Nous considérons la détection séquentielle de ruptures dans une classe assez générale de modèles de Poisson autorégressifs de séries temporelles à valeurs entières. La moyenne conditionnelle du processus dépend d’un paramètre susceptible de changer dans le temps au fur et à mesure que les données sont observées. Nous proposons une procédure séquentielle dont le temps de suivi peut être fini ou infini basée sur l’estimateur du maximum de vraisemblance du paramètre. Sous l’hypothèse nulle selon laquelle aucun changement n’intervient dans le paramètre, la statistique de test converge vers une distribution connue. Des résultats de simulations nous permettent d’évaluer la puissance (empirique) ainsi que l’efficacité en terme du délai de détection et un exemple d’application aux données réelles est fourni.
We consider the sequential change-point detection in a general class of Poisson autoregressive models. The conditional mean of the process depends on a parameter which may change over time as and when data are observed. We propose a closed and open-end procedure based on the maximum likelihood estimator of the parameter. Under the null hypothesis of no change, it is shown that the detector converges to a well know distribution. The (empirical) power and the efficiency in terms of the detection delay are assessed through a simulation study and a real data example is provided.
Mot clés : Détection séquentielle, rupture, séries temporelles à valeurs entières, autorégression de Poisson, estimation par vraisemblance
@article{JSFS_2015__156_4_98_0, author = {Kengne, William}, title = {Sequential change-point detection in {Poisson} autoregressive models}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {98--112}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {156}, number = {4}, year = {2015}, zbl = {1343.62062}, language = {en}, url = {http://www.numdam.org/item/JSFS_2015__156_4_98_0/} }
TY - JOUR AU - Kengne, William TI - Sequential change-point detection in Poisson autoregressive models JO - Journal de la société française de statistique PY - 2015 SP - 98 EP - 112 VL - 156 IS - 4 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2015__156_4_98_0/ LA - en ID - JSFS_2015__156_4_98_0 ER -
%0 Journal Article %A Kengne, William %T Sequential change-point detection in Poisson autoregressive models %J Journal de la société française de statistique %D 2015 %P 98-112 %V 156 %N 4 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2015__156_4_98_0/ %G en %F JSFS_2015__156_4_98_0
Kengne, William. Sequential change-point detection in Poisson autoregressive models. Journal de la société française de statistique, Tome 156 (2015) no. 4, pp. 98-112. http://www.numdam.org/item/JSFS_2015__156_4_98_0/
[1] Break detection in the covariance structure of multivariate time series models, The Annals of Statistics, Volume 37 (2009) no. 6B, pp. 4046-4087 | Zbl
[2] Change-point monitoring in linear models, The Econometrics Journal, Volume 9 (2006) no. 3, pp. 373-403 | Zbl
[3] Delay times of sequential procedures for multiple time series regression models, Journal of Econometrics, Volume 149 (2009) no. 2, pp. 174-190 | Zbl
[4] Sequential change-point detection in GARCH (p, q) models, Econometric Theory, Volume 20 (2004) no. 06, pp. 1140-1167 | Zbl
[5] Convergence of probability Measures (1968) | Zbl
[6] Monitoring procedure for parameter change in causal time series, Journal of Multivariate Analysis, Volume 125 (2014), pp. 204-221 | Zbl
[7] Multiple breaks detection in general causal time series using penalized quasi-likelihood, Electronic Journal of Statistics, Volume 6 (2012), pp. 435-477 | Zbl
[8] Detection of abrupt changes: theory and application, 104, Prentice Hall Englewood Cliffs, 1993
[9] Limit theorems in change-point analysis, Wiley New York, 1997 | Zbl
[10] Monitoring structural change, Econometrica: Journal of the Econometric Society (1996), pp. 1045-1065 | Zbl
[11] On weak dependence conditions for Poisson autoregressions, Statistics & Probability Letters, Volume 82 (2012) no. 5, pp. 942-948 | Zbl
[12] Inference and testing for structural change in general Poisson autoregressive models, Electronic Journal of Statistics, Volume 9 (2015), pp. 1267-1314 | Zbl
[13] Weakly dependent chains with infinite memory, Stochastic Processes and their Applications, Volume 118 (2008) no. 11, pp. 1997-2013 | Zbl
[14] Interventions in INGARCH processes, Journal of Time Series Analysis, Volume 31 (2010) no. 3, pp. 210-225 | Zbl
[15] Interventions in log-linear Poisson autoregression, Statistical Modelling, Volume 12 (2012) no. 4, pp. 299-322 | Zbl
[16] Retrospective change detection for binary time series models, Journal of Statistical Planning and Inference, Volume 145 (2014), pp. 102-112 | Zbl
[17] Integer-Valued GARCH Process, Journal of Time Series Analysis, Volume 27 (2006) no. 6, pp. 923-942 | Zbl
[18] A goodness-of-fit test for Poisson count processes, Electronic Journal of Statistics, Volume 7 (2013), pp. 793-819 | Zbl
[19] Poisson autoregression, Journal of the American Statistical Association, Volume 104 (2009) no. 488, pp. 1430-1439 | Zbl
[20] Multiple-change-point detection for auto-regressive conditional heteroscedastic processes, Journal of the Royal Statistical Society: series B (statistical methodology) (2013) | Zbl
[21] Nonlinear poisson autoregression, Annals of the Institute of Statistical Mathematics, Volume 64 (2012) no. 6, pp. 1205-1225 | Zbl
[22] Monitoring parameter change in time series models, Journal of Multivariate Analysis, Volume 100 (2009) no. 4, pp. 715-725 | Zbl
[23] Monitoring changes in linear models, Journal of Statistical Planning and Inference, Volume 126 (2004) no. 1, pp. 225-251 | Zbl
[24] On sequential detection of parameter changes in linear regression, Statistics & probability letters, Volume 77 (2007) no. 9, pp. 885-895 | Zbl
[25] Testing for parameter constancy in general causal time-series models, Journal of Time Series Analysis, Volume 33 (2012) no. 3, pp. 503-518 | Zbl
[26] Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis, Journal of Time Series Analysis, Volume 30 (2009) no. 2, pp. 239-258 | Zbl
[27] Parameter change test for Poisson autoregressive models, Scandinavian Journal of Statistics, Volume 41 (2014) no. 4, pp. 1136-1152 | Zbl
[28] Monitoring structural changes with the generalized fluctuation test, Econometric Theory, Volume 16 (2000) no. 06, pp. 835-854 | Zbl
[29] Absolute regularity and ergodicity of Poisson count processes, Bernoulli, Volume 17 (2011) no. 4, pp. 1268-1284 | Zbl
[30] Monitoring parameter change in time series models, Statistical Methods & Applications, Volume 20 (2011) no. 2, pp. 171-199 | Zbl
[31] Modelling time series of counts with overdispersion, Statistical Methods and Applications, Volume 18 (2009) no. 4, pp. 507-519 | Zbl
[32] Monitoring structural change in dynamic econometric models, Journal of Applied Econometrics, Volume 20 (2005) no. 1, pp. 99-121
[33] Diagnostic checking integer-valued ARCH (p) models using conditional residual autocorrelations, Computational Statistics & Data Analysis, Volume 54 (2010) no. 2, pp. 496-508 | Zbl