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Connections between binary patterns and paperfolding.

par PATRICK MORTON

1. Introduction. This talk will be an overview of some recent work on

binary patterns and their relationship to paperfolding sequences. Much of
this work was motivated by the Rudin-Shapiro sequence (aii (n)) defined
by

where ell(n~ is the number of occurrences of the pattern 11 in the binary
representation of n. On the one hand, this definition is easy to generalize.
One can consider the analogous sequence

where P is any pattern of 0’s and l’s and ep(n) counts occurrences of P in
n. 

,

On the other hand, there is the beautiful fact discovered by Mend6s
France that ail is exactly the direction sequence of the paperfolding se-
quence obtained by folding a rectangular piece of paper alternately under
and over the left edge (which is held fixed). (See [2] or [4].)

This raises the question: is this result about all isolated or does it point
to some deeper connection between binary patterns and paperfolding?

2. Properties of The results of this section represent joint work
with David Boyd and Janice Cook. (See [1].)

Let me begin by recalling some of the properties of the sequence aP(n)
defined by (1), where P is any pattern of 0’s and 1’s. First define

Then the following theorem holds concerning the behavior of sp(x).

Manuscrit reçu le 20 juin 1989



2

THEOREM 1. (See The partial sum function sp(x) has the repre-
sentation

, , _.. _ "’" ,

where t(x) is continuous and so(x) is bounded. Further,

where the ~k are the roots outside the unit circle of the polynomial

and

(By definition k is a period of P = if and only if p; = p;+ k for
0~~d-l--~)

Finally, the continuous functions of x &#x3E; 0 satisfying 

As a corollary we have

where T = logf/log2 and f is the maximum modulus of the roots of P(x).
For all but 14 patterns (in particular, if d &#x3E; 5) ~ _ ~1 is a root of P(x).
From this follows"the formula

so in these cases A(x) = A, (x) (for 1  x  2) represents the limiting
behavior of sp(x)lx’ on the intervals [2~2~}, as k - oo. This limit
function possesses two rather nice properties:

1) is nondifferei tiable almost everywhere,

2) x E Q # xTa(x) E Q(~).
Property 1) also implies that sP(x) = so that xT is the correct

order of magnitude of sp(x).
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The polynomials P(x) in theorem 1 also satisfy a remarkable set of recur-
sions. In order to state these recursions, let P and P’ be patterns of length
d and d ~- 1 recpectively, and let II and IT denote their sets of periods, e.g.

k E II if and only if k is a period of P.

If P(x) and P’(x) denote the corresponding polynomials, as in (3), then
P(x) and P’(x) depend only on the period sets II, IT, and for every period
set IT there is a unique period set 11 for which

We called these formulae the red and blue rules, respectively. They show
that the polynomials P(x) form a tree, with red or blue branches depending
on the rule which connects P(x) to P~(x). In [1] we show that this tree
has a fractal-like structure. It has a sequence of periodic subtrees which
are isomorphic to larger and larger initial pieces of the whole tree; thus the
tree reproduces itself in its subtrees.

The sequences ap are very fundamental. They can be used to study
arbitrary sequences of fl’s. If a = is any sequence of fl’s, then
there is a unique sequence {Pk} of binary patterns with increasing values
(the value of a pattern is the integer it represents) and no leading zeros, for
which

This infinite product is defined using the topology in which two sequences
are close if a large number of their initial terms agree. Let us call the set

the binary spectrum of the sequence a.

Now consider the question: is it possible to characterize the sequences a
which have a finite spectrum?

3. The arithmetic f’ractal groups Fk(G). ,

The answer to the last question is in fact yes, and depends on the follow-
ing definition. (See Morton and Mourant [4] for the results of this section.)
DEFINITION. Let G be an abelian group, a = an infinite se-

quence of elements of G, and
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the associated sequence of kq -segments of a. These vectors partition the
sequence a into vectors of length kq. We define

is periodic with period ll~ for all q &#x3E; 0}

Here is defined using scalar multiplication (or scalar addition if
the operation in G is addition). The least period M of a sequence a in
rk(G) is called its conductor.
The set rk(G) is an abelian group under componentwise multiplication.
As an example, let P be a pattern of digits base k and consider the

sequence ep(n) which counts the number of occurrences of P in the base-k
representation of n. Then eP E rk(Z) with conductor dividing kd-1, where
d is the number of digits of P. (This holds as long as P is not a pattern of
all 0’s). This fact follows from the equation

If k = 2, reducing el modulo 2 gives the Thue-Morse sequence ei, which
satisfies

--- __,. -L. J ’- I - - ’-

hence e1 E rk(Z2 ). This last formula is a restatement of the familiar fact
that ei is invariant under the substitution

The corresponding equation for the sequence of integers e1 also holds in
characteristic 0:

.I’ ,

The related sequences ap = (eP, where ( is a root of unity, generate a
special subgroup of rk( ( &#x3E; ), namely the subgroup

with conductor dividing a power of k},

which provides an answer to the question we raised in section 2.

THEOREM 2. (See ~4J.) Tlie sequences in A2 (+ 1) are exactly the se-
quences which have a finite binary spectrum.

Of course an analogous result characterizes sequences in &#x3E;)
in terms of their base k spectra.
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The sequences in rk(G) can be thought of as arithmetic analogues of
fractals. As an example consider the Rudin-Shapiro sequence a11, whose
first four terms are

We have

Since ali E ra(~1) with M = 2, the definition (4) implies that the
relations (5) persist for 2q-segments at all levels:

This can be used to generate all by considering the first four terms as the
elements of XOI and Xi . Using (6) with q = 1 gives the next four terms of
the sequence: 

- - - -

For q = 2 we then get 8 more terms :

etc. The same rule con:aects 29 -egments at ever increasing levels, in
analogy to the familiar constructions used to generate certain types of ge-
ometric fractals. The same remarks hold for any sequence in rk(G) for all
k and G.

4. Properties of rk(G). Among the properties of these groups I want
to particularly mention three. For proofs of 1. and 2. see [4].

1. In the definition of rk(G) we only need to require that a-1(n)Xn be
periodic of period M. The fact that has period M for all q &#x3E; 0
follows.

2. If G = U is the group of complex roots of unity, contains an

isomorphic copy of every finite abelian group. Every finite abelian group is
a homomorphic image of rk(Z), for a,ny k.

3. If G is finite, the sequences in rk(G) are all k-automatic.
I will prove this last property using the following maps Ti on sequences:

From property 1. above we have the following characterization of sequences
in rk(G).
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LEMMA. The sequence a lies in rk(G) if and only if a-1Tia is periodic

Proof. The sequence is periodic if and only if all its compo-
nent sequences are periodic, and its i-th component is just a-ltia.

If Til’ ..., Ti,. are any r of these maps (with possible repetitions), then
obviously

Hence we can use these maps to characterize sequences in rkq (G) :
these are sequences a for which a-lta is periodic for all monomials T
in To, · · · , Tk-l of degree q.
As is well-known, a sequence a is k-automatic if and only if the set of

sequences + i)} is a finite set. Using the maps T we can state

a is k-automatic if and only if there are only finitely many images Ta, as
T runs over all monomials in To , ~ · ~ , Tk-i .

Using this we prove

THEOREM 3. If G is a finite abelian group, the sequences in are

a~l k-automatic.

Proof. By definition, a E has the property that is periodic

Tia = api,

where pi is a periodic sequence, of period M, say. If S is any monomial in
To; .. , and ,S’ _ S’Ti, then

where p’ = S(pi) is also periodic with period M. Peeling off one term Ti at
a time gives finally that

where p is periodic with period M. But there are only finitely many periodic
sequences of a given period with terms that are taken from the given finite
set G. Hence there are only finitely many distinct sequences sa, implying
that a is k-automatic.
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A different proof of this theorem appears in [5], where we show that
the sequences in rk(G) are essentially fixed points of kr- substitutions for
suitable r. Shallit (private communication) has found yet a third proof.

If Ak(G) is the set of all k-automatic sequences taken from the alphabet
G, then it is a consequence of theorem 3 that

and so

It is not hard to exhibit automatic sequences which are not in rkq for any
q. We do this for q = 2 in the following

Example. Let G = Z2 and let u be the Baum-Sweet sequence, defined
by

These formulae ma.y be written as follows:

It is easy to check that

To show that u v r29(Z2) for any q, we show that -u + Su = u + Su is not
periodic, for a suitable monomial S of degree q. It suffices to take q &#x3E; 2

and S = Then

which is not periodic, since the series ~~ o unxn satisfies an irreducible
cubic equation over Thus
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These considerations also raise the following question :
Question. Since rk(G) and Ak(G) are abelian groups, they have asso-

ciated rings of endomorphisms. What are

It is obvious that Ti E E2 and not hard to check that Ti E El for all
i = 0,1, ~ ~ ~ , J~ - 1. Since the Ti do not commute this shows that Ei and
E2 are non-commutative rings.

5. Paperfolding sequences. I turn now to the connection between

binary patterns and paperfolding sequences. First a little notation. I want
to consider paperfolding sequences corresponding to an infinite sequence of
folding instructions

where §n = o or u and o, u denote the operations of folding a rectangular
piece of paper respectively over or under the left edge, (see [2],[3]). If we
is the finite initial word of w of length m, then there are two sequences of
±1’s associated to wm .

The first, fw., encodes the sequence of up or down folds obtained by
unfolding the paper after applying according to the rules

The second, denoted encodes horizontal and vertical directions in the

plane curve obtained by making all the folds equal to right angles and
looking at the paper edge-on. In dwm’ horizontal and vertical directions
are coded by

For example,

The limit points of the 1~, ~d~,,~ , rra &#x3E; 1} in the set of all
sequences of are respectively called paperfolding sequences and direc-
tion sequences corresponding to the word z,v. The topology with respect to
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which these limits are to be taken is the topology in which two sequences
are close if a large number of their initial terms agree. It is not hard to show
that a subsequence or converges in this topology if and
only if the subsequence of corresponding words wm is reverse-convergent,
i.e. if and only if an increasing number of the final instructions of the 
agree. Using this fact it is easy to see that paperfolding sequences and
direction sequences of w are in 1-1 correspondence with the reverse infinite
words

for which are subwords of iv. This sequence is called a sequence
of unfolding instructions, (see [2] or [3]). Let me denote the paperfolding
and direction sequences corresponding to w by /~ and de..;. If one defines

then one has

and the following result holds:

THEOREM 4.. (See theorem 13.) Let the reverse infinite sequence ú)
be periodic, with period A. Then

In fact sw and dw have conductor 2, so they lie in the respective subgroups
and A2~(::i:l). It follows by theorem 2 and analogous results that sw

and dfJ) are respectively a. sum and product of pattern counting sequences.
For example,

where

and the digits i, j in this formula are taken base 8. This leads to the

representation
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where ap = 

Theorem 4 raises the question: for which unfolding sequen ces w is

dw E 

We phrase the answer to this question in terms of the map r defined as
follows. Let Dw denote the set of direction sequences which arise from a
given infinite word w, and set

Then T : Dw 2013~ Dw and in [4] we show that

for two fixed vectors X, Y of length two; hence the sequence is a

"sign sequence" for d, with respect to segments of length two. By iterating
the map T we prove that is a sign sequence for dw with respect to
segments of length 2k, and this fact leads to the following result, (see [4],
theorems 17-18):

THEOREM 5.

I~ The sequence dw lies in r 2’B (:i: 1) if and only a periodic
sequence.

2) If dw E F2’(±l), then dW E A2,B, (:1:1), for a suitable multiple A’ of A.

3) dw E A2.B, (:i:1) if and only if

for some n &#x3E; o.

Hence direction sequences in correspond to pre-periodic points of
the map T, and the groups r2~(:l:l) arise naturally in connection with the
discrete dynamical system (Dw, T).

Using the definition of T and replacing A’ by A in theorem 5, part 3) gives.
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THEOREME 6. (See ~4), theorem 19.) The direction sequence dtN is a finite
product of pattern sequences base 2A (and so has a finite spectrum base
2À) if and only if

or

where W2 is obtained from W2 by switching o’s and u’s.

As examples with A = 1 let me note

where the patterns in these formulae are all binary patterns. From these
relations it is possible to compute the spectra of all direction sequences
which lie in A2(~1). For example,

where the product is over all binary patterns beginning with 1 and having
length k ~-1. This shows that every binary pattern (with a leading 1) occurs
in the binary spectrum of some deN.

I will finish by recalling a recent theorem of Mend6s France and Shallit [3]
(see their theorem 4.2 for the special case of paperfolding; note that their
sequence of turns is here what we have called a paperfolding sequence):

THEOREM. The paperfolding sequence is 2-automatic if and only if the
sequence w of unfolding instructions is ultimately periodic.

Together with theorem 6, this gives

THEOREM 7. A paperfolding sequence feN is 2-automatic if and only if its
associated direction sequence dw has a finite spectrum base 2..B , for some A.
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