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On Taylor’s conjecture for Kummer orders.*

by PHILIPPE CAssou-NOGUkS AND ANUPAM SRIVASTAV

1. Introduction

Let Q denote the algebraic closure of Q in C and let 0 be the ring of
algebraic integers of Q. For a number field F _C Q we denote by OF its
ring of algebraic integers and we set = Gal(QIF).

Let Il be a quadratic imaginary number field, L a finite extension of
7~ and (EIL) be an elliptic curve, defined over L, with everywhere good
reduction and admitting complex multiplication by 

Let 21 = (a) denote a non-zero integral Let us write G = G(21)
for the subgroup of points in that are killed by all elements of 2(. For
P E E(L), we set

the corresponding G-space of points on E. We define the corresponding
Kummer algebra by

where the addition and multiplication are given value-wise maps
from Gp to Q. In [T] M.-J. Taylor considered the OT,-algebra ~i which
represents the Oj-group scheme of 2l points of E. In fact ~3 is an OT Hopf
order in the L-algebra Lo = Map(G, where 0 is the origin of E. The
OT,-Cartier dual of B is an Ol -order in the dual algebra ,A = that

we denote by A. Taylor [T] defined the Kummer order 0 n as the largest
A-module contained in Op the integral closure of Or, in L p. He showed
that On is a locally free A-module. We write for its class in C.~~A),
the class group of locally free A-modules.

*This work was done while the second named author was visiting lecturer at Bordeaux
University. He wishes to express lus gratitude to the University for their hospitality.
Manuscrit reCu le 7 mai 1990
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In [T] the map 0 : E(L) ~ C2(A), given by ~(P~ _ (Õp) is shown to

be a group homomorphism. Moreover it follows from the definition of On
that [a]E(L) C Taylor conjectured in [T] :

(1-3) CONJECTURE. For any non-zero principal 

We remark that in [S-T] the above framework was generalised to include
the case of non principal 0 

Let denote the number of roots of unity of The above conjecture
was proved in [S-T] under the hypothesis that the ideal be coprime to
WK. In this article we consider the conjecture for the case where ~G~ = 2.
We now assume that there is a principal prime ideal p = (7r) dividing 2.
Moreover we assume that p is either ramified or split in and that

K 0 We set 2t = p, so that G = E[7r] and (G~ = 2. By the theory
of complex multiplication we can also deduce that G C E[2] C E(L).

Therefore A = L[G] and % = Map(G, L). From [T], Proposition 1, we
conclude that the order A, in the present case, is given by

where 2: 9.

Let 9JZ denote the unique maximal 0 T.-order of L[G]. As usual, we denote
by D(A) the kernel of the extension map e : Cl(A) - We define
the homomorphism 1/;’ : E(L) -&#x3E; C£(9J1) to be the composite map eo1/;.
For P E E(L), it is shown in [T] that ~G) annihilates ~(P). Thus, in the
present case, = 1 in Cf(A) and 1/;’(p)2 = 1 in Cf(9R). In the second
section we shall prove :

THEOREM 1. be a ramified or split principal prime ideal
dividing 20j~ . Moreover, assume that E[4] C E(L). Then for G = E[7r],

Let + denote the quotient map : Or, --* where 1f is the complex
conjugate of 7r. We denote the image of OT under V by Im 0;.. In section
2 we also calculate D(A), 

’ ’

THEOREM 2. Th e gro up kernel is gi ven by
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The main aim of section 3 is to treat cases where E~4~ is not contained

in E(L).
We first assume that 2 is split in (lilo) ; we denote by p = (7r) a prime

ideal of h above 2. We now fix a fractional ideal Q of K, viewed as a C
lattice, and a 4-division point v ofC/Q such that 2v has annihilator 20k-.
Corresponding to the pair (Q, v) we define the "minimal Fueter model" as
the elliptic curve E given by :

where t = = We let L = Our
model is then defined over L. From (CN - T2], IX, (5 - 4), we know that

Ii (4), the ray class field mod 40~-. Moreover, since 2 is split in
(lilo), we know that t2 - 26 is a unit, [CN - T2], IX, (5 - 10). Therefore
E has good reduction everywhere. One can check, using classfield theory,
that E[~r] C E(L). We let Q be the primitive 7r-division point of E. We
now assume that EIT 2] E(L). We consider the map h : 0 d6fined

by h(R) = y(R), for R It will be proved that h lies in 0~.
Next we consider the Swan module Since t2 - 2" is a unit,
o is relatively prime to ~G~ = 2. Then this module is a locally free ideal
°f A ( Cf. [U],[S]).

THEOREM 3. Let Q be the primitive Jr-di vision point of the minimal Fueter
curve E. Then

One can observe that the Swan module is the obstruction to the A-freeness
of 0~ . As a consequence of Theorem 2 and Theorem 3 we obtain :

COROLLARY 1. Under the hypothesis of Theorem 3, C 

if and only if there exists a unit u of L such that yfi m u mod7-rOT..

Proof. Since E~~r2~ ~ the inclusion Kero is equiva-
lent with = 1, (see section 2). By Theorem 3 we know that = 1

if and only if 7r-l A is a free A-module. Since we know that the
element of Cf (A) d6fined by belongs to D(A) and is repre-
sented by the conclusion follows Theorem 2. D
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It will be obviously very interesting to know wether the condition of the
corollary is always satisfied. In section 4 we checked that the condition is
fulfilled when 7~ = Q( V=7).

Acknowledgement : The authors wish to thank J. Martinet for providing
useful computer calculations of certain units for section 4.

2. Proof of Theorems 1 and 2.

We keep the notations of section 1. Let m be the largest positive integer
such that E(L). We know that [7r]E(L) C KerV) C There-

fore, in order to prove Theorem 1, it suffices to show that

Let us now fix Q e E(L) such that GQ £ E(L). In this case LQ can be
identified with L(Q), the field generated over L by the coordinates of all
points of Of course, now [L(Q) : L] = 2. Let R E E(Q) be such that

Then the map :

induces a group isomorphism which is independent of the particular choice
of R. We may identify these two groups. Let ~y be the non trivial element
of G.

Proof of Theorem 1.

The proof splits in two steps,

(1) Preliminary step I

Let G denote the group of characters of G. We have an isomorphism

For y E CR(9R) we write to denote its projection on the x-component
Now G acts as automorphisms on L(Q). We write this action

exponentially. and b E Q), the Lagrange resolvent of
b is defined by
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PROPOSITION 1. Let x E G and y E L(Q) be such that y9 = y.X(g),
Vg C G. Then there exists a fractional ideal of L whose class in 

is independent of the choice of y, such that I(X)2. Moreover,
~x(~’’(Q)) _ [1(X)]-l.

Proof. Clearly the class of does not depend on the choice of y.
We may, therefore, take y = where d generates a normal basis
of L(Q) over L. From [T], Proposition 6 and Theorem 3, we deduce that
there exists a fractional ideal of L such that B;~(~’(Q)) _ ~I~(x)~-~ and

0

COROLLARY 2. The following statements are equivalent

i) ’’() = 1
ii) There exists y C L(Q) B L such that y2 E L and is a square of

a principal Or. -ideal.
iii) There exists a unit u E L such that L(Q) = 

(II) Construction of a unit.
Let us now assume that E[4] C E(L) and fix Q C ~~~r~’~. Therefore, in

this case m &#x3E; 1. We consider a general Weierstrass model of E defined
over L. Let us fix R C GQ. Let s be the primitive 7r-division point and V
a primitive 4-division point of E(L). As GQ 1:- E(L), the points [2]R and
[2](R + V) are both distinct from S. Thus x(R + S) ~ and

We then have

Thus, by the theorem of Fueter-Hasse, [CN-T 2, IX]

where denotes the li-ray class field mod f for any 01,-- ideal f.
Next we fix an analytic parametrisation

for a certain lattice Q of C.
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We now set :

where hp is the first Weber’s function. Once again from the theory of
complex multiplication we know that AQ C= (resp. ~~(4~~’-~ )~ if
2 is ramified (resp. split) in (K/Q). Moreover we obtain that

From (2.3) we then deduce that

Let pil be the Weierstrass p function for Q. From the definition of hsi we
deduce that

Let 71 denote the upper half plane. Let T E 1í be such that Q = A(Zr+Z)
for some A E C*. For z E 71 we write ~‘ _ Zz + Z. For a E (Q/Z)2 we
choose the unique representative (0~02) E q2 with al, a2 E ~0,1 ~. We
write az = ai z + a2. We define r(resp.s, resp.v, resp.q) in (Q/Z)2 such
that A(sT), resp.A(qT)) represents R(resp.,S,
resp. V, resp. Q) in C mod.Q. We now consider functions F(r, q, s) and
G(r, q, s, v) defined by

and
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Functions F and G are modular Weierstrass units of a level which is an

appropriate power of 2.

When f and g are functions defined on x we write

if there exist integers n and m such that is a modular function,
which is a unit over Z.

. 

For a E (Q/Z)2 we introduced in (2-7), a function defined

on 1i. In fact an appropriate power of ~(a) is a ratio of Deuring modular
units. From [CN - Ti], Proposition 2-8, we obtain

LEMMA 1. There are equivalences

and

We now s h ow :

LEMMA 2. (i) If 2 is ramified in then F(r, q, s)(T) is a unit.

(ii) If 2 is split in (7~/Q) and m &#x3E; 2, then G(r, q, s, v)(T) is a unit.

Proof (i) Let 2 be ramified in (lilo) and suppose m = 2t, t &#x3E; 1 (if m is
odd the proof is similar). Then, qT(resp.(q + s)T, resp.(2q + s)T, resp.rT,

resp.(r + s)7, resp.(2r + s)r) defines a primitive p2t(resp.p2t,
)-division point of ClOT.

For two algebraic numbers a, b we write a N b if ab-1 is a unit. From

[CN - Ti], Proposition 3-5, we deduce that
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Thus from Lemma 1 and (2-10) we conclude that is a unit.

(ii) Now suppose that 2 is split in and m &#x3E; 2. Then (q + v)7
and (q + v + s)7 are primitive division points ; (r + v)7 and (r +
v + are primitive pm+l p2-division points. Moreover (2r + 2v + s)T
(resp.(2q + 2v + s) T) is a primitive point. Since
these points are primitive of composite order, it follows from [CN - Ti],
Proposition 3-5, that each factor in the right hand side of the equivalence
in Lemma 1 gives a unit when evaluated at 7. From (2-9) and Lemma 2
we now conclude that A~ is a unit. Therefore Theorem 1 is proved, via
Corollary 2, except in the case where 2 is split in (~~~~~ and m = 2. We
can, nevertheless, treat this case in a similar fashion by replacing A~ by
A’ given by

where Pst is the function considered by Schertz [Sh]. We know that

where r, E We thus have AQ E LQ B L and (AQ)2 E L. We now
deduce from [Sch], (12) and Satz 3, that A~~ is a unit. This now completes
the proof of Theorem 1.

0

Proof of Theorem 2. We recall that the order A is explicitly given by
(1-4). Let us consider the fiber product of orders

where 71 and § are the quotient maps, c is the augmentation map and E
is induced by c. Using the Mayer-Vietoris sequence of Reiner-Ullom, [S],
[U], we obtain an exact sequence of groups and homomorphisms.

where 6 is the connecting homomorphism.
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We also need to observe that

Moreover, for s coprime with vr 6(s mod 7-rOT,) is given by the class of the
corresponding Swan module Since 0~ and can be

naturally identified as rings, we conclude that

3. Minimal Fueter model

We recall in this section that ~p = (7r) is a principal, prime ideal of 7~,
above 2, which is split in (7B"/Q). Moreover we suppose that E[7r] C E(L)
and E(L~. We let Q be a fractional ideal of 7~ and v a primitive
40¡(-division point of C /Q .

In [CN - T2] a Fueter elliptic curve was considered, corresponding to the
pair (0, v), given by

with

In fact one defines a complex analytic isomorphism between C/Q and the
complex points of this curve by considering

where T and T, are Fueter’s elliptic functions, [CN - T2], IV . The minimal
Fueter model E is obtained from (3.1) by the change of coordinates

From (3-2) and (3-3) we deduce an isomorphism between C/Q and the
C-points of E given by

where I
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We remark that 0 = (0, 0,1) is taken to be the identity of the group law.
It is also worth remarking that i E We set A = (i, 0,1). It is worth

to notice that, using the theory of complex multiplication, one can show
that A E E(L) and has infinite order. Let a be the parameter of A in C/Q
under the isomorphism (3-4).
The divisor of T is given by

From [CN - T2],IV we know that

Therefore, since T is an even function and T, is an odd function, we deduce
that

Moreover, the elliptic function U has divisor

We denote by N the point of defined by v. Let Q be the
primitive 7r-division point of E. We fix a point R E GQ and denote by p
its parameter in C/Q.
Now R + Q = -R, therefore GQ = JR, -RI.

From [CN - T2], IX, (6-7) we know that D4(p) = t2 -2fl, which is a unit.
Since D2(p) E L we conclude from Corollary 2 that 1/;’ (Q) = 1.

Until the end of this section the x and y coordinates are those of model
(1-5).
We now want to study ~(Q). First, we have

LEMMA 3. Let q3 be a prime ideal of Or,-. Let P E be such
that {P, [2]7V - P} 0. Then x(P) is a fl3-unit (i.e. unit at all

n&#x3E;o

primes dividing q3)

Proof. We first observe that for any P E E(Q), P [2]N, x(P) is a B-
integer if and only if y(P) is a T-integer. Under the given hypothesis both
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x(P) and y(P) are well defined and are non zero. Since x(P).x(~2~~ - P) _
1, it suffices to show that x(P) is a IP-integer.

Let M be a finite extension of L such that {P, [2]N - P} C E(M). Sup-
pose x(P) is not a IP-integer. Then there exists a maximal 0 A1-ideal,
with and v(x(P))  0 where v denote the standard valuation
on the completion of M at From the equation of the minimal Fueter
model E we see that 2v(y(P)) = 3v(x(P)). Thus, under the reduction mod

P is mapped onto (o,1, 0). This means that ~2~1V - P is in the kernel
of reduction modq3,kf which is impossible since the set of torsion points in
the kernel of reduction is precisely U E[fl3"’].

~&#x3E;a

D

LEMMA 4. x(R) N ~r

Proof. Since R is a primitive ¡r2-division point of E, ~2JN - R is a torsion
point of composite order. From Lemma 3 we conclude that x(R) is a unit
outside the prime divisors of p = (7r). For a prime q3 of L(Q) that divides
p, using that R is a primitive ¡r2-division point in the kernel of reduction
mod and that is the parameter of R in the associated
formal group we can find the valuation 

D

Remark : Lemma 3 and 4 can both be proved using the technique of
modular functions as developed in section 2, Lemma 1 and 2.

It follows from the equation of E that is an algebraic integer
and a p-unit.
We now consider the map

PROPOSITION 2.

i) The map h lies in OQ
ii) Let x E G and M E then

if x is tri vial
otherwise.

Proof. We first prove (ii). Since x is an even function and T, an odd

function, we obtain from the definition of h and (3-4)
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if X is the identity character

otherwise

where m is the parameter of M in C/Q. Since m = ~p we have Ti (m) =
-i::.D(p)x(M) and then, since D(p) is a unit, Ti (m) - x(M). We now prove
i). By lemma 4 it is evident that h E Since

we need only check that h.(7r~~ aG) C 0~. For A.1 C GQ we obtain

where c is the identity character. Using Lemma 4 we conclude that
h(~r-~ ~r~(NI ~ E 0. Hence h lies in ÕQ.

D

Proof of Theorem 3. The proof is similar to that of Theorem 5 in ~S-T~.
We must show the equality locally. For each prime fl3 of L we write

where belongs to From Theorem 3 of [T] we
know that for M E GQ and X E d we have

We let X act on by LT-Iiiiearity. We first observe that = 
*

Then, by looking at we obtain

(3-1~) 
X is the identity character

~~ ~~~ ~~~’~~~ ’~’ ~ Vi- otherwise.
We now can write

with 6p E In order to prove the theorem we must show that 

A~. Since h E 0~~ hvl and h(7r-1UC;) lie in 6~,q~. We conclude from
(3-10) that e and, from (3-13), that 1~~.
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For x C G we consider the Lagrange resolvent of both sides of (3-13).
We obtain

Using Lemma 4, Proposition 2, (3-11) and (3-12), we deduce from (3-14)
that 1.

We now consider two cases.

Case 1. fl3 ? 0. In this case E AT implies that b~ C so

bq3 C A~, since is a unit for all X E G.

Case 2. q3 I 0. Since ~ is coprime with 2, 2. Then AT is the

unique maximal order and b C A since is a unit for all X E 6.

D

Remark : If 2 splits in (1), (2) _ (r)(r) and E denotes the Fueter
minimal model

then for any number field and G = E[7r] we have that
C 

One can easily check that if E[7r 2] C E(L) then E[4] C E(L) and we can
use the results of section 2.

4. Examples

In this section we consider the set up of section 3 for the particular case
of ! == Q( yC7). -

We set 7T = (1 + ~7)~2 and 2 = 7r*, where 7-r is the complex con-
jugate of ~r. We note that the class number of li is 1, Ii (2) = li and
~~~ (4) : 11] = 2. Since i C 11(t) = h(4) we must have 
Moreover, since t2 - 2’ is a unit in 7~(2), we know that t2 - 26 =: ±1. The
possibility t2 - 2~ = 1 contradicts the fact that I«t) = Ii (i). Hence t2 = 63
and L = 7~(~/63); therefore L is the splitting field of X 4 - 63.
We first determine the group kernel D(A) considered in Theorem 2.

PROPOSITION 3. D(A) = {1}.

Proof. By Theorem 2 we know that
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It is easily checked that the ramification index of (2) in L is 4. Hence the
group is of order 8. We have to show that lm(OT.)* also has
order 8. Let a and ¡3 == (1 + i~a. We set u = (1- i)(1 + 7r) + a, v =
1 - 3a + a 3/3 and w = 5 - 2Q - 127r - 2r#. We verify that

Therefore u, v and w are all units of L. We also have

and

Let V be the quotient map

It follows from (4-2) and (4-3) that is of order 4 and that 4)(v) doesn’t
lie in the subgroup generated by -(D(u). Hence we must have that the order
of Im(O* ) is 8.

0

We know from section 3 that

Therefore :

Hence, from Proposition 3, we conclude

COROLLARY 3.
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