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Séminaire de Théorie des Nombres,

Bordeaux 2 (1990), 349-363

On Taylor’s conjecture for Kummer orders.*

by PHILIPPE CASSOU-NOGUES AND ANUPAM SRIVASTAV

1. Introduction

Let Q@ denote the algebraic closure of @ in C and let O be the ring of
algebraic integers of Q. For a number field /' C Q we denote by O its
ring of algebraic integers and we set Qp = Gal(Q/F).

Let K be a quadratic imaginary number field, L a finite extension of
K and (E/L) be an elliptic curve, defined over L, with everywhere good
reduction and admitting complex multiplication by O .

Let A = (a) denote a non-zero integral Oyc-ideal. Let us write G = G(2)
for the subgroup of points in E(Q) that are killed by all elements of A. For
P e E(L), we set

(1-1) Gp=Gr(%) ={R€ E@Q):[aR = P}

the corresponding G-space of points on E. We define the corresponding
Kummer algebra by

(1-2) Lp = Lp(A) = Map(Gp, Q)"

where the addition and multiplication are given value-wise on {2; maps
from Gp to Q. In [T] M.-J. Taylor considered the Oj-algebra B which
represents the Oy -group scheme of U points of £. In fact B i1s an O, Hopf
order in the L-algebra Lo = Map(G,Q)Q" where O is the origin of £. The
O;-Cartier dual of B is an O;-order in the dual algebra A = (Q[G])** that
we denote by A. Taylor [T] defined the Kummer order Op as the largest
A-module contained in Op the integral closure of Oy in Lp. He showed
that Op is a locally free A-module. We write (Op) for its class in C£(A),
the class group of locally free A-modules.

*This work was done while the second named author was visiting lecturer at Bordeaux
University. He wishes to express his gratitude to the University for their hospitality.
Manuscrit regu le 7 mai 1990
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In [T] the map ¢ : E(L) — C£(A), given by (P) = (Op) is shown to
be a group homomorphism. Moreover it follows from the definition of Op
that [a]E(L) C Kery. Taylor conjectured in [T] :

(1-3) CoNJECTURE. For any non-zero principal O -ideal,

E(L)torsion C Kerz/),

We remark that in [S-T] the above framework was generalised to include
the case of non principal O -ideals.

Let wy denote the number of roots of unity of K. The above conjecture
was proved in [S-T] under the hypothesis that the ideal A be coprime to
wp. In this article we consider the conjecture for the case where |G| = 2.
We now assume that there is a principal prime ideal p = () dividing 2.
Moreover we assume that p is either ramified or split in (K/Q) and that
K # Q(/=1). We set A = p, so that G = E[n] and |G| = 2. By the theory
of complex multiplication we can also deduce that G C E[2] C E(L).

Therefore A = L[G] and B = Map(G, L). From [T], Proposition 1, we
conclude that the order A, in the present case, is given by

(1-4) A=16.01+ (77 'oa)0r,
where o = > g.
gEeEG

Let 9 denote the unique maximal Oy -order of L[G]. As usual, we denote
by D(A) the kernel of the extension map e : C4(A) — CE(IM). We define
the homomorphism ' : E(L) — C{(90) to be the composite map e o 3.
For P € E(L), it is shown in [T] that |G| annihilates #(P). Thus, in the
present case, ¥(P)? = 1 in C#(A) and ¢'(P)? = 1 in C£(90). In the second

section we shall prove :

THEOREM 1. Let p = (w) be a ramified or split principal prime ideal
dividing 20 . Moreover, assume that E[4) C E(L). Then for G = E[r],

E(L)torsion g I\’&T‘(I/)’)-

Let & denote the quotient map : O, — Oy, /@O where T is the complex
conjugate of . We denote the image of O7 under & by Im O3 . In section
2 we also calculate D(A),

THEOREM 2. The group kernel is given by

D(A) = (01, /701)* /ImO7 .



On Taylor’s conjecture 351

The main aim of section 3 is to treat cases where E[4] is not contained
in E(L).

We first assume that 2 is split in (K/Q) ; we denote by p = (7) a prime
ideal of K above 2. We now fix a fractional ideal Q of K, viewed as a C
lattice, and a 4-division point v of C/§ such that 2v has annihilator 20 .
Corresponding to the pair (Q2,v) we define the “minimal Fueter model” as
the elliptic curve E given by :

(1-5) V4+Vtzy=2'+z

where t = tg , = 12pq(2v)/(pa(v) — pa(2v)). We let L = K(\/%). Our
model is then defined over L. From [CN — T3], IX, (5 — 4), we know that
K(t) = K(4), the ray class field mod 40x. Moreover, since 2 is split in
(K/Q), we know that 2 — 2% is a unit, [CN — T3], IX, (5 — 10). Therefore
E has good reduction everywhere. One can check, using classfield theory,
that E[nr] C E(L). We let @ be the primitive 7-division point of E. We
now assume that E[r%] ¢ E(L). We consider the map h : Gg — O défined
by h(R) = y(R), for R € Gg. It will be proved that h lies in Og.

Next we consider the Swan module (\/f, 7 ')A, Since t2 —2% is a unit,

V/t is relatively prime to |G| = 2. Then this module is a locally free ideal
of A (cf. [U],[9)]).

THEOREM 3. Let @ be the primitive w-division point of the minimal Fueter
curve F. Then

\/t-éQ = h(\/{, it oa)A.

One can observe that the Swan module is the obstruction to the A-freeness
of Og. As a consequence of Theorem 2 and Theorem 3 we obtain :

CoROLLARY 1. Under the hypothesis of Theorem 3, E(L)torsion C Kery
if and only if there exists a unit u of L such that \/t = u mod7Oj .

Proof. Since E[r?] ¢ E(L) the inclusion E(L)orsion C Kery is equiva-
lent with ¥(Q) = 1, (see section 2). By Theorem 3 we know that ¥(Q) =1
if and only if (vf,7 "0) A is a free A-module. Since we know that the
element of C#(A) défined by (v, 7 'oi)A belongs to D(A) and is repre-
sented by v/, the conclusion follows Theorem 2. O
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It will be obviously very interesting to know wether the condition of the
corollary is always satisfied. In section 4 we checked that the condition is

fulfilled when K = Q(/-T7).

Acknowledgement : The authors wish to thank J. Martinet for providing
useful computer calculations of certain units for section 4.

2. Proof of Theorems 1 and 2.

We keep the notations of section 1. Let m be the largest positive integer
such that E[7™] C E(L). We know that [7]E(L) C Kery C Kery'. There-

fore, in order to prove Theorem 1, it suffices to show that
E[r™] — E[z™ '] C Kery'.

Let us now fix Q € E(L) such that Gg ¢ E(L). In this case Lg can be
identified with L(Q), the field generated over L by the coordinates of all
points of G¢. Of course, now [L(Q) : L] = 2. Let R € E(Q) be such that

TR = Q.
Then the map :
Gal(L(Q)/L) - G
w—RY-R
induces a group isomorphism which is independent of the particular choice

of R. We may identify these two groups. Let 4 be the non trivial element
of G.

Proof of Theorem 1.
The proof splits in two steps.

(I) Preliminary step

Let G denote the group of characters of G. We have an isomorphism

(2-1) 6:ceom) ~ [] ceon).

X€(1

For y € C£(9M) we write 6, (y) to denote its projection on the y-component
C£(0r). Now G acts as automorphisms on L(Q). We write this action

exponentially. For x € G and b € Map(Gq, Q), the Lagrange resolvent of
b is defined by

(2-2) (blx) = bx(g™"

gE(r
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ProposITION 1. Let x € G and y € L(Q) be such that y? = y.x(g),
Vg € G. Then there exists a fractional ideal I(x) of L whose class in C£(Oy,)
is independent of the choice of y, such that y*O; = I(x)?>. Moreover,

0, (4'(@)) = ()™

Proof. Clearly the class of I(x) does not depend on the choice of y.
We may, therefore, take y = 7~ '(d|x) where d generates a normal basis
of L(Q) over L. From [T], Proposition 6 and Theorem 3, we deduce that
there exists a fractional ideal I(x) of L such that 8, (¥'(Q)) = [I(x)]~" and
I(x)Orq) = 7 '(dIx)O1(q)-

O

CoROLLARY 2. The following statements are equivalent
1) ¢'(Q)=1
ii) There exists y € L(Q)\ L such that y?> € L and y®Oy. is a square of
a principal Oy -ideal.
iii) There exists a unit u € L such that L(Q) = L(\/u).

(IT) Construction of a unit.

Let us now assume that E[4] C E(L) and fix @ € E[m™]. Therefore, in
this case m > 1. We consider a general Weierstrass model of E defined
over L. Let us fix R € Gg. Let S be the primitive 7-division point and V
a primitive 4-division point of E(L). As Gg ¢ E(L), the points [2]R and
[2](R + V') are both distinct from S. Thus z(R)” = z(R+ S) # z(R) and
t(R+V)Y =z(R+V +S5)#z(R+V).

We then have

L(Q) = L(z(R)) = L(z(R+ V)).
Thus, by the theorem of Fueter-Hasse, [CN-T 2, IX]

L.K(p™*t1) if 2 is ramified in (K/Q)

(2-3) L(Q)= { L.K(4p™7 ") if 2 is split in (K/Q)

where K(f) denotes the K-ray class field mod f for any Og- ideal f.

Next we fix an analytic parametrisation
C/Q=E(C)

for a certain lattice 2 of C.
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We now set :

ha(Q)—ha(Q+5)’

ho(R+V)—ho(R+V+S) e o : o
FeloT ) ha(ofvsy,  if 2is split in (K/Q)

(2-4)

{ ra(M)=ha(R+5) i 9 is ramified in (K/Q)
A

where hq is the first Weber’s function. Once again from the theory of
complex multiplication we know that Ag € K(p™+') (resp. K(4p™ ")) if
2 is ramified (resp. split) in (K/Q). Moreover we obtain that

(25) K(p™t") = K(p™)(Ag), if 2 is ramified in (K/Q)
K(@p™™") = K(4p™ *)(Aq), if 2 is split in (K/Q)

From (2.3) we then deduce that

(2-6) L(Q) = L(Ag) and A} € L.

Let pg be the Weierstrass p function for 2. From the definition of hg we
deduce that
- P { palla—ralP3), if 2 is ramified in (K/Q)

10(R+V)—pao(R+V+S . . . -
:v§EQ+Vg—:ngQ+V+S;’ if 2 is split in (K/Q)

Let H denote the upper half plane. Let 7 € H be such that Q = A(Z7+2)
for some A € C*. For z € H we write Q, = Zz + Z. For a € (Q/Z)% we
choose the unique representative (aj,az) € Q? with ay,a2 € [0,1[. We
write az = ay;z + a;. We define r(resp.s, resp.v,resp.q) in (Q/Z)? such
that A(r7)(resp. A(s7), resp.A(vr), resp.A(q7)) represents R(resp.S,
resp. V,resp. @) in C mod.Q. We now consider functions F(r, g, s) and
G(r,q,s,v) defined by

_ p9.(rz) — pa,(rz + s2)

2-8' F y Yy -

( a) (7’ q S)(z) pﬂz(qZ) - pgz(qz + sz)

and

(2-8.b) G(r,q,s,v)(z) = pa, (rz +v2) — pa,(rz + vz + sz)

pa, (92 + vz) — pa,(gz + vz + s2)

(2—9) Ap = { F(r’Qas)(T) if 2 ramiﬁed,

G(r,q,s,v)(r) if 2 splits.
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Functions F' and G are modular Weierstrass units of a level which is an
appropriate power of 2.

When f and g are functions defined on ‘H we write

=y

if there exist integers n and m such that f”/¢™ is a modular function,
which is a unit over Z.

For a € (Q/Z)? we introduced in [CN-Th], (2-7), afunction ¥ (a) defined
on H. In fact an appropriate power of ¥(a) is a ratio of Deuring modular
units. From [CN — T3], Proposition 2-8, we obtain

LEMMA 1. There are equivalences

V() ¥ (q + 5)¥(2r + 5)

F(r,q,s) =~ W2 (r)W2(r + s)¥(2q + s)

and

W2(g 4 v)U%(q + s + v)U(2r + 20 + 5)
W2(r + 0)T2(r + v + s)¥(2g + 20 + 5)

G(r,q,s,v) ~

We now show :

LEMMA 2. (i) If 2 is ramified in (K/Q), then F(r,q,s)(r) is a unit.
(1) If 2 is split in (K /Q) and m > 2, then G(r,q,s,v)(7) is a unit.
Proof (i) Let 2 be ramified in (K/Q) and suppose m = 2¢, t > 1 (if m is
odd the proof is similar). Then, gr(resp.(¢ + s)7, resp.(2q + s)r, resp.rr,
resp.(r + s)r, resp.(2r + s)7) defines a primitive p2/(resp.p?,
resp.p?=1 | resp.p¥* resp.p?*' resp.p?~")-division point of C/Q,.

For two algebraic numbers a,b we write a ~ b if ab™' is a unit. From
[CN — T3], Proposition 3-5, we deduce that

¥(q)(r) ~ U(g +5)(r) ~ 227
U(r)(r) ~ W(r +)(7) ~ 207770
¥(2g +5)(r) ~ 207

T(2r 4 s)(1) ~ 22" ™),

(2-10)
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Thus from Lemma 1 and (2-10) we conclude that F(q,r, s)(7) is a unit.

(i1) Now suppose that 2 is split in (K/Q) and m > 2. Then (g + v)r
and (¢ 4+ v + s)7 are primitive p™p? division points ; (r + v)r and (r +
v + s)T are primitive p™t'p2-division points. Moreover (2r + 2v + s)7
(resp.(2q + 2v + s)7) is a primitive p™p (resp.p™ ' p)-division point. Since
these points are primitive of composite order, it follows from [CN — T3],
Proposition 3-5, that each factor in the right hand side of the equivalence
in Lemma 1 gives a unit when evaluated at 7. From (2-9) and Lemma 2
we now conclude that Ag is a unit. Therefore Theorem 1 is proved, via
Corollary 2, except in the case where 2 is split in (K/Q) and m = 2. We
can, nevertheless, treat this case in a similar fashion by replacing Ay by
Ay given by

(2-11) Ap =7 (Pa(R+V)— Pa(R+V +5))
where Pg is the function considered by Schertz [Sh]. We know that
Ab = N(hﬂ(R -+ V) - hQ(R + V + S))

where k € K(1). We thus have Ay € Lo \ L and (Ab)‘2 € L. We now
deduce from [Sch], (12) and Satz 3, that Ab is a unit. This now completes
the proof of Theorem 1.

a

Proof of Theorem 2. We recall that the order A is explicitly given by
(1-4). Let us consider the fiber product of orders

A -, o

nl l«#
A/(m7 Vo) — Or./7 Or.

where 1 and ¢ are the quotient maps, € is the augmentation map and &
is induced by €. Using the Mayer-Vietoris sequence of Reiner-Ullom, [S],
[U], we obtain an exact sequence of groups and homomorphisms.

(2-13) 0} x (A/(r~"0a))* £5 (01./7 O1)* = D(A) — {1}

where 6 is the connecting homomorphism.
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We also need to observe that
D(Or) = D(A/(r" o)) = {1}.

Moreover, for s coprime with 7 ,8(s mod 7O7,) is given by the class of the
corresponding Swan module (s, 77 'oG)A. Since O; and A/(7 o) can be
naturally identified as rings, we conclude that

D(A) = (01./701)*/Im O7.

O
3. Minimal Fueter model

We recall in this section that p = (7) is a principal, prime ideal of K,
above 2, which is split in (K/Q). Moreover we suppose that E[r] C E(L)
and E[r?%] ¢ E(L). We let Q be a fractional ideal of K and v a primitive
40 ¢-division point of C/Q.

In [CN —T,] a Fueter elliptic curve was considered, corresponding to the
pair (2, v), given by
(3-1) y2 =4z% +t2? + 4z
with
t = 12pa((2v)/(pa(v) — pa(2v)).

In fact one defines a complex analytic isomorphism between C/€2 and the
complex points of this curve by considering

. { (T(z),T7(2),1) if z#2v

3-2
(3-2) (0,1,0) if z=2v

where T and T} are Fueter’s elliptic functions, [CN — T3], IV. The minimal
Fueter model E is obtained from (3.1) by the change of coordinates

(3'3) (JL‘, y) - (x7 \/{:L' + 2y)

From (3-2) and (3-3) we deduce an isomorphism between C/Q2 and the
C-points of £ given by

7 — { (T'(2),U(2),1) if 2 # 2v

3-4
(3-4) (0,1,0) if z=2v

where U(z) = (1/2)(Ti(z) — vVt T(2)).
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We remark that 0 = (0,0, 1) is taken to be the identity of the group law.
It is also worth remarking that ¢ € K(t). We set A = (7,0,1). It is worth
to notice that, using the theory of complex multiplication, one can show
that A € E(L) and has infinite order. Let a be the parameter of A in C/Q
under the isomorphism (3-4).

The divisor of T is given by

(3-5) (T) = 2(0) — 2(2v).
From [CN — T3],IV we know that

(3-6.a) T(2).T(z+ 2v) = 1.
(3-6.b) Ti(z + 2v) = =Ty (2)/T?(2).

Therefore, since T is an even function and 73 is an odd function, we deduce
that

(3-7) U(2v - z) = U(2)/T?(2).
Moreover, the elliptic function U has divisor
(3-8) (U)=(0)+ (o) + (2v — ) — 3(2v).

We denote by N the point of E(Q)fms;on defined by v. Let @ be the
primitive 7-division point of E. We fix a point R € G¢ and denote by p
its parameter in C/Q.

Now R+ @Q = —R, therefore Gg = {R, —R}.
Thus, z(R)Y = z(R+ Q) = z(—R) = z(R). Then L(Q) = L(y(R)) =
L(Ty(p)) = L(D(p)) where D(p) = T3 (p)/T(p)

From [CN — T3], IX, (6-7) we know that D*(p) = ¢ —2%, which is a unit.
Since D?%(p) € L we conclude from Corollary 2 that ¢/(Q) = 1.

Until the end of this section the z and y coordinates are those of model
(1-5).

We now want to study ¢(Q). First, we have

LEMMA 3. Let P be a prime ideal of Of. Let P € E(Q)m,s;o“ be such
that {P,[2]N — P} [ E[®B"]) = ¢. Then z(P) is a P-unit (i.e. unit at all
n>0

primes dividing B).

Proof. We first observe that for any P € E(Q), P # [2]N, z(P) is a P-
integer if and only if y(P) is a *P-integer. Under the given hypothesis both
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z(P) and y(P) are well defined and are non zero. Since z(P).z([2]N —P) =
1, it suffices to show that z(P) is a ‘P-integer.

Let M be a finite extension of L such that {P,[2]N — P} C E(M). Sup-
pose z(P) is not a ‘P-integer. Then there exists Pas, a maximal Ops-ideal,
with ParNOx = P and v(z(P)) < 0 where v denote the standard valuation
on the completion of M at Pjs. From the equation of the minimal Fueter
model E we see that 2v(y(P)) = 3v(z(P)). Thus, under the reduction mod
Bar, P is mapped onto (0, 1,0). This means that [2]N — P is in the kernel
of reduction modPPas which is impossible since the set of torsion points in

the kernel of reduction is precisely |J E[P"].
n>0

a
LEMMA 4. z(R)~ T

Proof. Since R is a primitive m2-division point of E,[2]N — R is a torsion
point of composite order. From Lemma 3 we conclude that z(R) is a unit
outside the prime divisors of p = (7). For a prime P of L(Q) that divides
p, using that R is a primitive m2-division point in the kernel of reduction
mod P (q) and that z(R)/y(R) is the parameter of R in the associated
formal group we can find the valuation vy, (g)(2(R)).

a

Remark : Lemma 3 and 4 can both be proved using the technique of
modular functions as developed in section 2, Lemma 1 and 2.

It follows from the equation of E that y(R)?/m is an algebraic integer
and a p-unit.

We now consider the map
h:Gq — Q
(3-9) M — y(M).

ProprosITION 2.

i) The map h lies in O~Q

ii) Let x € G and M € Gg, then
Vitz(M), if x is trivial
z(M) otherwise.

(ko) ~ {

Proof. We first prove (ii). Since z is an even function and 77 an odd
function, we obtain from the definition of h and (3-4)
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—\/Za:(m), if x is the identity character
Ty(m) otherwise

(ko) = {

where m is the parameter of M in C/Q. Since m = +p we have T1(m) =
+D(p)z(M) and then, since D(p) is a unit, T1(m) ~ z(M). We now prove
1). By lemma 4 it is evident that h € Og. Since

A =160;5 + (7" 'o6)Or,
we need only check that h.(77'o;) € Og. For M € G we obtain
h(r 'og)(M) = m7 (Rle)(M) = —n7 'Vt - 2(M)

where ¢ is the identity character. Using Lemma 4 we conclude that

h(r='og)(M) € O. Hence h lies in Og.
O

Proof of Theorem 3. The proof is similar to that of Theorem 5 in [S-T].
We must show the equality locally. For each prime P of L we write

Oq,p = OpAgp
(3-10) (Vt,77"o6)Ap = apAyp

where Og(resp.ag) belongs to Og q(resp.Ag). From Theorem 3 of [T] we
know that for M € G¢ and x € G we have

(3-11) (Oplx)(M) ~ .

We let x act on Ly[G] by Lyg-linearity. We first observe that xy(Ap) = Or,,.
Then, by looking at x(agAg), we obtain

1, if x is the identity character
V1 otherwise.

(3-12) x(ow) ~ {
We now can write
(3-13) fy.(Vtbg) = hag

with bg € Lqp[G]. In order to prove the theorem we must show that bp €
p- Since h € éQ,:p, h\/t and h(7 o) lie in Og,u. We conclude from
(3-10) that hag € O ¢ and, from (3-13), that V/tbg € Ag.
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For x € G we consider the Lagrange resolvent of both sides of (3-13).
We obtain

(3-14) VE(O )X (bp) = (hb)x(ag)-
Using Lemma 4, Proposition 2, (3-11) and (3-12), we deduce from (3-14)
that x(bp) ~ 1.

We now consider two cases.

Case 1. P + /t. In this case \/Zb«p € Ag implies that by € Ag; so
by € A%, since x(by) is a unit for all x € G.

Case 2. P | V/t. Since /t is coprime with 2, P + 2. Then Ag is the
unique maximal order and bp € Ay since x(bg) is a unit for all x € G.

O

Remark : If 2 splits in (K/Q),(2) = (7w)(7) and E denotes the Fueter
minimal model
y2 + \/fxy =24z
then for any number field L D K(3/t) and G = E[r] we have that
E(L)Inr.aion C I{er¢,~

One can easily check that if E[r2?] C E(L) then E[4] C E(L) and we can
use the results of section 2.

4. Examples

In this section we consider the set up of section 3 for the particular case
of K = Q(/=7).

We set 7 = (1 + /=7)/2 and 2 = =7, where 7 is the complex con-
jugate of m. We note that the class number of K is 1, K(2) = K and
[K(4) : K] = 2. Since i € K(t) = K(4) we must have K(t) = K(i).
Moreover, since t2 — 2% is a unit in K(2), we know that t? — 2% = +1. The
possibility t2 — 2% = 1 contradicts the fact that K () = K(i). Hence t* = 63
and L = K(~+/63); therefore L is the splitting field of X* — 63.

We first determine the group kernel D(A) considered in Theorem 2.
ProrosiTiON 3. D(A) = {1}.
Proof. By Theorem 2 we know that
D(A) = (01./701)*/Im O7.



362 Ph. CASSOU-NOGUES and A. SRIVASTAV

It is easily checked that the ramification index of (2) in L is 4. Hence the
group (Or,/7Or,)* is of order 8. We have to show that Im(O;)* also has
order 8. Let @ = v/63 and B = (1+i)a. Weset u= (1—i)(1+7)+a, v=
1-3a+a*/3 and w=5—-283— 127 — 2n3. We verify that

u? = iw, w.(5+20—- 127 +278) =1
(4-1) v(127 + 45a + 12a% + 1727 /3) = 1

Therefore u,v and w are all units of L. We also have

u? =imod 707, v2 =1 mod 70y,
(4-2) i = 1 mod 707,

and

i % 1mod 707, v# 1 mod 707,
(4-3) v Z i mod 70,

Let ® be the quotient map
d:0; — (Or,/ﬁ'O[,)

It follows from (4-2) and (4-3) that ®(u) is of order 4 and that ®(v) doesn’t
lie in the subgroup generated by ®(u). Hence we must have that the order
of Im(O7) is 8.

O
We know from section 3 that
L(E[%)) = L((t* - 2%)'/*) = L(Vi).

Therefore :
E(L)Ior.qion C I{€r¢' .

Hence, from Proposition 3, we conclude

COROLLARY 3.
E(L)torsion C Kery.
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