# PHILIPPE CASSOU-NOGUÈS

# ANUPAM SRIVASTAV

### On Taylor's conjecture for Kummer orders

*Journal de Théorie des Nombres de Bordeaux 2<sup>e</sup> série*, tome 2, n° 2 (1990), p. 349-363

<http://www.numdam.org/item?id=JTNB\_1990\_\_2\_2\_349\_0>

© Université Bordeaux 1, 1990, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire de Théorie des Nombres, Bordeaux 2 (1990), 349-363

### On Taylor's conjecture for Kummer orders.\*

by Philippe Cassou-Noguès and Anupam Srivastav

#### 1. Introduction

Let  $\overline{\mathbf{Q}}$  denote the algebraic closure of  $\mathbf{Q}$  in  $\mathbb{C}$  and let  $\overline{O}$  be the ring of algebraic integers of  $\overline{\mathbf{Q}}$ . For a number field  $F \subseteq \overline{\mathbf{Q}}$  we denote by  $O_F$  its ring of algebraic integers and we set  $\Omega_F = Gal(\overline{\mathbf{Q}}/F)$ .

Let K be a quadratic imaginary number field, L a finite extension of K and (E/L) be an elliptic curve, defined over L, with everywhere good reduction and admitting complex multiplication by  $O_K$ .

Let  $\mathfrak{A} = (a)$  denote a non-zero integral  $O_K$ -ideal. Let us write  $G = G(\mathfrak{A})$  for the subgroup of points in  $E(\overline{\mathbb{Q}})$  that are killed by all elements of  $\mathfrak{A}$ . For  $P \in E(L)$ , we set

(1-1) 
$$G_P = G_P(\mathfrak{A}) = \{R \in E(\overline{\mathbb{Q}}) : [a]R = P\}$$

the corresponding G-space of points on E. We define the corresponding Kummer algebra by

(1-2) 
$$L_P = L_P(\mathfrak{A}) = Map(G_P, \overline{\mathbb{Q}})^{\Omega_L}$$

where the addition and multiplication are given value-wise on  $\Omega_L$  maps from  $G_P$  to  $\overline{\mathbf{Q}}$ . In [T] M.-J. Taylor considered the  $O_L$ -algebra  $\mathcal{B}$  which represents the  $O_L$ -group scheme of  $\mathfrak{A}$  points of E. In fact  $\mathcal{B}$  is an  $O_L$  Hopf order in the *L*-algebra  $L_O = Map(G, \overline{\mathbf{Q}})^{\Omega_L}$  where O is the origin of E. The  $O_L$ -Cartier dual of  $\mathcal{B}$  is an  $O_L$ -order in the dual algebra  $\mathcal{A} = (\overline{\mathbf{Q}}[G])^{\Omega_L}$  that we denote by  $\Lambda$ . Taylor [T] defined the Kummer order  $\tilde{O}_P$  as the largest  $\Lambda$ -module contained in  $O_P$  the integral closure of  $O_L$  in  $L_P$ . He showed that  $\tilde{O}_P$  is a locally free  $\Lambda$ -module. We write  $(\tilde{O}_P)$  for its class in  $C\ell(\Lambda)$ , the class group of locally free  $\Lambda$ -modules.

<sup>\*</sup>This work was done while the second named author was visiting lecturer at Bordeaux University. He wishes to express his gratitude to the University for their hospitality. Manuscrit reçu le 7 mai 1990

In [T] the map  $\psi : E(L) \to C\ell(\Lambda)$ , given by  $\psi(P) = (\tilde{O}_P)$  is shown to be a group homomorphism. Moreover it follows from the definition of  $\tilde{O}_P$ that  $[a]E(L) \subset Ker\psi$ . Taylor conjectured in [T]:

(1-3) CONJECTURE. For any non-zero principal  $O_K$ -ideal,

 $E(L)_{\text{torsion}} \subset Ker\psi.$ 

We remark that in [S-T] the above framework was generalised to include the case of non principal  $O_{K}$ -ideals.

Let  $w_K$  denote the number of roots of unity of K. The above conjecture was proved in [S-T] under the hypothesis that the ideal  $\mathfrak{A}$  be coprime to  $w_K$ . In this article we consider the conjecture for the case where |G| = 2. We now assume that there is a principal prime ideal  $\mathfrak{p} = (\pi)$  dividing 2. Moreover we assume that  $\mathfrak{p}$  is either ramified or split in  $(K/\mathbb{Q})$  and that  $K \neq \mathbb{Q}(\sqrt{-1})$ . We set  $\mathfrak{A} = \mathfrak{p}$ , so that  $G = E[\pi]$  and |G| = 2. By the theory of complex multiplication we can also deduce that  $G \subset E[2] \subset E(L)$ .

Therefore  $\mathcal{A} = L[G]$  and  $\mathfrak{B} = Map(G, L)$ . From [T], Proposition 1, we conclude that the order  $\Lambda$ , in the present case, is given by

(1-4)  $\Lambda = \mathbf{1}_G O_L + (\pi^{-1} \sigma_G) O_L$ 

where  $\sigma_G = \sum_{g \in G} g$ .

Let  $\mathfrak{M}$  denote the unique maximal  $O_L$ -order of L[G]. As usual, we denote by  $D(\Lambda)$  the kernel of the extension map  $e : C\ell(\Lambda) \to C\ell(\mathfrak{M})$ . We define the homomorphism  $\psi' : E(L) \to C\ell(\mathfrak{M})$  to be the composite map  $e \circ \psi$ . For  $P \in E(L)$ , it is shown in [T] that |G| annihilates  $\psi(P)$ . Thus, in the present case,  $\psi(P)^2 = 1$  in  $C\ell(\Lambda)$  and  $\psi'(P)^2 = 1$  in  $C\ell(\mathfrak{M})$ . In the second section we shall prove :

THEOREM 1. Let  $\mathfrak{p} = (\pi)$  be a ramified or split principal prime ideal dividing  $2O_K$ . Moreover, assume that  $E[4] \subset E(L)$ . Then for  $G = E[\pi]$ ,

$$E(L)_{\text{torsion}} \subseteq Ker(\psi').$$

Let  $\Phi$  denote the quotient  $map: O_L \to O_L/\overline{\pi}O_L$  where  $\overline{\pi}$  is the complex conjugate of  $\pi$ . We denote the image of  $O_L^*$  under  $\Phi$  by Im  $O_L^*$ . In section 2 we also calculate  $D(\Lambda)$ ,

THEOREM 2. The group kernel is given by

$$D(\Lambda) = (O_L/\overline{\pi}O_L)^* / \text{Im}O_L^*.$$

The main aim of section 3 is to treat cases where E[4] is not contained in E(L).

We first assume that 2 is split in  $(K/\mathbb{Q})$ ; we denote by  $\mathfrak{p} = (\pi)$  a prime ideal of K above 2. We now fix a fractional ideal  $\Omega$  of K, viewed as a C lattice, and a 4-division point  $\nu$  of  $\mathbb{C}/\Omega$  such that  $2\nu$  has annihilator  $2O_K$ . Corresponding to the pair  $(\Omega, \nu)$  we define the "minimal Fueter model" as the elliptic curve E given by :

(1-5) 
$$y^2 + \sqrt{t} \ xy = x^3 + x$$

where  $t = t_{\Omega,\nu} = 12\wp_{\Omega}(2\nu)/(\wp_{\Omega}(\nu) - \wp_{\Omega}(2\nu))$ . We let  $L = K(\sqrt{t})$ . Our model is then defined over L. From  $[CN - T_2]$ , IX, (5 - 4), we know that K(t) = K(4), the ray class field mod  $4O_K$ . Moreover, since 2 is split in  $(K/\mathbb{Q})$ , we know that  $t^2 - 2^6$  is a unit,  $[CN - T_2]$ , IX, (5 - 10). Therefore E has good reduction everywhere. One can check, using classfield theory, that  $E[\pi] \subset E(L)$ . We let Q be the primitive  $\pi$ -division point of E. We now assume that  $E[\pi^2] \not\subset E(L)$ . We consider the map  $h: G_Q \to \overline{O}$  défined by h(R) = y(R), for  $R \in G_Q$ . It will be proved that h lies in  $\widetilde{O}_Q$ .

Next we consider the Swan module  $(\sqrt{t}, \pi^{-1}\sigma_G)\Lambda$ . Since  $t^2 - 2^6$  is a unit,  $\sqrt{t}$  is relatively prime to |G| = 2. Then this module is a locally free ideal of  $\Lambda$  (cf. [U],[S]).

THEOREM 3. Let Q be the primitive  $\pi$ -division point of the minimal Fueter curve E. Then

$$\sqrt{t}\tilde{O}_Q = h(\sqrt{t}, \pi^{-1}\sigma_G)\Lambda.$$

One can observe that the Swan module is the obstruction to the  $\Lambda$ -freeness of  $\tilde{O}_Q$ . As a consequence of Theorem 2 and Theorem 3 we obtain :

COROLLARY 1. Under the hypothesis of Theorem 3,  $E(L)_{\text{torsion}} \subseteq Ker\psi$ if and only if there exists a unit u of L such that  $\sqrt{t} \equiv u \mod \pi O_L$ .

Proof. Since  $E[\pi^2] \not\subset E(L)$  the inclusion  $E(L)_{\text{torsion}} \subseteq Ker\psi$  is equivalent with  $\psi(Q) = 1$ , (see section 2). By Theorem 3 we know that  $\psi(Q) = 1$ if and only if  $(\sqrt{t}, \pi^{-1}\sigma_G) \Lambda$  is a free  $\Lambda$ -module. Since we know that the element of  $C\ell(\Lambda)$  defined by  $(\sqrt{t}, \pi^{-1}\sigma_G)\Lambda$  belongs to  $D(\Lambda)$  and is represented by  $\sqrt{t}$ , the conclusion follows Theorem 2. It will be obviously very interesting to know wether the condition of the corollary is always satisfied. In section 4 we checked that the condition is fulfilled when  $K = \mathbb{Q}(\sqrt{-7})$ .

Acknowledgement : The authors wish to thank J. Martinet for providing useful computer calculations of certain units for section 4.

#### 2. Proof of Theorems 1 and 2.

We keep the notations of section 1. Let m be the largest positive integer such that  $E[\pi^m] \subset E(L)$ . We know that  $[\pi]E(L) \subset Ker\psi \subset Ker\psi'$ . Therefore, in order to prove Theorem 1, it suffices to show that

$$E[\pi^m] - E[\pi^{m-1}] \subset Ker\psi'.$$

Let us now fix  $Q \in E(L)$  such that  $G_Q \not\subset E(L)$ . In this case  $L_Q$  can be identified with L(Q), the field generated over L by the coordinates of all points of  $G_Q$ . Of course, now [L(Q):L] = 2. Let  $R \in E(\bar{\mathbb{Q}})$  be such that

$$\pi R = Q.$$

Then the map :

$$Gal(L(Q)/L) \to G$$
  
 $\omega \to R^{\omega} - R$ 

induces a group isomorphism which is independent of the particular choice of R. We may identify these two groups. Let  $\gamma$  be the non trivial element of G.

Proof of Theorem 1.

The proof splits in two steps.

(I) <u>Preliminary step</u>

Let  $\hat{G}$  denote the group of characters of G. We have an isomorphism

(2-1) 
$$\theta: C\ell(\mathfrak{M}) \simeq \prod_{\chi \in \dot{G}} C\ell(O_L).$$

For  $y \in C\ell(\mathfrak{M})$  we write  $\theta_{\chi}(y)$  to denote its projection on the  $\chi$ -component  $C\ell(O_L)$ . Now G acts as automorphisms on L(Q). We write this action exponentially. For  $\chi \in \hat{G}$  and  $b \in Map(G_Q, \bar{\mathbb{Q}})$ , the Lagrange resolvent of b is defined by

(2-2) 
$$(b|\chi) = \sum_{g \in G} b^g \chi(g^{-1})$$

PROPOSITION 1. Let  $\chi \in \hat{G}$  and  $y \in L(Q)$  be such that  $y^g = y \cdot \chi(g)$ ,  $\forall g \in G$ . Then there exists a fractional ideal  $I(\chi)$  of L whose class in  $C\ell(O_L)$  is independent of the choice of y, such that  $y^2 O_L = I(\chi)^2$ . Moreover,  $\theta_{\chi}(\psi'(Q)) = [I(\chi)]^{-1}$ .

Proof. Clearly the class of  $I(\chi)$  does not depend on the choice of y. We may, therefore, take  $y = \pi^{-1}(d|\chi)$  where d generates a normal basis of L(Q) over L. From [T], Proposition 6 and Theorem 3, we deduce that there exists a fractional ideal  $I(\chi)$  of L such that  $\theta_{\chi}(\psi'(Q)) = [I(\chi)]^{-1}$  and  $I(\chi)O_{L(Q)} = \pi^{-1}(d|\chi)O_{L(Q)}$ .

COROLLARY 2. The following statements are equivalent

- i)  $\psi'(Q) = 1$
- ii) There exists  $y \in L(Q) \setminus L$  such that  $y^2 \in L$  and  $y^2 O_L$  is a square of a principal  $O_L$ -ideal.
- iii) There exists a unit  $u \in L$  such that  $L(Q) = L(\sqrt{u})$ .

(II) Construction of a unit.

Let us now assume that  $E[4] \subset E(L)$  and fix  $Q \in E[\pi^m]$ . Therefore, in this case m > 1. We consider a general Weierstrass model of E defined over L. Let us fix  $R \in G_Q$ . Let S be the primitive  $\pi$ -division point and Va primitive 4-division point of E(L). As  $G_Q \not\subset E(L)$ , the points [2]R and [2](R + V) are both distinct from S. Thus  $x(R)^{\gamma} = x(R + S) \neq x(R)$  and  $x(R + V)^{\gamma} = x(R + V + S) \neq x(R + V)$ .

We then have

$$L(Q) = L(x(R)) = L(x(R+V)).$$

Thus, by the theorem of Fueter-Hasse, [CN-T 2, IX]

(2-3) 
$$L(Q) = \begin{cases} L.K(\mathfrak{p}^{m+1}) & \text{if } 2 \text{ is ramified in } (K/\mathbb{Q}) \\ L.K(4\mathfrak{p}^{m-1}) & \text{if } 2 \text{ is split in } (K/\mathbb{Q}) \end{cases}$$

where K(f) denotes the K-ray class field mod f for any  $O_{K}$ - ideal f.

Next we fix an analytic parametrisation

$$\mathbb{C}/\Omega \xrightarrow{\sim} E(\mathbb{C})$$

for a certain lattice  $\Omega$  of  $\mathbb{C}$ .

We now set :

(2-4) 
$$A_Q = \begin{cases} \frac{h_\Omega(R) - h_\Omega(R+S)}{h_\Omega(Q) - h_\Omega(Q+S)}, & \text{if } 2 \text{ is ramified in } (K/\mathbb{Q}) \\ \frac{h_\Omega(R+V) - h_\Omega(R+V+S)}{h_\Omega(Q+V) - h_\Omega(Q+V+S)}, & \text{if } 2 \text{ is split in } (K/\mathbb{Q}) \end{cases}$$

where  $h_{\Omega}$  is the first Weber's function. Once again from the theory of complex multiplication we know that  $A_Q \in K(\mathfrak{p}^{m+1})$  (resp.  $K(4\mathfrak{p}^{m-1})$ ) if 2 is ramified (resp. split) in  $(K/\mathbb{Q})$ . Moreover we obtain that

(2-5) 
$$\begin{cases} K(\mathfrak{p}^{m+1}) = K(\mathfrak{p}^m)(A_Q), \text{ if } 2 \text{ is ramified in } (K/\mathbb{Q})\\ K(4\mathfrak{p}^{m-1}) = K(4\mathfrak{p}^{m-2})(A_Q), \text{ if } 2 \text{ is split in } (K/\mathbb{Q}) \end{cases}$$

From (2.3) we then deduce that

(2-6) 
$$L(Q) = L(A_Q) \text{ and } A_Q^2 \in L.$$

Let  $p_{\Omega}$  be the Weierstrass p function for  $\Omega$ . From the definition of  $h_{\Omega}$  we deduce that

(2-7) 
$$A_{Q} = \begin{cases} \frac{\wp_{\Omega}(R) - \wp_{\Omega}(R+S)}{\wp_{\Omega}(Q) - \wp_{\Omega}(Q+S)}, & \text{if } 2 \text{ is ramified in } (K/\mathbb{Q}) \\ \frac{\wp_{\Omega}(R+V) - \wp_{\Omega}(R+V+S)}{\wp_{\Omega}(Q+V) - \wp_{\Omega}(Q+V+S)}, & \text{if } 2 \text{ is split in } (K/\mathbb{Q}) \end{cases}$$

Let  $\mathcal{H}$  denote the upper half plane. Let  $\tau \in \mathcal{H}$  be such that  $\Omega = \lambda(\mathbb{Z}\tau + \mathbb{Z})$ for some  $\lambda \in \mathbb{C}^*$ . For  $z \in \mathcal{H}$  we write  $\Omega_z = \mathbb{Z}z + \mathbb{Z}$ . For  $a \in (\mathbb{Q}/\mathbb{Z})^2$  we choose the unique representative  $(a_1, a_2) \in \mathbb{Q}^2$  with  $a_1, a_2 \in [0, 1[$ . We write  $az = a_1z + a_2$ . We define r(resp.s, resp.v, resp.q) in  $(\mathbb{Q}/\mathbb{Z})^2$  such that  $\lambda(r\tau)(resp. \lambda(s\tau), resp.\lambda(v\tau), resp.\lambda(q\tau))$  represents R(resp.S,resp. V, resp. Q) in  $\mathbb{C}$  mod. $\Omega$ . We now consider functions F(r, q, s) and G(r, q, s, v) defined by

(2-8.a) 
$$F(r,q,s)(z) = \frac{\wp_{\Omega_z}(rz) - \wp_{\Omega_z}(rz+sz)}{\wp_{\Omega_z}(qz) - \wp_{\Omega_z}(qz+sz)}$$

and

(2-8.b) 
$$G(r,q,s,v)(z) = \frac{\wp_{\Omega_z}(rz+vz) - \wp_{\Omega_z}(rz+vz+sz)}{\wp_{\Omega_z}(qz+vz) - \wp_{\Omega_z}(qz+vz+sz)}$$

(2-9) 
$$A_Q = \begin{cases} F(r,q,s)(\tau) & \text{if } 2 \text{ ramified,} \\ G(r,q,s,v)(\tau) & \text{if } 2 \text{ splits.} \end{cases}$$

Functions F and G are modular Weierstrass units of a level which is an appropriate power of 2.

When f and g are functions defined on  $\mathcal{H}$  we write

$$f \approx g$$

if there exist integers n and m such that  $f^n/g^m$  is a modular function, which is a unit over  $\mathbb{Z}$ .

For  $a \in (\mathbb{Q}/\mathbb{Z})^2$  we introduced in  $[CN-T_1]$ , (2-7), a function  $\tilde{\Psi}(a)$  defined on  $\mathcal{H}$ . In fact an appropriate power of  $\tilde{\Psi}(a)$  is a ratio of Deuring modular units. From  $[CN - T_1]$ , Proposition 2-8, we obtain

LEMMA 1. There are equivalences

$$F(r,q,s) \approx \frac{\tilde{\Psi}^2(q)\tilde{\Psi}^2(q+s)\tilde{\Psi}(2r+s)}{\tilde{\Psi}^2(r)\tilde{\Psi}^2(r+s)\tilde{\Psi}(2q+s)}$$

and

$$G(r,q,s,v) \approx \frac{\tilde{\Psi}^2(q+v)\tilde{\Psi}^2(q+s+v)\tilde{\Psi}(2r+2v+s)}{\tilde{\Psi}^2(r+v)\tilde{\Psi}^2(r+v+s)\tilde{\Psi}(2q+2v+s)}$$

We now show :

LEMMA 2. (i) If 2 is ramified in  $(K/\mathbb{Q})$ , then  $F(r,q,s)(\tau)$  is a unit. (ii) If 2 is split in  $(K/\mathbb{Q})$  and m > 2, then  $G(r,q,s,v)(\tau)$  is a unit.

Proof (i) Let 2 be ramified in  $(K/\mathbb{Q})$  and suppose m = 2t, t > 1 (if m is odd the proof is similar). Then,  $q\tau(resp.(q+s)\tau, resp.(2q+s)\tau, resp.r\tau, resp.(r+s)\tau, resp.(2r+s)\tau)$  defines a primitive  $\mathfrak{p}^{2t}(resp.\mathfrak{p}^{2t}, resp.\mathfrak{p}^{2(t-1)}, resp.\mathfrak{p}^{2t+1}, resp.\mathfrak{p}^{2t+1})$ -division point of  $\mathbb{C}/\Omega_{\tau}$ .

For two algebraic numbers a, b we write  $a \sim b$  if  $ab^{-1}$  is a unit. From  $[CN - T_1]$ , Proposition 3-5, we deduce that

(2-10)  
$$\begin{cases} \tilde{\Psi}(q)(\tau) \sim \tilde{\Psi}(q+s)(\tau) \sim 2^{(2^{-2t})} \\ \tilde{\Psi}(r)(\tau) \sim \tilde{\Psi}(r+s)(\tau) \sim 2^{(2^{-2t-1})} \\ \tilde{\Psi}(2q+s)(\tau) \sim 2^{(2^{2-2t})} \\ \tilde{\Psi}(2r+s)(\tau) \sim 2^{(2^{1-2t})}. \end{cases}$$

Thus from Lemma 1 and (2-10) we conclude that  $F(q, r, s)(\tau)$  is a unit.

(ii) Now suppose that 2 is split in  $(K/\mathbb{Q})$  and m > 2. Then  $(q + v)\tau$ and  $(q + v + s)\tau$  are primitive  $\mathfrak{p}^m \bar{\mathfrak{p}}^2$  division points ;  $(r + v)\tau$  and  $(r + v + s)\tau$  are primitive  $\mathfrak{p}^{m+1}\bar{\mathfrak{p}}^2$ -division points. Moreover  $(2r + 2v + s)\tau$  $(resp.(2q + 2v + s)\tau)$  is a primitive  $\mathfrak{p}^m \bar{\mathfrak{p}}$   $(resp.\mathfrak{p}^{m-1}\bar{\mathfrak{p}})$ -division point. Since these points are primitive of composite order, it follows from  $[CN - T_1]$ , Proposition 3-5, that each factor in the right hand side of the equivalence in Lemma 1 gives a unit when evaluated at  $\tau$ . From (2-9) and Lemma 2 we now conclude that  $A_Q$  is a unit. Therefore Theorem 1 is proved, via Corollary 2, except in the case where 2 is split in  $(K/\mathbb{Q})$  and m = 2. We can, nevertheless, treat this case in a similar fashion by replacing  $A_Q$  by  $A_Q^1$  given by

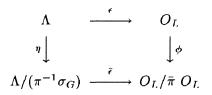
(2-11) 
$$A_Q^1 = \pi^{-1} (P_\Omega(R+V) - P_\Omega(R+V+S))$$

where  $P_{\Omega}$  is the function considered by Schertz [Sh]. We know that

$$A_Q^1 = \kappa (h_\Omega(R+V) - h_\Omega(R+V+S))$$

where  $\kappa \in K(1)$ . We thus have  $A_Q^1 \in L_Q \setminus L$  and  $(A_Q^1)^2 \in L$ . We now deduce from [Sch], (12) and Satz 3, that  $A_Q^1$  is a unit. This now completes the proof of Theorem 1.

Proof of Theorem 2. We recall that the order  $\Lambda$  is explicitly given by (1-4). Let us consider the fiber product of orders



where  $\eta$  and  $\phi$  are the quotient maps,  $\epsilon$  is the augmentation map and  $\overline{\epsilon}$  is induced by  $\epsilon$ . Using the Mayer-Vietoris sequence of Reiner-Ullom, [S], [U], we obtain an exact sequence of groups and homomorphisms.

$$(2-13) \qquad O_L^* \times (\Lambda/(\pi^{-1}\sigma_G))^* \xrightarrow{\phi\bar{\epsilon}^{-1}} (O_L/\bar{\pi} \ O_L)^* \xrightarrow{\delta} D(\Lambda) \to \{1\}$$

where  $\delta$  is the connecting homomorphism.

We also need to observe that

$$D(O_L) = D(\Lambda/(\pi^{-1}\sigma_G)) = \{1\}.$$

Moreover, for s coprime with  $\bar{\pi}$ ,  $\delta(s \mod \bar{\pi}O_L)$  is given by the class of the corresponding Swan module  $(s, \pi^{-1}\sigma_G)\Lambda$ . Since  $O_L$  and  $\Lambda/(\pi^{-1}\sigma_G)$  can be naturally identified as rings, we conclude that

$$D(\Lambda) = (O_L/\bar{\pi}O_L)^*/Im \ O_L^*.$$

#### 3. Minimal Fueter model

We recall in this section that  $\mathfrak{p} = (\pi)$  is a principal, prime ideal of K, above 2, which is split in  $(K/\mathbb{Q})$ . Moreover we suppose that  $E[\pi] \subset E(L)$  and  $E[\pi^2] \not\subset E(L)$ . We let  $\Omega$  be a fractional ideal of K and  $\nu$  a primitive  $4O_K$ -division point of  $\mathbb{C}/\Omega$ .

In  $[CN - T_2]$  a Fueter elliptic curve was considered, corresponding to the pair  $(\Omega, \nu)$ , given by

$$(3-1) y^2 = 4x^3 + tx^2 + 4x$$

with

$$t = 12\wp_{\Omega}((2\nu)/(\wp_{\Omega}(\nu) - \wp_{\Omega}(2\nu)).$$

In fact one defines a complex analytic isomorphism between  $C/\Omega$  and the complex points of this curve by considering

(3-2) 
$$z \to \begin{cases} (T(z), T_1(z), 1) & \text{if } z \neq 2\nu \\ (0, 1, 0) & \text{if } z = 2\nu \end{cases}$$

where T and  $T_1$  are Fueter's elliptic functions,  $[CN - T_2]$ , IV. The minimal Fueter model E is obtained from (3.1) by the change of coordinates

$$(3-3) \qquad (x,y) \to (x,\sqrt{t}x+2y).$$

From (3-2) and (3-3) we deduce an isomorphism between  $\mathbb{C}/\Omega$  and the  $\mathbb{C}$ -points of E given by

(3-4) 
$$z \rightarrow \begin{cases} (T(z), U(z), 1) & \text{if } z \neq 2\nu \\ (0, 1, 0) & \text{if } z = 2\nu \end{cases}$$

where  $U(z) = (1/2)(T_1(z) - \sqrt{t} T(z)).$ 

We remark that 0 = (0, 0, 1) is taken to be the identity of the group law. It is also worth remarking that  $i \in K(t)$ . We set A = (i, 0, 1). It is worth to notice that, using the theory of complex multiplication, one can show that  $A \in E(L)$  and has infinite order. Let  $\alpha$  be the parameter of A in  $\mathbb{C}/\Omega$ under the isomorphism (3-4).

The divisor of T is given by

(3-5) 
$$(T) = 2(0) - 2(2\nu).$$

From  $[CN - T_2]$ , IV we know that

(3-6.a) 
$$T(z).T(z+2\nu) = 1.$$

(3-6.b) 
$$T_1(z+2\nu) = -T_1(z)/T^2(z).$$

Therefore, since T is an even function and  $T_1$  is an odd function, we deduce that

(3-7) 
$$U(2\nu - z) = U(z)/T^{2}(z).$$

Moreover, the elliptic function U has divisor

(3-8) 
$$(U) = (0) + (\alpha) + (2\nu - \alpha) - 3(2\nu).$$

We denote by N the point of  $E(\mathbb{Q})_{\text{torsion}}$  defined by  $\nu$ . Let Q be the primitive  $\pi$ -division point of E. We fix a point  $R \in G_Q$  and denote by  $\rho$  its parameter in  $\mathbb{C}/\Omega$ .

Now R + Q = -R, therefore  $G_Q = \{R, -R\}$ .

Thus,  $x(R)^{\gamma} = x(R+Q) = x(-R) = x(R)$ . Then  $L(Q) = L(y(R)) = L(T_1(\rho)) = L(D(\rho))$  where  $D(\rho) = T_1(\rho)/T(\rho)$ .

From  $[CN - T_2]$ , IX, (6-7) we know that  $D^4(\rho) = t^2 - 2^6$ , which is a unit. Since  $D^2(\rho) \in L$  we conclude from Corollary 2 that  $\psi'(Q) = 1$ .

Until the end of this section the x and y coordinates are those of model (1-5).

We now want to study  $\psi(Q)$ . First, we have

LEMMA 3. Let  $\mathfrak{P}$  be a prime ideal of  $O_K$ . Let  $P \in E(\overline{\mathfrak{Q}})_{\text{torsion}}$  be such that  $\{P, [2]N - P\} \bigcap_{n>0} E[\mathfrak{P}^n] = \phi$ . Then x(P) is a  $\mathfrak{P}$ -unit (i.e. unit at all primes dividing  $\mathfrak{P}$ ).

Proof. We first observe that for any  $P \in E(\overline{\mathbb{Q}})$ ,  $P \neq [2]N$ , x(P) is a  $\mathfrak{P}$ -integer if and only if y(P) is a  $\mathfrak{P}$ -integer. Under the given hypothesis both

x(P) and y(P) are well defined and are non zero. Since x(P).x([2]N-P) = 1, it suffices to show that x(P) is a  $\mathfrak{P}$ -integer.

Let M be a finite extension of L such that  $\{P, [2]N - P\} \subset E(M)$ . Suppose x(P) is not a  $\mathfrak{P}$ -integer. Then there exists  $\mathfrak{P}_M$ , a maximal  $O_M$ -ideal, with  $\mathfrak{P}_M \cap O_K = \mathfrak{P}$  and v(x(P)) < 0 where v denote the standard valuation on the completion of M at  $\mathfrak{P}_M$ . From the equation of the minimal Fueter model E we see that 2v(y(P)) = 3v(x(P)). Thus, under the reduction mod  $\mathfrak{P}_M$ , P is mapped onto (0, 1, 0). This means that [2]N - P is in the kernel of reduction mod  $\mathfrak{P}_M$  which is impossible since the set of torsion points in the kernel of reduction is precisely  $\bigcup_{n>0} E[\mathfrak{P}^n]$ .

LEMMA 4.  $x(R) \sim \pi$ 

Proof. Since R is a primitive  $\pi^2$ -division point of E, [2]N - R is a torsion point of composite order. From Lemma 3 we conclude that x(R) is a unit outside the prime divisors of  $\mathfrak{p} = (\pi)$ . For a prime  $\mathfrak{P}$  of L(Q) that divides  $\mathfrak{p}$ , using that R is a primitive  $\pi^2$ -division point in the kernel of reduction mod  $\mathfrak{P}_{L(Q)}$  and that x(R)/y(R) is the parameter of R in the associated formal group we can find the valuation  $v_{\mathfrak{P}_L(Q)}(x(R))$ .

Remark: Lemma 3 and 4 can both be proved using the technique of modular functions as developed in section 2, Lemma 1 and 2.

It follows from the equation of E that  $y(R)^2/\pi$  is an algebraic integer and a p-unit.

We now consider the map

**Proposition 2.** 

i) The map h lies in  $\tilde{O}_Q$ 

ii) Let  $\chi \in \hat{G}$  and  $M \in G_Q$ , then

$$(h|\chi)(M) \sim \begin{cases} \sqrt{t}x(M), & \text{if } \chi \text{ is trivial} \\ x(M) & \text{otherwise.} \end{cases}$$

Proof. We first prove (ii). Since x is an even function and  $T_1$  an odd function, we obtain from the definition of h and (3-4)

 $(h|\chi)(M) = \begin{cases} -\sqrt{t}x(m), & \text{if } \chi \text{ is the identity character} \\ T_1(m) & \text{otherwise} \end{cases}$ 

where m is the parameter of M in  $\mathbb{C}/\Omega$ . Since  $m = \pm \rho$  we have  $T_1(m) = \pm D(\rho)x(M)$  and then, since  $D(\rho)$  is a unit,  $T_1(m) \sim x(M)$ . We now prove i). By lemma 4 it is evident that  $h \in O_Q$ . Since

$$\Lambda = 1_G O_L + (\pi^{-1} \sigma_G) O_L,$$

we need only check that  $h(\pi^{-1}\sigma_G) \in O_Q$ . For  $M \in G_Q$  we obtain

$$h(\pi^{-1}\sigma_G)(M) = \pi^{-1}(h|\epsilon)(M) = -\pi^{-1}\sqrt{t} \cdot x(M)$$

where  $\epsilon$  is the identity character. Using Lemma 4 we conclude that  $h(\pi^{-1}\sigma_G)(M) \in \overline{O}$ . Hence h lies in  $\widetilde{O}_Q$ .

 $\Box$ 

Proof of Theorem 3. The proof is similar to that of Theorem 5 in [S-T]. We must show the equality locally. For each prime  $\mathfrak{P}$  of L we write

 $\tilde{O}_{Q,\mathfrak{P}} = \theta_{\mathfrak{P}} \Lambda_{\mathfrak{P}}$ (3-10)  $(\sqrt{t}, \pi^{-1} \sigma_G) \Lambda_{\mathfrak{P}} = a_{\mathfrak{P}} \Lambda_{\mathfrak{P}}$ 

where  $\theta_{\mathfrak{P}}(resp.a_{\mathfrak{P}})$  belongs to  $\tilde{O}_{Q,\mathfrak{P}}(resp.\Lambda_{\mathfrak{P}})$ . From Theorem 3 of [T] we know that for  $M \in G_Q$  and  $\chi \in \hat{G}$  we have

(3-11) 
$$(\theta_{\mathfrak{P}}|\chi)(M) \sim \pi.$$

We let  $\chi$  act on  $L_{\mathfrak{P}}[G]$  by  $L_{\mathfrak{P}}$ -linearity. We first observe that  $\chi(\Lambda_{\mathfrak{P}}) = O_{L_{\mathfrak{P}}}$ . Then, by looking at  $\chi(a_{\mathfrak{P}}\Lambda_{\mathfrak{P}})$ , we obtain

(3-12) 
$$\chi(a_{\mathfrak{P}}) \sim \begin{cases} 1, \text{ if } \chi \text{ is the identity character} \\ \sqrt{t} \text{ otherwise.} \end{cases}$$

We now can write

$$(3-13) \qquad \qquad \theta_{\mathfrak{P}}.(\sqrt{t}b_{\mathfrak{P}}) = ha_{\mathfrak{P}}$$

with  $b_{\mathfrak{P}} \in L_{\mathfrak{P}}[G]$ . In order to prove the theorem we must show that  $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}^*$ . Since  $h \in \tilde{O}_{Q,\mathfrak{P}}$ ,  $h\sqrt{t}$  and  $h(\pi^{-1}\sigma_G)$  lie in  $\tilde{O}_{Q,\mathfrak{P}}$ . We conclude from (3-10) that  $ha_{\mathfrak{P}} \in \tilde{O}_{Q,\mathfrak{P}}$  and, from (3-13), that  $\sqrt{t}b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$ .

For  $\chi \in \hat{G}$  we consider the Lagrange resolvent of both sides of (3-13). We obtain

(3-14) 
$$\sqrt{t}(\theta_{\mathfrak{P}}|\chi)\chi(b_{\mathfrak{P}}) = (h|\chi)\chi(a_{\mathfrak{P}}).$$

Using Lemma 4, Proposition 2, (3-11) and (3-12), we deduce from (3-14) that  $\chi(b_{\mathfrak{P}}) \sim 1$ .

We now consider two cases.

Case 1.  $\mathfrak{P} \not\models \sqrt{t}$ . In this case  $\sqrt{t}b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$  implies that  $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$ ; so  $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}^*$ , since  $\chi(b_{\mathfrak{P}})$  is a unit for all  $\chi \in \hat{G}$ .

Case 2.  $\mathfrak{P} \mid \sqrt{t}$ . Since  $\sqrt{t}$  is coprime with 2,  $\mathfrak{P} \nmid 2$ . Then  $\Lambda_{\mathfrak{P}}$  is the unique maximal order and  $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}^*$  since  $\chi(b_{\mathfrak{P}})$  is a unit for all  $\chi \in \hat{G}$ .

Remark : If 2 splits in  $(K/\mathbb{Q}), (2) = (\pi)(\overline{\pi})$  and E denotes the Fueter minimal model

$$y^2 + \sqrt{txy} = x^3 + x$$

then for any number field  $L \supset K(\sqrt{t})$  and  $G = E[\pi]$  we have that  $E(L)_{torsion} \subset Ker\psi'$ .

One can easily check that if  $E[\pi^2] \subset E(L)$  then  $E[4] \subset E(L)$  and we can use the results of section 2.

#### 4. Examples

In this section we consider the set up of section 3 for the particular case of  $K = \mathbb{Q}(\sqrt{-7})$ .

We set  $\pi = (1 + \sqrt{-7})/2$  and  $2 = \pi \bar{\pi}$ , where  $\bar{\pi}$  is the complex conjugate of  $\pi$ . We note that the class number of K is 1, K(2) = K and [K(4) : K] = 2. Since  $i \in K(t) = K(4)$  we must have K(t) = K(i). Moreover, since  $t^2 - 2^6$  is a unit in K(2), we know that  $t^2 - 2^6 = \pm 1$ . The possibility  $t^2 - 2^6 = 1$  contradicts the fact that K(t) = K(i). Hence  $t^2 = 63$  and  $L = K(\sqrt[4]{63})$ ; therefore L is the splitting field of  $X^4 - 63$ .

We first determine the group kernel  $D(\Lambda)$  considered in Theorem 2.

PROPOSITION 3.  $D(\Lambda) = \{1\}.$ 

Proof. By Theorem 2 we know that

$$D(\Lambda) = (O_L/\bar{\pi}O_L)^*/Im \ O_L^*.$$

It is easily checked that the ramification index of (2) in L is 4. Hence the group  $(O_L/\bar{\pi}O_L)^*$  is of order 8. We have to show that  $\text{Im}(O_L)^*$  also has order 8. Let  $\alpha = \sqrt[4]{63}$  and  $\beta = (1+i)\alpha$ . We set  $u = (1-i)(1+\pi) + \alpha$ ,  $v = 1 - 3\alpha + \alpha^3/3$  and  $w = 5 - 2\beta - 12\pi - 2\pi\beta$ . We verify that

(4-1)  
$$u^{2} = iw, \ w.(5 + 2\beta - 12\pi + 2\pi\beta) = 1$$
$$v(127 + 45\alpha + 12\alpha^{2} + 17\alpha^{3}/3) = 1$$

Therefore u, v and w are all units of L. We also have

(4-2)  
$$u^{2} \equiv i \mod \bar{\pi}O_{L}, \ v^{2} \equiv 1 \mod \bar{\pi}O_{L}$$
$$i^{2} \equiv 1 \mod \bar{\pi}O_{L}$$

and

(4-3) 
$$i \not\equiv 1 \mod \bar{\pi}O_L, v \not\equiv 1 \mod \bar{\pi}O_L,$$
  
 $v \not\equiv i \mod \bar{\pi}O_L$ 

Let  $\Phi$  be the quotient map

$$\Phi: O_L \to (O_L/\bar{\pi}O_L)$$

It follows from (4-2) and (4-3) that  $\Phi(u)$  is of order 4 and that  $\Phi(v)$  doesn't lie in the subgroup generated by  $\Phi(u)$ . Hence we must have that the order of  $\text{Im}(O_L^*)$  is 8.

We know from section 3 that

$$L(E[\pi^2]) = L((t^2 - 2^6)^{1/4}) = L(\sqrt{i}).$$

Therefore :

 $E(L)_{torsion} \subset Ker\psi'$ .

Hence, from Proposition 3, we conclude

COROLLARY 3.

$$E(L)_{\text{torsion}} \subset Ker\psi.$$

#### REFERENCES

[CN-T 1] Ph. CASSOU-NOGUÈS, M.-J. TAYLOR, Unités modulaires et monogénéité d'anneaux d'entiers, Séminaire de Théorie des Nombres, Paris (1986-1987), 35-63.

- [CN-T 2] Ph. CASSOU-NOGUÈS, M.-J. TAYLOR, Rings of integers and elliptic functions, Progress in Mathematics 66. Birkhauser, Boston, (1987).
- [S] A. SRIVASTAV, A note on Swan modules, Indian Jour. Pure and Applied Math. 20/11 (1989), 1067-1076.
- [Sch] SCHERTZ, Konstruktion von Ganzheitsbasen in Strahlklassenkörper über imaginär quadratischen Zahlkörpern, J. de Crelle. à paraître.
- [S-T] A. SRIVASTAV, M.-J. TAYLOR, Elliptic curves with complex multiplication and Galois module structure. Invent. Math. 99 (1990), 165-184.
- [T] M.-J. TAYLOR, Mordel-Weil groups and the Galois module structure of rings of integers, Illinois Jour. Math. 32 (3) (1988), 428-452.
- [U] S.-V. ULLOM, Nontrivial lower bounds for class groups of integral group rings, Illinois Jour Math. 20 (1976), 361-371.

Centre de Recherche en Mathématiques de Bordeaux Université Bordeaux I C.N.R.S. U.A. 226 U.F.R. de Mathématiques 351, cours de la Libération 33405 Talence Cedex, FRANCE

and

SPIC Science Fondation East Coast Chambers 92 GN Chetty road 600017 Madras INDIA.