Numéro spécial : fiabilité
Integration of time-dependent covariates in recurrent events modelling : application to failures on drinking water networks
[Intégration des covariables temporelles dépendant du temps dans la modélisation d’évènements récurrents : application aux réseaux d’eau potable]
Journal de la société française de statistique, Tome 155 (2014) no. 3, pp. 62-77.

L’extension linéaire standard du processus de Yule est un modèle adapté pour la modélisation des défaillances sur les réseaux d’eau potable, dans la mesure où il inclut dans le calcul du taux de défaillance les effets des défaillances passées, de l’âge et de différentes variables. Cependant, les fluctuations du nombre de défaillances au cours du temps montrent les limites de ce modèle dans la mesure où il n’intègre pas l’effet de variables exogènes évoluant avec le temps comme l’effet du climat. Une amélioration du modèle actuellement utilisé dans des outils comme PREVOIR © Canalisation est ainsi proposée, incluant à présent des variables temporelles. Ceci permet d’améliorer la prédiction du nombre de défaillances selon l’évolution du climat.

The standard Linear Extended Yule Process is a well-adapted stochastic model for water pipes failure modelling, as it takes into account the past number of pipe failures, the ageing and the effects of covariates in the failure rate. But fluctuations of failures along time in water network show the limits of the model, which does not consider time-dependent covariates, like frost effect. An improvement of the model actually used in a standard tool such as PREVOIR © Canalisation is therefore proposed that considers a time dependent covariate. This allows for dramatically improving the predictions of the number of pipe failures according to the climate.

Keywords: Dynamical intensity of counting process, Linear Extension of Yule Process (LEYP), Time-dependent covariate in water network failure models
Mot clés : Extension linéaire du processus de Yule (LEYP), Intensité dynamique d’un processus de comptage, Variable temporelle dans les modèles de défaillances des réseaux d’eau potable
@article{JSFS_2014__155_3_62_0,
     author = {Claudio, Karim and Couallier, Vincent and Le Gat, Yves},
     title = {Integration of time-dependent covariates in recurrent events modelling : application to failures on drinking water networks},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {62--77},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {155},
     number = {3},
     year = {2014},
     mrnumber = {3272712},
     zbl = {1316.62180},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2014__155_3_62_0/}
}
TY  - JOUR
AU  - Claudio, Karim
AU  - Couallier, Vincent
AU  - Le Gat, Yves
TI  - Integration of time-dependent covariates in recurrent events modelling : application to failures on drinking water networks
JO  - Journal de la société française de statistique
PY  - 2014
SP  - 62
EP  - 77
VL  - 155
IS  - 3
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2014__155_3_62_0/
LA  - en
ID  - JSFS_2014__155_3_62_0
ER  - 
%0 Journal Article
%A Claudio, Karim
%A Couallier, Vincent
%A Le Gat, Yves
%T Integration of time-dependent covariates in recurrent events modelling : application to failures on drinking water networks
%J Journal de la société française de statistique
%D 2014
%P 62-77
%V 155
%N 3
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2014__155_3_62_0/
%G en
%F JSFS_2014__155_3_62_0
Claudio, Karim; Couallier, Vincent; Le Gat, Yves. Integration of time-dependent covariates in recurrent events modelling : application to failures on drinking water networks. Journal de la société française de statistique, Tome 155 (2014) no. 3, pp. 62-77. http://www.numdam.org/item/JSFS_2014__155_3_62_0/

[1] Aalen, O. O.; Borgan, Ø.; Gjessing, H. K. Survival and Event History Analysis, Springer, New York, 2008, 539 pages | MR | Zbl

[2] Andersen, P. K.; Borgan, O.; Gill, R. D.; Keiding, N. Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993, 767 pages | MR | Zbl

[3] Babykina, G. Modélisation statistique d’événements récurrents. Exploration empirique des estimateurs, prise en compte d’une covariable temporelle et application aux défaillances des réseaux d’eau., Ecole doctorale de Mathématiques et Informatique, Université de Bordeaux (2010), 164 pages (Ph. D. Thesis)

[4] Babykina, G.; Couallier, V. Events for Repairable Systems Under Worse Than Old Assumption, “Advances in Degradation Modeling Applications to Reliability, Survival Analysis, and Finance, Birkhäuser Boston, 2010, ch. Modeling Recurrent” (2010), pp. 339-354 | MR

[5] Babykina, G.; Couallier, V. Empirical assessment of the Maximum Likelihood Estimator quality in a parametric counting process model for recurrent events, Computational Statistics and Data Analysis, Volume 56 (2012) no. 2, pp. 297-315 | MR | Zbl

[6] Chang, C. C. H.; Chan, W.; Kapadia, A. S. The Analysis of Recurrent Failure Times : The Time-Dependent Yule Process Approach, Communication in Statistics - Theory and Methods, Volume 31 (2002) no. 7, pp. 1203-1213 | MR | Zbl

[7] Cox, D. R. Regression Models and Life Tables (with discussion), Journal of the Royal Statistical Society, Series B, Volume 34 (1972), pp. 187-220 | MR | Zbl

[8] Clark, R. M.; Stafford, C. L.; Goodrich, J. A. Water distribution systems: A spatial and cost evaluation., Journal of Water Resources Planning and Management, Volume 108 (1982) no. 3, pp. 243-256

[9] Debón, A.; Carrión, A.; Cabrera, E.; Solano, H. Comparing risk of failure models in water supply networks using ROC curves, Reliability Engineering and System Safety, Volume 95 (2010), pp. 43-48

[10] Eisenbeis, P. Modélisation statistique de la prévision des défaillances sur les conduites d’eau potable, Université Louis Pasteur Strasbourg (1994), 190 pages (Ph. D. Thesis)

[11] Gat, Y. Le “Une extension du Processus de Yule pour la modélisation stochastique des événements récurrents - Application aux défaillances de canalisations d’eau sous pression (Extending the Yule Process to model recurrent events: Application to the failures of pressure water mains), Engref-AgroParisTech, Paris, France (2009), 118 pages (Ph. D. Thesis)

[12] Gat, Y. Le Extending the Yule process to model recurrent pipe failures in water supply networks (2013) (In Press)

[13] Gill, R.D.; Johansen, S. A Survey of Product-Integration with a View Toward Application in Survival Analysis, The Annals of Statistics, Volume 18 (1990) no. 4, pp. 1501-1555 | MR | Zbl

[14] Greenwood, M.; Yule, G. U. An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurence of multiple attacks of disease or of repeated accidents, Journal of the Royal Statistical Society, Series A, Volume 83 (1920), pp. 255-279

[15] International Conference - Computer Aided Rehabilitation of WaterNetworks CARE-W (2002)

[16] Hong, S. J.; Weiss, S. M. Advances in predictive models for data mining, Pattern Recognition Letters, Volume 22 (2001) no. 1, pp. 55 -61 | DOI | Zbl

[17] Kleiner, Y.; Rajani, B. Comprehensive review of structural deterioration of water mains: Statistical models, Urban Water, Volume 3 (2001) no. 3, pp. 131-150

[18] Kleiner, Y.; Rajani, B. Forecasting variations and trends in water main breaks, Journal of Infrastructure Systems, Volume 8 (2002) no. 4, pp. 122-131

[19] Lawless, J. F. Regression Methods for Poisson Process Data, Journal of the American Statistical Association, Theory and Methods, Volume 82 (1987) no. 399, pp. 808-815 | MR | Zbl

[20] Martinussen, T.; Scheike, T. H. Dynamic regression models for survival data, Statistics for Biology and Health, Springer, Dordrecht, 2006 | MR | Zbl

[21] Nelder, J. A.; Mead, R. A simplex method for function minimization, Computer Journal, Volume 7 (1965), pp. 308-313 | MR | Zbl

[22] Pawitan, Y. A reminder of the reliability of the Wald statistic: likelihood explanation, The American Statistician, Volume 54 (2000) no. 1, pp. 54-56

[23] Peña, E. A. Dynamic Modelling and Statistical Analysis of Event Times, Stat Sci., Volume 21 (2006) no. 4, pp. 1-26 | MR | Zbl

[24] Renaud, E.; Le Gat, Y.; Poulton, M. Using a break prediction model for drinking water networks asset management: From research to practice, Water Science & Technology: Water Supply, Volume 12 (2012) no. 5, pp. 674-682

[25] Ross, S. Stochastic Processes, John Wiley and Sons, New York, 1983, 309 pages | MR | Zbl

[26] Røstum, J. Statistical Modelling of Pipe Failures in Water Networks, Norwegian University of Science and Technology, Department of Hydraulic and Environmental Engineering, Trondheim, Norway (2000), 104 pages (Doctor Engineer Dissertation)

[27] Saegrov, S. CARE-W Computer Aided Rehabilitation for Water Networks, IWA Publishing, 2005

[28] Therneau, T. M.; Grambsch, P. M.; Fleming, T. R. Martingale-Based Residuals for Survival Models, Biometrika, Volume 77 (1990) no. 1, pp. 147-160 | MR | Zbl

[29] Zyl, J.E. Van; Clayton, C.R.I. The effects of pressure on leakage in water distribution system, Proc. I.C.E Water Management (2007), pp. 104-109