[Simulation de modèles stochastiques de populations structurées en génétique des populations sous neutralité]
Cet article décrit quelques modèles de génétique des populations sous neutralité, incluant dérive génétique et mutations. À partir du coalescent de Kingman, nous montrons comment on peut modéliser des populations structurées. Nous détaillons ces modèles en montrant comment il est possible d’écrire des algorithmes de simulations. En particulier, nous mettons en avant l’ensemble des processus latents qui rendent le calcul de la fonction de vraisemblance sur un jeu de données difficile, voire impossible.
This paper describes some population genetic models under neutrality, involving genetic drift and mutations. Starting with Kingman’s coalescent we show how structured populations can be modeled. We detail these models by showing how simulation algorithms can be written. In particular we highlight the latent processes than rule out the explicit computation of the likelihood function on a dataset.
Mot clés : génétique des populations, processus de coalescence de Kingman, vraisemblance intraitable
@article{JSFS_2018__159_3_126_0, author = {Pudlo, Pierre and Sedki, Mohammed}, title = {Simulation of stochastic models of structured population in population genetics under neutrality}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {126--141}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {159}, number = {3}, year = {2018}, zbl = {1407.92097}, language = {en}, url = {http://www.numdam.org/item/JSFS_2018__159_3_126_0/} }
TY - JOUR AU - Pudlo, Pierre AU - Sedki, Mohammed TI - Simulation of stochastic models of structured population in population genetics under neutrality JO - Journal de la société française de statistique PY - 2018 SP - 126 EP - 141 VL - 159 IS - 3 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2018__159_3_126_0/ LA - en ID - JSFS_2018__159_3_126_0 ER -
%0 Journal Article %A Pudlo, Pierre %A Sedki, Mohammed %T Simulation of stochastic models of structured population in population genetics under neutrality %J Journal de la société française de statistique %D 2018 %P 126-141 %V 159 %N 3 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2018__159_3_126_0/ %G en %F JSFS_2018__159_3_126_0
Pudlo, Pierre; Sedki, Mohammed. Simulation of stochastic models of structured population in population genetics under neutrality. Journal de la société française de statistique, Tome 159 (2018) no. 3, pp. 126-141. http://www.numdam.org/item/JSFS_2018__159_3_126_0/
[1] The Bayesian revolution in genetics, Nature Reviews Genetics, Volume 5 (2004) no. 4, pp. 251-261
[2] Approximate Bayesian Computation in population genetics, Genetics, Volume 162 (2002), pp. 2025-2035
[3] Inference on microsatellite mutation processes in the invasive mite, Varroa destructor, using reversible jump Markov chain Monte Carlo, Theoretical Population Biology, Volume 69 (2006) no. 2, pp. 129-144 | Zbl
[4] Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computation, Bioinformatics, Volume 24 (2008) no. 23, pp. 2713-2719
[5] Importance sampling on coalescent histories. I, Advances in Applied Probability, Volume 36 (2004) no. 2, pp. 417-433 | Zbl
[6] Importance sampling on coalescent histories. II:Subdivided population models, Advances in Applied Probability, Volume 36 (2004) no. 2, pp. 434-454 | Zbl
[7] Stepwise mutation likelihood computation by sequential importance sampling in subdivided population models, Theoretical Population Biology, Volume 68 (2005) no. 1, pp. 41-53 | Zbl
[8] The Infinitely-Many-Sites Model as a Measure-Valued Diffusion, The Annals of Probability, Volume 15 (1987) no. 2, pp. 515-545 | Zbl
[9] An ancestral recombination graph, Institute for Mathematics and its Applications, Volume 87 (1997), pp. 257-270 | MR | Zbl
[10] Genealogical-tree probabilities in the infinitely-many-site model., Journal of mathematical biology, Volume 27 (1989) no. 6, pp. 667-680 | Zbl
[11] Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis, Genetics, Volume 167 (2004) no. 2, pp. 747-760
[12] Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 8, pp. 2785-2790
[13] Two-locus sampling distributions and their application, Genetics, Volume 159 (2001) no. 4, pp. 1805-1817
[14] Generating samples under a Wright-Fisher neutral model of genetic variation, Bioinformatics, Volume 18 (2002) no. 2, pp. 337-338
[15] Evolution of protein molecules, Mammalian protein metabolism (Munro, H.N., ed.), Volume 3, 1969 no. 21, pp. 21-132 | DOI
[16] Evolutionary Rate at the Molecular Level, Nature, Volume 217 (1968) no. 5129, pp. 624-626
[17] The Neutral Theory of Molecular Evolution, Cambridge University Press, 1983
[18] Exchangeability and the Evolution of Large Populations, Exchangeability in Probability and Statistics (Koch, G.; Spizzichino, F., eds.), North-Holland, Amsterdam, 1982, pp. 97-112 | Zbl
[19] On the Genealogy of Large Populations, Journal of Applied Probability, Volume 19 (1982), pp. 27-43 | Zbl
[20] The coalescent, Stochastic Processes and their Applications, Volume 13 (1982), pp. 235-248 | Zbl
[21] IBDSim: A computer program to simulate genotype data under Isolation By Distance, Molecular Ecology Ressources, Volume 9 (2009) no. 1, pp. 107-109
[22] Markov chain Monte Carlo without likelihoods, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 26, pp. 15324-15328
[23] Approximate Bayesian computational methods, Statistics and Computing (2011) | Zbl
[24] The Structured Coalescent and Its Approximations, Molecular biology and evolution, Volume 34 (2017) no. 11, pp. 2970-2981
[25] Distinguishing Migration From Isolation: A Markov Chain Monte Carlo Approach, Genetics, Volume 158 (2001) no. 2, pp. 885-896
[26] Likelihood-Based Inferences under Isolation by Distance: Two-Dimensional Habitats and Confidence Intervals, Molecular Biology and Evolution, Volume 29 (2012) no. 3, pp. 957-973
[27] Inference in molecular population genetics, Journal of the Royal Statistical Society: Series B (Statistical Methodology), Volume 62 (2000) no. 4, pp. 605-635 | Zbl
[28] Estimating recombination rates from population-genetic data, Nature reviews. Genetics, Volume 4 (2003) no. 12, pp. 959-968
[29] Finding the best resolution for the Kingman–Tajima coalescent: theory and applications, Journal of mathematical biology, Volume 70 (2015) no. 6, pp. 1207-1247 | Zbl
[30] Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees., Molecular biology and evolution, Volume 10 (1993) no. 3, pp. 512-526
[31] Coalescent Theory: An Introduction, Roberts & Company Publishers, 2005
[32] Likelihood-based estimation of microsatellite mutation rates, Genetics, Volume 164 (2003) no. 2, pp. 781-787