Dans cet article, nous introduisons le modèle stochastique épidémique général pour la propagation des maladies infectieuses. Nous décrivons ensuite des méthodes pour l’inférence des paramètres du modèle tels que le nombre de reproduction de base et la couverture vaccinale à partir de différents types de données épidémiques telles que des informations sur l’état final de l’épidémie et des données temporelles ou des observations pour une épidémie en cours. La prise en compte d’hétérogénéités individuelles et des contacts hétérogènes est discutée. Nous fournissons également une vue d’ensemble des méthodes statistiques pour l’estimation des paramètres d’autres modèles épidémiques stochastiques. Dans la dernière section nous décrivons le problème de la détection précoce d’épidémies dans la surveillance des maladies infectieuses et les modèles statistiques utilisés dans ce contexte.
In this paper, we first introduce the general stochastic epidemic model for the spread of infectious diseases. Then, we give methods for inferring model parameters such as the basic reproduction number and vaccination coverage assuming different types of data from an outbreak such as final outbreak details and temporal data or observations from an ongoing outbreak. Both individual heterogeneities and heterogeneous mixing are discussed. We also provide an overview of statistical methods to perform parameter estimation for other stochastic epidemic models. In the last section we describe the problem of early outbreak detection in infectious disease surveillance and statistical models used for this purpose.
Mot clés : modèles épidémiques stochastiques, nombre de reproduction de base, couverture vaccinale, MCMC, surveillance des maladies infectieuses, détection d’épidémies
@article{JSFS_2016__157_1_53_0, author = {Britton, Tom and Giardina, Federica}, title = {Introduction to statistical inference for infectious diseases}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {53--70}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {157}, number = {1}, year = {2016}, mrnumber = {3491725}, zbl = {1357.92004}, language = {en}, url = {http://www.numdam.org/item/JSFS_2016__157_1_53_0/} }
TY - JOUR AU - Britton, Tom AU - Giardina, Federica TI - Introduction to statistical inference for infectious diseases JO - Journal de la société française de statistique PY - 2016 SP - 53 EP - 70 VL - 157 IS - 1 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2016__157_1_53_0/ LA - en ID - JSFS_2016__157_1_53_0 ER -
%0 Journal Article %A Britton, Tom %A Giardina, Federica %T Introduction to statistical inference for infectious diseases %J Journal de la société française de statistique %D 2016 %P 53-70 %V 157 %N 1 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2016__157_1_53_0/ %G en %F JSFS_2016__157_1_53_0
Britton, Tom; Giardina, Federica. Introduction to statistical inference for infectious diseases. Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 53-70. http://www.numdam.org/item/JSFS_2016__157_1_53_0/
[1] Transmission of pneumococcal carriage in families: a latent Markov process model for binary longitudinal data, Journal of the American Statistical Association, Volume 95 (2000) no. 452, pp. 1044-1053 | MR | Zbl
[2] Stochastic epidemic models and their statistical analysis, Springer New York, 2000 | MR | Zbl
[3] Infectious diseases of humans: dynamics and control, Oxford university press, 1991
[4] Statistical studies of infectious disease incidence, Journal of the Royal Statistical Society: Series B (Statistical Methodology), Volume 61 (1999) no. 2, pp. 287-307 | MR | Zbl
[5] The final size and severity of a generalised stochastic multitype epidemic model, Advances in Applied Probability, Volume 25 (1993) no. 4, pp. 721-736 | MR | Zbl
[6] Analysis of infectious disease data, CRC Press, 1989 | MR
[7] Uses of the EM algorithm in the analysis of data on HIV/AIDS and other infectious diseases, Statistical Methods in Medical Research, Volume 6 (1997) no. 1, pp. 24-37
[8] Epidemics with two levels of mixing, The Annals of Applied Probability, Volume 7 (1997) no. 1, pp. 46-89 | MR | Zbl
[9] Epidemic Models, Inference, In Encyclopedia of Biostatistics (2004), pp. 1667-1671
[10] Inferring global network properties from egocentric data with applications to epidemics, Mathematical Medicine and Biology, Volume 32 (2013) no. 1, pp. 101-114 | DOI | Zbl
[11] Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London, Journal of the Royal Society Interface, Volume 5 (2008) no. 25, pp. 885-897
[12] Predictive model assessment for count data, Biometrics, Volume 65 (2009) no. 4, pp. 1254-1261 | MR | Zbl
[13] Mathematical tools for understanding infectious disease dynamics, Princeton University Press, 2013 | MR | Zbl
[14] Point process methodology for on-line spatio-temporal disease surveillance, Environmetrics, Volume 16 (2005) no. 5, pp. 423-434 | MR
[15] A statistical algorithm for the early detection of outbreaks of infectious disease, Journal of the Royal Statistical Society. Series A (Statistics in Society), Volume 159 (1996), pp. 547-563 | MR | Zbl
[16] Bayesian Emulation and Calibration of a Dynamic Epidemic Model for H1N1 Influenza, Journal of the American Statistical Association, Volume To appear (2014) | MR
[17] A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks, Biostatistics, Volume 3 (2002) no. 4, pp. 493-510 | Zbl
[18] The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions, Science, Volume 292 (2001) no. 5519, pp. 1155-1160
[19] Pandemic potential of a strain of influenza A (H1N1): early findings, Science, Volume 324 (2009) no. 5934, pp. 1557-1561
[20] Estimating individual and household reproduction numbers in an emerging epidemic, PLoS One, Volume 2 (2007) no. 8
[21] Approximation and inference of epidemic dynamics by diffusion processes, Journal de la SFDS (2015) | MR
[22] Unifying the epidemiological and evolutionary dynamics of pathogens, Science, Volume 303 (2004) no. 5656, pp. 327-332
[23] Strictly proper scoring rules, prediction, and estimation, Journal of the American Statistical Association, Volume 102 (2007) no. 477, pp. 359-378 | MR | Zbl
[24] Estimating parameters in stochastic compartmental models using Markov chain methods, Mathematical Medicine and Biology, Volume 15 (1998) no. 1, pp. 19-40 | Zbl
[25] A statistical framework for the analysis of multivariate infectious disease surveillance counts, Statistical Modelling, Volume 5 (2005) no. 3, pp. 187-199 | MR | Zbl
[26] Design and Analysis of Vaccine Studies, Springer, 2010 | MR | Zbl
[27] Count data regression charts for the monitoring of surveillance time series, Computational Statistics & Data Analysis, Volume 52 (2008) no. 9, pp. 4357-4368 | MR | Zbl
[28] Surveillance: An R package for the monitoring of infectious diseases, Computational Statistics, Volume 22 (2007) no. 4, pp. 571-582 | MR | Zbl
[29] Inference for nonlinear dynamical systems, Proceedings of the National Academy of Sciences, Volume 103 (2006) no. 49, pp. 18438-18443
[30] Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease, Journal of the Royal Statistical Society: Series C (Applied Statistics), Volume 63 (2014) no. 3, pp. 423-444 | MR
[31] Within-and between-pen transmission of classical swine fever virus: a new method to estimate the basic reproduction ratio from transmission experiments, Epidemiology and infection, Volume 128 (2002) no. 02, pp. 293-299
[32] A stastistical system for detecting Salmonella outbreaks in British livestock, Epidemiology and infection, Volume 134 (2006) no. 05, pp. 952-960
[33] Modeling infectious diseases in humans and animals, Princeton University Press, 2008 | MR | Zbl
[34] Transmission dynamics and control of severe acute respiratory syndrome, Science, Volume 300 (2003) no. 5627, pp. 1966-1970
[35] Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, Volume 62 (2006) no. 4, pp. 1170-1177 | MR | Zbl
[36] Estimation of distance related probability of animal movements between holdings and implications for disease spread modeling, Preventive Veterinary Medicine, Volume 91 (2009) no. 2, pp. 85-94
[37] Inference in epidemic models without likelihoods, The International Journal of Biostatistics, Volume 5 (2009) no. 1, pp. 1-40 | MR
[38] Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package Surveillance , ArXiv preprint, Volume arXiv:1411.0416v1 (2014)
[39] Markov chain Monte Carlo without likelihoods, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 26, pp. 15324-15328
[40] The structure and function of complex networks, SIAM review, Volume 45 (2003) no. 2, pp. 167-256 | Zbl
[41] Analyses of infectious disease data from household outbreaks by Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series C (Applied Statistics), Volume 49 (2000) no. 4, pp. 517-542 | Zbl
[42] Bayesian inference for partially observed stochastic epidemics, Journal of the Royal Statistical Society: Series A (Statistics in Society), Volume 162 (1999) no. 1, pp. 121-129
[43] Multivariate modelling of infectious disease surveillance data, Statistics in Medicine, Volume 27 (2008) no. 29, pp. 6250-6267
[44] Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions, Science, Volume 300 (2003) no. 5627, pp. 1961-1966
[45] Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), Volume 71 (2009) no. 2, pp. 319-392 | Zbl
[46] Construction of semi-Markov genetic-space-time SEIR models and inference, Journal de la SFDS (2015)
[47] Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance, ArXiv preprint, Volume arXiv:1411.1292v1 (2014)
[48] Some model based considerations on observing generation times for communicable diseases, Mathematical Biosciences, Volume 223 (2010) no. 1, pp. 24-31 | Zbl
[49] Robust estimation of control effort in emerging infections, Submitted (2015)
[50] Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems, Journal of the Royal Society Interface, Volume 6 (2009) no. 31, pp. 187-202
[51] Phylodynamics of infectious disease epidemics, Genetics, Volume 183 (2009) no. 4, pp. 1421-1430
[52] Ebola virus disease in West Africa - the first 9 months of the epidemic and forward projections, New England Journal of Medicine, Volume 371 (2014), pp. 1481-1495
[53] How generation intervals shape the relationship between growth rates and reproductive numbers, Proceedings of the Royal Society B: Biological Sciences, Volume 274 (2007) no. 1609, pp. 599-604
[54] Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics, The American Naturalist, Volume 164 (2004) no. 2, pp. 267-281
[55] The transmissibility and control of pandemic influenza A (H1N1) virus, Science, Volume 326 (2009) no. 5953, pp. 729-733