Philippe Cassou-Noguès

Anupam Srivastav

On Taylor's conjecture for Kummer orders

Journal de Théorie des Nombres de Bordeaux 2^{e} série, tome 2, nº 2 (1990), p. 349-363
http://www.numdam.org/item?id=JTNB_1990__2_2_349_0
© Université Bordeaux 1, 1990, tous droits réservés.
L'accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On Taylor's conjecture for Kummer orders.*

by Philippe Cassou-Noguès and Anupam Srivastav

1. Introduction

Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q} in \mathbb{C} and let \bar{O} be the ring of algebraic integers of $\overline{\mathbb{Q}}$. For a number field $F \subseteq \overline{\mathbb{Q}}$ we denote by O_{F} its ring of algebraic integers and we set $\Omega_{F}=\operatorname{Gal}(\overline{\mathbb{Q}} / F)$.

Let K be a quadratic imaginary number field, L a finite extension of K and (E / L) be an elliptic curve, defined over L, with everywhere good reduction and admitting complex multiplication by O_{K}.

Let $\mathfrak{A}=(a)$ denote a non-zero integral $O_{K^{-}}$-ideal. Let us write $G=G(\mathfrak{A})$ for the subgroup of points in $E(\overline{\mathbb{Q}})$ that are killed by all elements of \mathfrak{A}. For $P \in E(L)$, we set

$$
\begin{equation*}
G_{\Gamma}=G_{\Gamma}(\mathfrak{A})=\{R \in E(\overline{\mathbb{Q}}):[a] R=P\} \tag{1-1}
\end{equation*}
$$

the corresponding G-space of points on E. We define the corresponding Kummer algebra by

$$
\begin{equation*}
L_{\Gamma}=L_{\Gamma}(\mathfrak{A})=\operatorname{Map}\left(G_{P}, \overline{\mathbb{Q}}\right)^{\Omega_{L}} \tag{1-2}
\end{equation*}
$$

where the addition and multiplication are given value-wise on Ω_{I} maps from G_{Γ} to $\overline{\mathbb{Q}}$. In [T] M.-J. Taylor considered the $O_{I \text {.-algebra } \mathcal{B}}$ which
 order in the L-algebra $L_{O}=\operatorname{Map}(G, \overline{\mathbb{Q}})^{\Omega_{I} \text {. where } O}$ is the origin of E. The O_{I}-Cartier dual of \mathcal{B} is an O_{I}-order in the dual algebra $\mathcal{A}=(\overline{\mathbb{Q}}[G])^{\Omega_{I}}$ that we denote by Λ. Taylor [T] defined the Kummer order \tilde{O}_{P} as the largest Λ-module contained in O_{Γ} the integral closure of O_{I} in L_{P}. He showed that \tilde{O}_{P} is a locally free Λ-module. We write $\left(\tilde{O}_{P}\right)$ for its class in $C \ell(\Lambda)$, the class group of locally free Λ-modules.

[^0]In [T] the map $\psi: E(L) \rightarrow C \ell(\Lambda)$, given by $\psi(P)=\left(\tilde{O}_{P}\right)$ is shown to be a group homomorphism. Moreover it follows from the definition of \tilde{O}_{P} that $[a] E(L) \subset K e r \psi$. Taylor conjectured in [T] :
(1-3) Conjecture. For any non-zero principal $O_{K^{-} \text {-ideal, }}$

$$
E(L)_{\mathrm{torsion}} \subset K e r \psi
$$

We remark that in [S-T] the above framework was generalised to include the case of non principal O_{K}-ideals.

Let w_{K} denote the number of roots of unity of K. The above conjecture was proved in [S-T] under the hypothesis that the ideal \mathfrak{A} be coprime to w_{K}. In this article we consider the conjecture for the case where $|G|=2$. We now assume that there is a principal prime ideal $\mathfrak{p}=(\pi)$ dividing 2 . Moreover we assume that \mathfrak{p} is either ramified or split in (K / \mathbb{Q}) and that $K \neq \mathbb{Q}(\sqrt{-1})$. We set $\mathfrak{A}=\mathfrak{p}$, so that $G=E[\pi]$ and $|G|=2$. By the theory of complex multiplication we can also deduce that $G \subset E[2] \subset E(L)$.

Therefore $\mathcal{A}=L[G]$ and $\mathfrak{B}=\operatorname{Map}(G, L)$. From [T], Proposition 1, we conclude that the order Λ, in the present case, is given by

$$
\begin{equation*}
\Lambda=1_{G} . O_{I}+\left(\pi^{-1} \sigma_{G}\right) O_{I} \tag{1-4}
\end{equation*}
$$

where $\sigma_{G}=\sum_{g \in G} g$.
Let \mathfrak{N} denote the unique maximal $O_{I \text {.-order of }} L[G]$. As usual, we denote by $D(\Lambda)$ the kernel of the extension map $e: C \ell(\Lambda) \rightarrow C \ell(\mathfrak{M})$. We define the homomorphism $\psi^{\prime}: E(L) \rightarrow C \ell(\mathfrak{M})$ to be the composite map $e \circ \psi$. For $P \in E(L)$, it is shown in [T] that $|G|$ annihilates $\psi(P)$. Thus, in the present case, $\psi(P)^{2}=1$ in $C \ell(\Lambda)$ and $\psi^{\prime}(P)^{2}=1$ in $C \ell(\mathfrak{M})$. In the second section we shall prove :

Theorem 1. Let $\mathfrak{p}=(\pi)$ be a ramified or split principal prime ideal dividing $2 O_{K}$. Moreover, assume that $E[4] \subset E(L)$. Then for $G=E[\pi]$,

$$
E(L)_{\mathrm{torsion}} \subseteq K e r\left(\psi^{\prime}\right)
$$

Let Φ denote the quotient map : $O_{I .} \rightarrow O_{I .} / \bar{\pi} O_{I}$. where $\bar{\pi}$ is the complex conjugate of π. We denote the image of O_{I}^{*}. under Φ by $\operatorname{Im} O_{I}^{*}$. In section 2 we also calculate $D(\Lambda)$,

Theorem 2. The group kernel is given by

$$
D(\Lambda)=\left(O_{I .} / \bar{\pi} O_{I .}\right)^{*} / \operatorname{Im} O_{I .}^{*}
$$

The main aim of section 3 is to treat cases where $E[4]$ is not contained in $E(L)$.

We first assume that 2 is split in (K / \mathbb{Q}); we denote by $\mathfrak{p}=(\pi)$ a prime ideal of K above 2 . We now fix a fractional ideal Ω of K, viewed as a \mathbb{C} lattice, and a 4 -division point ν of \mathbb{C} / Ω such that 2ν has annihilator $2 O_{K}$. Corresponding to the pair (Ω, ν) we define the "minimal Fueter model" as the elliptic curve E given by :

$$
\begin{equation*}
y^{2}+\sqrt{t} x y=x^{3}+x \tag{1-5}
\end{equation*}
$$

where $t=t_{\Omega, \nu}=12 \wp_{\Omega}(2 \nu) /\left(\wp_{\Omega}(\nu)-\wp_{\Omega}(2 \nu)\right)$. We let $L=K(\sqrt{t})$. Our model is then defined over L. From [$C N-T_{2}$], $I X,(5-4)$, we know that $K(t)=K(4)$, the ray class field mod $4 O_{K}$. Moreover, since 2 is split in (K / \mathbb{Q}), we know that $t^{2}-2^{6}$ is a unit, $\left[C N-T_{2}\right], I X,(5-10)$. Therefore E has good reduction everywhere. One can check, using classfield theory, that $E[\pi] \subset E(L)$. We let Q be the primitive π-division point of E. We now assume that $E\left[\pi^{2}\right] \not \subset E(L)$. We consider the map $h: G_{Q} \rightarrow \bar{O}$ défined by $h(R)=y(R)$, for $R \in G_{Q}$. It will be proved that h lies in \tilde{O}_{Q}.

Next we consider the Swan module $\left(\sqrt{t}, \pi^{-1} \sigma_{G}\right) \Lambda$. Since $t^{2}-2^{6}$ is a unit, \sqrt{t} is relatively prime to $|G|=2$. Then this module is a locally free ideal of Λ (cf. [U], $[\mathrm{S}]$).

Theorem 3. Let Q be the primitive π-division point of the minimal Fueter curve E. Then

$$
\sqrt{t} \tilde{O}_{\mathcal{Q}}=h\left(\sqrt{t}, \pi^{-1} \sigma_{G}\right) \Lambda .
$$

One can observe that the Swan module is the obstruction to the Λ-freeness of $\tilde{O}_{\mathcal{Q}}$. As a consequence of Theorem 2 and Theorem 3 we obtain :

Corollary 1. Under the hypothesis of Theorem 3, $E(L)_{\text {torsion }} \subseteq K e r \psi$ if and only if there exists a unit u of L such that $\sqrt{t} \equiv u \bmod \bar{\pi} O_{I}$.

Proof. Since $E\left[\pi^{2}\right] \not \subset E(L)$ the inclusion $E(L)_{\text {torsion }} \subseteq K e r \psi$ is equivalent with $\psi(Q)=1$, (see section 2). By Theorem 3 we know that $\psi(Q)=1$ if and only if $\left(\sqrt{t}, \pi^{-1} \sigma_{G}\right) \Lambda$ is a free Λ-module. Since we know that the element of $C \ell(\Lambda)$ défined by $\left(\sqrt{t}, \pi^{-1} \sigma_{G}\right) \Lambda$ belongs to $D(\Lambda)$ and is represented by \sqrt{t}, the conclusion follows Theorem 2 .

It will be obviously very interesting to know wether the condition of the corollary is always satisfied. In section 4 we checked that the condition is fulfilled when $K=\mathbb{Q}(\sqrt{-7})$.

Acknowledgement: The authors wish to thank J. Martinet for providing useful computer calculations of certain units for section 4.

2. Proof of Theorems 1 and 2.

We keep the notations of section 1 . Let m be the largest positive integer such that $E\left[\pi^{m}\right] \subset E(L)$. We know that $[\pi] E(L) \subset \operatorname{Ker} \psi \subset K e r \psi^{\prime}$. Therefore, in order to prove Theorem 1, it suffices to show that

$$
E\left[\pi^{m}\right]-E\left[\pi^{m-1}\right] \subset K e r \psi^{\prime}
$$

Let us now fix $Q \in E(L)$ such that $G_{Q} \not \subset E(L)$. In this case L_{Q} can be identified with $L(Q)$, the field generated over L by the coordinates of all points of $G_{\mathcal{Q}}$. Of course, now $[L(Q): L]=2$. Let $R \in E(\overline{\mathbb{Q}})$ be such that

$$
\pi R=Q
$$

Then the map :

$$
\begin{gathered}
G a l(L(Q) / L) \rightarrow G \\
\omega \rightarrow R^{\omega}-R
\end{gathered}
$$

induces a group isomorphism which is independent of the particular choice of R. We may identify these two groups. Let γ be the non trivial element of G.

Proof of Theorem 1.
The proof splits in two steps.
(I) Preliminary step

Let \hat{G} denote the group of characters of G. We have an isomorphism

$$
\begin{equation*}
\theta: C \ell(\mathfrak{M}) \simeq \prod_{\chi \in G} C \ell\left(O_{I_{i}}\right) \tag{2-1}
\end{equation*}
$$

For $y \in C \ell(\mathfrak{M})$ we write $\theta_{\chi}(y)$ to denote its projection on the χ-component $C \ell\left(O_{r}\right)$. Now G acts as automorphisms on $L(Q)$. We write this action exponentially. For $\chi \in \hat{G}$ and $b \in \operatorname{Map}\left(G_{\mathcal{Q}}, \overline{\mathbb{Q}}\right)$, the Lagrange resolvent of b is defined by

$$
\begin{equation*}
(b \mid \chi)=\sum_{g \in G} b^{g} \chi\left(g^{-1}\right) \tag{2-2}
\end{equation*}
$$

Proposition 1. Let $\chi \in \hat{G}$ and $y \in L(Q)$ be such that $y^{g}=y \cdot \chi(g)$, $\forall g \in G$. Then there exists a fractional ideal $I(\chi)$ of L whose class in $C \ell\left(O_{I}\right)$ is independent of the choice of y, such that $y^{2} O_{I}=I(\chi)^{2}$. Moreover, $\theta_{\chi}\left(\psi^{\prime}(Q)\right)=[I(\chi)]^{-1}$.

Proof. Clearly the class of $I(\chi)$ does not depend on the choice of y. We may, therefore, take $y=\pi^{-1}(d \mid \chi)$ where d generates a normal basis of $L(Q)$ over L. From [T], Proposition 6 and Theorem 3, we deduce that there exists a fractional ideal $I(\chi)$ of L such that $\theta_{\chi}\left(\psi^{\prime}(Q)\right)=[I(\chi)]^{-1}$ and $I(\chi) O_{I(\mathcal{Q})}=\pi^{-1}(d \mid \chi) O_{I .(Q)}$.

Corollary 2. The following statements are equivalent
i) $\psi^{\prime}(Q)=1$
ii) There exists $y \in L(Q) \backslash L$ such that $y^{2} \in L$ and $y^{2} O_{I}$ is a square of a principal O_{I}-ideal.
iii) There exists a unit $u \in L$ such that $L(Q)=L(\sqrt{u})$.
(II) Construction of a unit.

Let us now assume that $E[4] \subset E(L)$ and fix $Q \in E\left[\pi^{m}\right]$. Therefore, in this case $m>1$. We consider a general Weierstrass model of E defined over L. Let us fix $R \in G_{Q}$. Let S be the primitive π-division point and V a primitive 4-division point of $E(L)$. As $G_{Q} \not \subset E(L)$, the points [2] R and $[2](R+V)$ are both distinct from S. Thus $x(R)^{\gamma}=x(R+S) \neq x(R)$ and $x(R+V)^{\gamma}=x(R+V+S) \neq x(R+V)$.

We then have

$$
L(Q)=L(x(R))=L(x(R+V))
$$

Thus, by the theorem of Fueter-Hasse, [CN-T 2, IX]

$$
L(Q)=\left\{\begin{array}{lc}
L . K\left(\mathfrak{p}^{m+1}\right) & \text { if } 2 \text { is ramified in }(K / \mathbb{Q}) \tag{2-3}\\
L . K\left(4 \mathfrak{p}^{m-1}\right) & \text { if } 2 \text { is split in }(K / \mathbb{Q})
\end{array}\right.
$$

where $K(f)$ denotes the K-ray class field mod f for any $O_{K^{-}}$ideal f.
Next we fix an analytic parametrisation

$$
\mathbb{C} / \Omega \stackrel{\sim}{\rightarrow} E(\mathbb{C})
$$

for a certain lattice Ω of \mathbb{C}.

We now set :

$$
A_{Q}=\left\{\begin{array}{l}
\frac{h_{\Omega}(R)-h_{\Omega}(R+S)}{h_{\Omega}(Q)-h_{\Omega}(Q+S)}, \quad \text { if } 2 \text { is ramified in }(K / \mathbb{Q}) \tag{2-4}\\
\frac{h_{\Omega}(R+V)-h_{\Omega}(R+V+S)}{h_{\Omega}(Q+V)-h_{\Omega}(Q+V+S)}, \quad \text { if } 2 \text { is split in }(K / \mathbb{Q})
\end{array}\right.
$$

where h_{Ω} is the first Weber's function. Once again from the theory of complex multiplication we know that $A_{\mathcal{Q}} \in K\left(\mathfrak{p}^{m+1}\right)$ (resp. $K\left(4 \mathfrak{p}^{m-1}\right)$) if 2 is ramified (resp. split) in (K / \mathbb{Q}). Moreover we obtain that

$$
\left\{\begin{align*}
K\left(\mathfrak{p}^{m+1}\right) & =K\left(\mathfrak{p}^{m}\right)\left(A_{Q}\right), \text { if } 2 \text { is ramified in }(K / \mathbb{Q}) \tag{2-5}\\
K\left(4 \mathfrak{p}^{m-1}\right) & =K\left(4 \mathfrak{p}^{m-2}\right)\left(A_{\mathcal{Q}}\right), \text { if } 2 \text { is split in }(K / \mathbb{Q})
\end{align*}\right.
$$

From (2.3) we then deduce that

$$
\begin{equation*}
L(Q)=L\left(A_{Q}\right) \text { and } A_{Q}^{2} \in L \tag{2-6}
\end{equation*}
$$

Let \wp_{Ω} be the Weierstrass \wp function for Ω. From the definition of $h_{\Omega 2}$ we deduce that

$$
A_{Q}=\left\{\begin{array}{l}
\frac{\xi_{\Omega}(R)-\ell_{\Omega}(R+S)}{\xi_{\Omega}(Q)-\xi_{\Omega}(Q+S)}, \text { if } 2 \text { is ramified in }(K / \mathbb{Q}) \tag{2-7}\\
\frac{\xi_{\Omega}(R+V)-\xi \Omega(R+V+S)}{\xi_{\Omega}(Q+V)-\xi_{\Omega}(Q+V+S)}, \text { if } 2 \text { is split in }(K / \mathbb{Q})
\end{array}\right.
$$

Let \mathcal{H} denote the upper half plane. Let $\tau \in \mathcal{H}$ be such that $\Omega=\lambda(\mathbb{Z} \tau+\mathbb{Z})$ for some $\lambda \in \mathbb{C}^{*}$. For $z \in \mathcal{H}$ we write $\Omega_{z}=\mathbb{Z} z+\mathbb{Z}$. For $a \in(\mathbb{Q} / \mathbb{Z})^{2}$ we choose the unique representative $\left(a_{1}, a_{2}\right) \in \mathbb{Q}^{2}$ with $a_{1}, a_{2} \in[0,1[$. We write $a z=a_{1} z+a_{2}$. We define r (resp.s, resp.v, resp.q) in $(\mathbb{Q} / \mathbb{Z})^{2}$ such that $\lambda(r \tau)(r e s p . \lambda(s \tau)$, resp. $\lambda(v \tau)$, resp. $\lambda(q \tau))$ represents $R(r e s p . S$, resp. V, resp. Q) in \mathbb{C} mod. Ω. We now consider functions $F(r, q, s)$ and $G(r, q, s, v)$ defined by

$$
\begin{equation*}
F(r, q, s)(z)=\frac{\wp_{\Omega_{z}}(r z)-\wp_{\Omega_{z}}(r z+s z)}{\wp_{\Omega_{z}}(q z)-\wp_{\Omega_{z}}(q z+s z)} \tag{2-8.a}
\end{equation*}
$$

and

$$
\begin{equation*}
G(r, q, s, v)(z)=\frac{\wp_{\Omega_{z}}(r z+v z)-\wp_{\Omega_{z}}(r z+v z+s z)}{\wp_{\Omega_{z}}(q z+v z)-\wp_{\Omega_{z}}(q z+v z+s z)} \tag{2-8.b}
\end{equation*}
$$

$$
A_{\mathcal{Q}}= \begin{cases}F(r, q, s)(\tau) & \text { if } 2 \text { ramified } \tag{2-9}\\ G(r, q, s, v)(\tau) & \text { if } 2 \text { splits }\end{cases}
$$

Functions F and G are modular Weierstrass units of a level which is an appropriate power of 2 .

When f and g are functions defined on \mathcal{H} we write

$$
f \approx g
$$

if there exist integers n and m such that f^{n} / g^{m} is a modular function, which is a unit over \mathbb{Z}.

For $a \in(\mathbb{Q} / \mathbf{Z})^{2}$ we introduced in $\left[C N-T_{1}\right],(2-7)$, a function $\tilde{\Psi}(a)$ defined on \mathcal{H}. In fact an appropriate power of $\tilde{\Psi}(a)$ is a ratio of Deuring modular units. From [CN $-T_{1}$], Proposition 2-8, we obtain

Lemma 1. There are equivalences

$$
F(r, q, s) \approx \frac{\tilde{\Psi}^{2}(q) \tilde{\Psi}^{2}(q+s) \tilde{\Psi}(2 r+s)}{\tilde{\Psi}^{2}(r) \tilde{\Psi}^{2}(r+s) \tilde{\Psi}(2 q+s)}
$$

and

$$
G(r, q, s, v) \approx \frac{\tilde{\Psi}^{2}(q+v) \tilde{\Psi}^{2}(q+s+v) \tilde{\Psi}(2 r+2 v+s)}{\tilde{\Psi}^{2}(r+v) \tilde{\Psi}^{2}(r+v+s) \tilde{\Psi}(2 q+2 v+s)}
$$

We now show :
Lemma 2. (i) If 2 is ramified in (K / \mathbb{Q}), then $F(r, q, s)(\tau)$ is a unit.
(ii) If 2 is split in (K / \mathbb{Q}) and $m>2$, then $G(r, q, s, v)(\tau)$ is a unit.

Proof (i) Let 2 be ramified in (K / \mathbb{Q}) and suppose $m=2 t, t>1$ (if m is odd the proof is similar). Then, $q \tau($ resp. $(q+s) \tau$, resp. $(2 q+s) \tau$, resp.r τ, resp. $(r+s) \tau$, resp. $(2 r+s) \tau)$ defines a primitive $\mathfrak{p}^{2 t}\left(r e s p \cdot \mathfrak{p}^{2 t}\right.$, resp. $\mathfrak{p}^{2(t-1)}$, resp. $\mathfrak{p}^{2 t+1}$, resp. $\cdot \mathfrak{p}^{2 t+1}$, resp $\left.\cdot \mathfrak{p}^{2 t-1}\right)$-division point of $\mathbb{C} / \Omega_{\tau}$.

For two algebraic numbers a, b we write $a \sim b$ if $a b^{-1}$ is a unit. From [CN $-T_{1}$], Proposition 3-5, we deduce that

$$
\left\{\begin{array}{l}
\tilde{\Psi}(q)(\tau) \sim \tilde{\Psi}(q+s)(\tau) \sim 2^{\left(2^{-2 t}\right)} \tag{2-10}\\
\tilde{\Psi}(r)(\tau) \sim \tilde{\Psi}(r+s)(\tau) \sim 2^{\left(2^{-2 t-1}\right)} \\
\tilde{\Psi}(2 q+s)(\tau) \sim 2^{\left(2^{2-2 t}\right)} \\
\tilde{\Psi}(2 r+s)(\tau) \sim 2^{\left(2^{1-2 t}\right)}
\end{array}\right.
$$

Thus from Lemma 1 and (2-10) we conclude that $F(q, r, s)(\tau)$ is a unit.
(ii) Now suppose that 2 is split in (K / \mathbb{Q}) and $m>2$. Then $(q+v) \tau$ and $(q+v+s) \tau$ are primitive $\mathfrak{p}^{m} \overline{\mathfrak{p}}^{2}$ division points ; $(r+v) \tau$ and $(r+$ $v+s) \tau$ are primitive $\mathfrak{p}^{m+1} \overline{\mathfrak{p}}^{2}$-division points. Moreover $(2 r+2 v+s) \tau$ (resp. $(2 q+2 v+s) \tau)$ is a primitive $\mathfrak{p}^{m} \overline{\mathfrak{p}}\left(\right.$ resp $\left.\cdot \mathfrak{p}^{m-1} \overline{\mathfrak{p}}\right)$-division point. Since these points are primitive of composite order, it follows from [$C N-T_{1}$], Proposition 3-5, that each factor in the right hand side of the equivalence in Lemma 1 gives a unit when evaluated at τ. From (2-9) and Lemma 2 we now conclude that $A_{\mathcal{Q}}$ is a unit. Therefore Theorem 1 is proved, via Corollary 2, except in the case where 2 is split in (K / \mathbb{Q}) and $m=2$. We can, nevertheless, treat this case in a similar fashion by replacing A_{Q} by A_{Q}^{1} given by

$$
\begin{equation*}
A_{Q}^{1}=\pi^{-1}\left(P_{\Omega 2}(R+V)-P_{\Omega 2}(R+V+S)\right) \tag{2-11}
\end{equation*}
$$

where $P_{S 2}$ is the function considered by Schertz [Sh]. We know that

$$
A_{\mathcal{Q}}^{1}=\kappa\left(h_{\Omega 2}(R+V)-h_{\Omega 2}(R+V+S)\right)
$$

where $\kappa \in K(1)$. We thus have $A_{\mathcal{Q}}^{1} \in L_{\mathcal{Q}} \backslash L$ and $\left(A_{\mathcal{Q}}^{1}\right)^{2} \in L$. We now deduce from [Sch], (12) and Satz 3, that $A_{\mathcal{Q}}^{1}$ is a unit. This now completes the proof of Theorem 1.

Proof of Theorem 2. We recall that the order Λ is explicitly given by (1-4). Let us consider the fiber product of orders

where η and ϕ are the quotient maps, ϵ is the augmentation map and $\bar{\epsilon}$ is induced by ϵ. Using the Mayer-Vietoris sequence of Reiner-Ullom, $[\mathrm{S}]$, [U], we obtain an exact sequence of groups and homomorphisms.

$$
\begin{equation*}
O_{I .}^{*} \times\left(\Lambda /\left(\pi^{-1} \sigma_{G}\right)\right)^{*} \xrightarrow{\phi \bar{\epsilon}^{-1}}\left(O_{I .} / \bar{\pi} O_{I .}\right)^{*} \xrightarrow{\delta} D(\Lambda) \rightarrow\{1\} \tag{2-13}
\end{equation*}
$$

where δ is the connecting homomorphism.

We also need to observe that

$$
D\left(O_{I .}\right)=D\left(\Lambda /\left(\pi^{-1} \sigma_{G}\right)\right)=\{1\}
$$

Moreover, for s coprime with $\bar{\pi}, \delta\left(s \bmod \bar{\pi} O_{I}\right)$ is given by the class of the corresponding Swan module $\left(s, \pi^{-1} \sigma_{G}\right) \Lambda$. Since O_{I}. and $\Lambda /\left(\pi^{-1} \sigma_{G}\right)$ can be naturally identified as rings, we conclude that

$$
D(\Lambda)=\left(O_{I .} / \bar{\pi} O_{I .}\right)^{*} / \operatorname{Im} O_{I}^{*}
$$

3. Minimal Fueter model

We recall in this section that $\mathfrak{p}=(\pi)$ is a principal, prime ideal of K, above 2 , which is split in (K / \mathbb{Q}). Moreover we suppose that $E[\pi] \subset E(L)$ and $E\left[\pi^{2}\right] \not \subset E(L)$. We let Ω be a fractional ideal of K and ν a primitive $4 O_{K^{-}}$-division point of \mathbb{C} / Ω.

In $\left[C N-T_{2}\right.$] a Fueter elliptic curve was considered, corresponding to the pair (Ω, ν), given by

$$
\begin{equation*}
y^{2}=4 x^{3}+t x^{2}+4 x \tag{3-1}
\end{equation*}
$$

with

$$
t=12 \wp_{\Omega}\left((2 \nu) /\left(\wp_{\Omega 2}(\nu)-\wp_{\Omega}(2 \nu)\right)\right.
$$

In fact one defines a complex analytic isomorphism between \mathbb{C} / Ω and the complex points of this curve by considering

$$
z \rightarrow \begin{cases}\left(T(z), T_{1}(z), 1\right) & \text { if } z \neq 2 \nu \tag{3-2}\\ (0,1,0) & \text { if } z=2 \nu\end{cases}
$$

where T and T_{1} are Fueter's elliptic functions, $\left[C N-T_{2}\right], I V$. The minimal Fueter model E is obtained from (3.1) by the change of coordinates

$$
\begin{equation*}
(x, y) \rightarrow(x, \sqrt{t} x+2 y) \tag{3-3}
\end{equation*}
$$

From (3-2) and (3-3) we deduce an isomorphism between \mathbb{C} / Ω and the \mathbb{C}-points of E given by

$$
z \rightarrow \begin{cases}(T(z), U(z), 1) & \text { if } z \neq 2 \nu \tag{3-4}\\ (0,1,0) & \text { if } z=2 \nu\end{cases}
$$

where $U(z)=(1 / 2)\left(T_{1}(z)-\sqrt{t} T(z)\right)$.

We remark that $0=(0,0,1)$ is taken to be the identity of the group law. It is also worth remarking that $i \in K(t)$. We set $A=(i, 0,1)$. It is worth to notice that, using the theory of complex multiplication, one can show that $A \in E(L)$ and has infinite order. Let α be the parameter of A in \mathbb{C} / Ω under the isomorphism (3-4).

The divisor of T is given by

$$
\begin{equation*}
(T)=2(0)-2(2 \nu) \tag{3-5}
\end{equation*}
$$

From [$C N-T_{2}$], IV we know that

$$
\begin{equation*}
T(z) \cdot T(z+2 \nu)=1 \tag{3-6.a}
\end{equation*}
$$

$$
\begin{equation*}
T_{1}(z+2 \nu)=-T_{1}(z) / T^{2}(z) \tag{3-6.b}
\end{equation*}
$$

Therefore, since T is an even function and T_{1} is an odd function, we deduce that

$$
\begin{equation*}
U(2 \nu-z)=U(z) / T^{2}(z) \tag{3-7}
\end{equation*}
$$

Moreover, the elliptic function U has divisor

$$
\begin{equation*}
(U)=(0)+(\alpha)+(2 \nu-\alpha)-3(2 \nu) \tag{3-8}
\end{equation*}
$$

We denote by N the point of $E(\overline{\mathbb{Q}})_{\text {torsion }}$ defined by ν. Let Q be the primitive π-division point of E. We fix a point $R \in G_{\mathcal{Q}}$ and denote by ρ its parameter in \mathbb{C} / Ω.

Now $R+Q=-R$, therefore $G_{Q}=\{R,-R\}$.
Thus, $x(R)^{\gamma}=x(R+Q)=x(-R)=x(R)$. Then $L(Q)=L(y(R))=$ $L\left(T_{1}(\rho)\right)=L(D(\rho))$ where $D(\rho)=T_{1}(\rho) / T(\rho)$.

From [CN - T_{2}], IX, (6-7) we know that $D^{4}(\rho)=t^{2}-2^{6}$, which is a unit. Since $D^{2}(\rho) \in L$ we conclude from Corollary 2 that $\psi^{\prime}(Q)=1$.

Until the end of this section the x and y coordinates are those of model (1-5).

We now want to study $\psi(Q)$. First, we have
Lemma 3. Let \mathfrak{P} be a prime ideal of O_{K}. Let $P \in E(\overline{\mathbb{Q}})_{\text {torsion }}$ be such that $\left.\{P,[2] N-P\} \bigcap_{n>0} E\left[\mathfrak{P}^{n}\right]\right)=\phi$. Then $x(P)$ is a \mathfrak{P}-unit (i.e. unit at all primes dividing \mathfrak{P}).

Proof. We first observe that for any $P \in E(\overline{\mathbb{Q}}), P \neq[2] N, x(P)$ is a \mathfrak{P} integer if and only if $y(P)$ is a \mathfrak{P}-integer. Under the given hypothesis both
$x(P)$ and $y(P)$ are well defined and are non zero. Since $x(P) \cdot x([2] N-P)=$ 1 , it suffices to show that $x(P)$ is a \mathfrak{P}-integer.

Let M be a finite extension of L such that $\{P,[2] N-P\} \subset E(M)$. Suppose $x(P)$ is not a \mathfrak{P}-integer. Then there exists \mathfrak{P}_{M}, a maximal O_{M}-ideal, with $\mathfrak{P}_{M} \cap O_{K}=\mathfrak{P}$ and $v(x(P))<0$ where v denote the standard valuation on the completion of M at \mathfrak{P}_{M}. From the equation of the minimal Fueter model E we see that $2 v(y(P))=3 v(x(P))$. Thus, under the reduction mod \mathfrak{P}_{M}, P is mapped onto $(0,1,0)$. This means that $[2] N-P$ is in the kernel of reduction $\bmod \mathfrak{P}_{M}$ which is impossible since the set of torsion points in the kernel of reduction is precisely $\bigcup_{n>0} E\left[P^{n}\right]$.

Lemma 4. $x(R) \sim \pi$
Proof. Since R is a primitive π^{2}-division point of $E,[2] N-R$ is a torsion point of composite order. From Lemma 3 we conclude that $x(R)$ is a unit outside the prime divisors of $\mathfrak{p}=(\pi)$. For a prime \mathfrak{P} of $L(Q)$ that divides \mathfrak{p}, using that R is a primitive π^{2}-division point in the kernel of reduction $\bmod \mathfrak{P}_{I(Q)}$ and that $x(R) / y(R)$ is the parameter of R in the associated formal group we can find the valuation $v_{\mathfrak{P}_{I}(\mathcal{Q})}(x(R))$.

Remark : Lemma 3 and 4 can both be proved using the technique of modular functions as developed in section 2 , Lemma 1 and 2.

It follows from the equation of E that $y(R)^{2} / \pi$ is an algebraic integer and a \mathfrak{p}-unit.

We now consider the map

$$
\begin{align*}
h & : G_{Q} \rightarrow \overline{\mathbb{Q}} \\
& M \rightarrow y(M) . \tag{3-9}
\end{align*}
$$

Proposition 2.
i) The map h lies in \tilde{O}_{Q}
ii) Let $\chi \in \hat{G}$ and $M \in G_{Q}$, then

$$
(h \mid \chi)(M) \sim \begin{cases}\sqrt{t} x(M), & \text { if } \chi \text { is trivial } \\ x(M) & \text { otherwise }\end{cases}
$$

Proof. We first prove (ii). Since x is an even function and T_{1} an odd function, we obtain from the definition of h and (3-4)

$$
(h \mid \chi)(M)=\left\{\begin{array}{l}
-\sqrt{t} x(m), \text { if } \chi \text { is the identity character } \\
T_{1}(m) \text { otherwise }
\end{array}\right.
$$

where m is the parameter of M in \mathbb{C} / Ω. Since $m= \pm \rho$ we have $T_{1}(m)=$ $\pm D(\rho) x(M)$ and then, since $D(\rho)$ is a unit, $T_{1}(m) \sim x(M)$. We now prove i). By lemma 4 it is evident that $h \in O_{Q}$. Since

$$
\Lambda=1_{G} O_{I .}+\left(\pi^{-1} \sigma_{G}\right) O_{I .}
$$

we need only check that $h .\left(\pi^{-1} \sigma_{G}\right) \in O_{Q}$. For $M \in G_{Q}$ we obtain

$$
h\left(\pi^{-1} \sigma_{G}\right)(M)=\pi^{-1}(h \mid \epsilon)(M)=-\pi^{-1} \sqrt{t} \cdot x(M)
$$

where ϵ is the identity character. Using Lemma 4 we conclude that $h\left(\pi^{-1} \sigma_{G}\right)(M) \in \bar{O}$. Hence h lies in $\tilde{O}_{\mathcal{Q}}$.

Proof of Theorem 3. The proof is similar to that of Theorem 5 in [S-T]. We must show the equality locally. For each prime \mathfrak{P} of L we write

$$
\begin{align*}
\tilde{O}_{\mathcal{Q}, \mathfrak{P}} & =\theta_{\mathfrak{P}} \Lambda_{\mathfrak{P}} \\
\left(\sqrt{t}, \pi^{-1} \sigma_{G}\right) \Lambda_{\mathfrak{P}} & =a_{\mathfrak{P}} \Lambda_{\mathfrak{P}} \tag{3-10}
\end{align*}
$$

where $\theta_{\mathfrak{P}}\left(\right.$ resp. $\left.a_{\mathfrak{P}}\right)$ belongs to $\tilde{O}_{\mathcal{Q}, \mathfrak{P}}\left(\right.$ resp. $\left.\Lambda_{\mathfrak{P}}\right)$. From Theorem 3 of $[\mathrm{T}]$ we know that for $M \in G_{Q}$ and $\chi \in \hat{G}$ we have

$$
\begin{equation*}
\left(\theta_{\mathfrak{P}} \mid \chi\right)(M) \sim \pi \tag{3-11}
\end{equation*}
$$

We let χ act on $L_{\mathfrak{P}}[G]$ by $L_{\mathfrak{P}}$-linearity. We first observe that $\chi\left(\Lambda_{\mathfrak{P}}\right)=O_{I \cdot \mathfrak{p}}$. Then, by looking at $\chi\left(a_{\mathfrak{P}} \Lambda_{\mathfrak{P}}\right)$, we obtain

$$
\chi\left(a_{\mathfrak{P}}\right) \sim\left\{\begin{array}{l}
1, \text { if } \chi \text { is the identity character } \tag{3-12}\\
\sqrt{t} \text { otherwise }
\end{array}\right.
$$

We now can write

$$
\begin{equation*}
\theta_{\mathfrak{P}} \cdot\left(\sqrt{t} b_{\mathfrak{P}}\right)=h a_{\mathfrak{P}} \tag{3-13}
\end{equation*}
$$

with $b_{\mathfrak{P}} \in L_{\mathfrak{P}}[G]$. In order to prove the theorem we must show that $b_{\mathfrak{P}} \in$ $\Lambda_{\mathfrak{P}}^{*}$. Since $h \in \tilde{O}_{Q, \mathfrak{P}}, h \sqrt{t}$ and $h\left(\pi^{-1} \sigma_{G}\right)$ lie in $\tilde{O}_{\mathcal{Q}, \mathfrak{P}}$. We conclude from (3-10) that $h a_{\mathfrak{P}} \in \tilde{O}_{\mathcal{Q}, \mathfrak{P}}$ and, from (3-13), that $\sqrt{t} b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$.

For $\chi \in \hat{G}$ we consider the Lagrange resolvent of both sides of (3-13). We obtain

$$
\begin{equation*}
\sqrt{t}\left(\theta_{\mathfrak{P}} \mid \chi\right) \chi\left(b_{\mathfrak{P}}\right)=(h \mid \chi) \chi\left(a_{\mathfrak{P}}\right) \tag{3-14}
\end{equation*}
$$

Using Lemma 4, Proposition 2, (3-11) and (3-12), we deduce from (3-14) that $\chi\left(b_{\mathfrak{P}}\right) \sim 1$.

We now consider two cases.
Case 1. $\mathfrak{P}+\sqrt{t}$. In this case $\sqrt{t} b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$ implies that $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}$; so $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}^{*}$, since $\chi\left(b_{\mathfrak{P}}\right)$ is a unit for all $\chi \in \hat{G}$.

Case 2. $\mathfrak{P} \mid \sqrt{t}$. Since \sqrt{t} is coprime with $2, \mathfrak{P}+2$. Then $\Lambda_{\mathfrak{P}}$ is the unique maximal order and $b_{\mathfrak{P}} \in \Lambda_{\mathfrak{P}}^{*}$ since $\chi\left(b_{\mathfrak{P}}\right)$ is a unit for all $\chi \in \hat{G}$.

Remark : If 2 splits in $(K / \mathbb{Q}),(2)=(\pi)(\bar{\pi})$ and E denotes the Fueter minimal model

$$
y^{2}+\sqrt{t} x y=x^{3}+x
$$

then for any number field $L \supset K(\sqrt{t})$ and $G=E[\pi]$ we have that $E(L)_{\text {torsion }} \subset K e r \psi^{\prime}$.

One can easily check that if $E\left[\pi^{2}\right] \subset E(L)$ then $E[4] \subset E(L)$ and we can use the results of section 2 .

4. Examples

In this section we consider the set up of section 3 for the particular case of $K=\mathbb{Q}(\sqrt{-7})$.

We set $\pi=(1+\sqrt{-} 7) / 2$ and $2=\pi \bar{\pi}$, where $\bar{\pi}$ is the complex conjugate of π. We note that the class number of K is $1, K(2)=K$ and $[K(4): K]=2$. Since $i \in K(t)=K(4)$ we must have $K(t)=K(i)$. Moreover, since $t^{2}-2^{6}$ is a unit in $K(2)$, we know that $t^{2}-2^{6}= \pm 1$. The possibility $t^{2}-2^{6}=1$ contradicts the fact that $K(t)=K(i)$. Hence $t^{2}=63$ and $L=K(\sqrt[4]{63})$; therefore L is the splitting field of $X^{4}-63$.

We first determine the group kernel $D(\Lambda)$ considered in Theorem 2.
Proposition 3. $D(\Lambda)=\{1\}$.
Proof. By Theorem 2 we know that

$$
D(\Lambda)=\left(O_{I .} / \bar{\pi} O_{I .}\right)^{*} / \operatorname{Im} O_{I}^{*}
$$

It is easily checked that the ramification index of (2) in L is 4 . Hence the group $\left(O_{I .} / \bar{\pi} O_{I_{1}}\right)^{*}$ is of order 8 . We have to show that $\operatorname{Im}\left(O_{I_{1}}\right)^{*}$ also has order 8 . Let $\alpha=\sqrt[4]{63}$ and $\beta=(1+i) \alpha$. We set $u=(1-i)(1+\pi)+\alpha, v=$ $1-3 \alpha+\alpha^{3} / 3$ and $w=5-2 \beta-12 \pi-2 \pi \beta$. We verify that

$$
\begin{array}{r}
u^{2}=i w, w \cdot(5+2 \beta-12 \pi+2 \pi \beta)=1 \\
v\left(127+45 \alpha+12 \alpha^{2}+17 \alpha^{3} / 3\right)=1 \tag{4-1}
\end{array}
$$

Therefore u, v and w are all units of L. We also have

$$
\begin{align*}
u^{2} & \equiv i \bmod \bar{\pi} O_{I L}, v^{2} \equiv 1 \bmod \bar{\pi} O_{I} \\
i^{2} & \equiv 1 \bmod \bar{\pi} O_{I} . \tag{4-2}
\end{align*}
$$

and

$$
\begin{align*}
& i \not \equiv 1 \bmod \bar{\pi} O_{L}, v \not \equiv 1 \bmod \bar{\pi} 0_{I .}, \\
& v \not \equiv i \bmod \bar{\pi} O_{I .} \tag{4-3}
\end{align*}
$$

Let Φ be the quotient map

$$
\Phi: O_{I .} \rightarrow\left(O_{I .} / \bar{\pi} O_{I .}\right)
$$

It follows from (4-2) and (4-3) that $\Phi(u)$ is of order 4 and that $\Phi(v)$ doesn't lie in the subgroup generated by $\Phi(u)$. Hence we must have that the order of $\operatorname{Im}\left(O_{T .}^{*}\right)$ is 8 .

We know from section 3 that

$$
L\left(E\left[\pi^{2}\right]\right)=L\left(\left(t^{2}-2^{6}\right)^{1 / 4}\right)=L(\sqrt{i}) .
$$

Therefore :

$$
E(L)_{\text {torsion }} \subset K e r \psi^{\prime} .
$$

Hence, from Proposition 3, we conclude
Corollary 3.

$$
E(L)_{\mathrm{torsion}} \subset K e r \psi
$$

REFERENCES

[CN-T 1] Ph. CASSOU-NOGUÈS, M.-J. TAYLOR, Unités modulaires et monogénéité d'anneaux d'entiers, Séminaire de Théorie des Nombres, Paris (1986-1987), 35-63.
[CN-T 2] Ph. CASSOU-NOGUĖS, M.-J. TAYLOR, Rings of integers and elliptic functions, Progress in Mathematics 66. Birkhauser, Boston, (1987).
[S] A. SRIVASTAV, A note on Swan modules, Indian Jour. Pure and Applied Math. 20/11 (1989), 1067-1076.
[Sch] SCHERTZ, Konstruktion von Ganzheitsbasen in Strahlklassenkörper über imaginär quadratischen Zahlkörpern, J. de Crelle. à paraître.
[S-T] A. SRIVASTAV, M.-J. TAYLOR, Elliptic curves with complex multiplication and Galois module structure. Invent. Math. 99 (1990), 165-184.
[T] M.-J. TAYLOR, Mordel-Weil groups and the Galois module structure of rings of integers, Illinois Jour. Math. 32 (3) (1988), 428-452.
[U] S.-V. ULLOM, Nontrivial lower bounds for class groups of integral group rings, Ilinois Jour Math. 20 (1976), 361-371.

Centre de Recherche en Mathématiques de Bordeaux Université Bordeaux I
C.N.R.S. U.A. 226
U.F.R. de Mathématiques

351, cours de la Libération
33405 Talence Cedex, FRANCE
and

SPIC Science Fondation
East Coast Chambers
92 GN Chetty road
600017 Madras INDIA.

[^0]: *This work was done while the second named author was visiting lecturer at Bordeaux University. He wishes to express his gratitude to the University for their hospitality. Manuscrit reçu le 7 mai 1990

