivially that A(X, Xd) « ~~ ~2 for any X &#x3E; 0 and inserting
this to (14) we obtain

5. Estimation of the fourth moment of ~’~l, E, Xd)

By the large sieve inequality (see [1]) together with (8) we get
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On the other hand by (14) we have for any D, d  Y, d squarefree that

Combining both results we infer the upper bound (5) for S4(Y).

6. An approximate formula for the first moment of L’(1, E, X,~~

By (15) we obtain

Now we relax the condition that d is squarefree by introducing the factor
then we split the sum according to whether a  A or a &#x3E; A

and in the latter case we return to squarefree numbers by extracting square
divisors of a-2 d. We obtain 51 (Y) = S + R, say, where

and

Here A is a large number to be chosen later. In the term A(X, Xh2d) with
X = b2dVN we return to L’(1, E, by reversing the arguments as follows
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the second line being obtained by (7) and the third line by (16). Finally
applying (5) and the H61der inequality we conclude that

7. A transformation of S

It remains to evaluate S. For (a, 4N) = 1 and d E D we have

Every n can be written uniquely as the product n = where k has

prime factors in 4N, £m is prime to 4lV and m is squarefree. For n written
this way and d in D we have = Xd(M) subject to (d,~) == 1. The last
condition is detected by the familiar formula of M6blus giving

Next, by means of Gauss sums we write

where Em, = 1 if m = 1 (mod 4), c~ = i if m - -1 (mod 4) and 4N4N -=
1( mod m). This gives

where

We put A = min(1/2, and split S = So+S, +S2, where SO, Sl, S2
denote the partial sums restricted by the conditions r = 0, 0  irl  Am,

 m/2 respectively.
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8. Estimates for S2 and S,

LEMMA 2. Suppose g(x) is a smooth and integrable function on R with
derivatives g(j)(x) « (Ixl + X)-J for all j &#x3E; 1 the implied constant de-
pending on j only. Suppose a is real and q is a positive integer such that
aq is not an integer. We then have

for any j &#x3E; 2, the implied constant depending on j only.

PROOF: By Poisson’s formula the sum is equal to

where denotes the Fourier transform of 9(x). We have
g(y) « by the partial integration j times, whence (18) follows
by trivial summation over u.

To estimate S2 we sum over d first by an appeal to (18). For any j &#x3E; 2
we get  « (n + Y)-3, whence S2 « 1.

d

To estimate 51 we sum over m first using (13) and partial summation
together with the relation

and then we sum over r trivially getting

Hence we conclude that
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9. Evaluation of So

Since r = 0 we have = 0 for all m &#x3E; 1 and the terms with
m = 1 yield

where

We split the summation over d into residue classes modulo 4N. Each class
contributes

for any j &#x3E; 2, and the number of relevant classes is

Hence

where

and

with

To evaluate the series we appeal to analytic properties of the zeta-
function



374

The required properties are inherited from the properties of the Rankin-
Selberg zeta-function 

--

The Rankin-Selberg zeta-function is meromorphic on C, holomorphic on
Re s &#x3E; 1 except for a simple pole at s = 2 with residuum

and it satisfies a functional equation which connects H(s) with H(2 - s).
Moreover, as shown by G. Shimura [12] the function

is entire. By the Phragmen-Lindelof priuciple, using the functional equa-
tion, it follows that

Since L(s) agrees with L(2s - 1, sym2~/~(4’s - 2) = H(2s)~~(2s - 1) up to
an Euler product P(s), say, which converges absolutely in Re s &#x3E; 3/4 we
conclude that L(s) is holomorphic in Re s &#x3E; 3/4, it satisfies

and that

Now by the contour integration we get

by the expansion r(s) = s-l - ’/ + ..., where y is the Euler constant.

Integrating against F(t) we conclude that
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with

and

10. Evaluation of the first moment of L’(1, E, Xd). Conclusion

Collecting the established evaluations we infer that

which gives (6) on taking A = Y’~I ~4.
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