Numéro spécial : statistique des valeurs extrêmes
Extreme Rainfall Analysis at Ungauged Sites in the South of France : Comparison of Three Approaches
[Analyse des pluies extrêmes en des sites non-jaugés dans le sud de la France : Comparaison de trois approches]
Journal de la société française de statistique, Tome 154 (2013) no. 2, pp. 119-138.

Nous comparons trois approches pour l’estimation de la distribution des pluies extrêmes en des sites non-jaugés. Deux de ces approches reposent sur la loi des valeurs extrêmes généralisée (GEV). La méthode SIGEV interpole linéairement les paramètres de la GEV estimés localement aux sites jaugés. RFA est une méthode régionale qui définit des voisinages homogènes circulaires autour de chaque site ce qui permet d’augmenter la taille de l’échantillon. En effet, RFA fait l’hypothèse que les observations aux stations du voisinage suivent la même loi GEV à un facteur de normalisation près. Ce facteur, appelé index value doit être interpolé aux sites non-jaugés. La troisième approche se base sur un générateur de pluie horaire appelé SHYPRE. À l’aide d’un caractérisation précise des événements pluvieux, SHYPRE est en mesure de simuler de longues séries de pluie ayant des statistiques semblables aux séries d’observations. Ces trois approches sont évaluées et comparées sur un jeu de données comprenant plus de 1000 stations dans le sud de la France. La comparaison des méthodes repose sur le calcul de quantiles de haut niveau et a pour but d’évaluer la justesse et la sensibilité des méthodes. Nos conclusions sont les suivantes : SIGEV tel que mis en oeuvre ne devrait pas être retenu en raison de son manque de robustesse, RFA et SHYPRE ont des performances comparables bien que ces méthodes soient très différentes et nous concluons que le défi le plus important à relever pour ces trois approches réside dans l’interpolation spatiale des paramètres.

We compare three approaches to estimate the distribution of extreme rainfall at ungauged sites. Two approaches rely on the univariate generalized extreme value distribution (GEV). SIGEV interpolates linearly the GEV parameters estimated locally. RFA is a regional method which builds circular homogeneous neighborhood around each site in order to increase the sample size. The observations in the neighborhood, properly normalized, are assumed to follow the same GEV distribution. Then the normalizing factor (called the index value) has to be interpolated to ungauged sites. The third method is the stochastic hourly rainfall generator called SHYPRE. By characterizing precisely rainfall events, SHYPRE is able to simulate long rainfall series with statistics similar to the observed series. The distribution of extreme rainfall is estimated empirically from the simulated series. The three approaches are evaluated and compared on datasets from over 1000 rain gauges in the South of France. The evaluation framework that we follow is based on the computation of high-level quantiles and aim at assessing the goodness-of-fit of the three approaches and their sensitivity to the training data. Our conclusions are threefold : SIGEV, as implemented, should be avoided because of its lack of robustness, RFA and SHYPRE despite the fact that they are based on very different hypotheses on rainfall provide comparable performance and finally, the main challenge regarding the estimation at ungauged sites concerns the spatial interpolation of the parameters, whatever the approach taken.

Keywords: Generalized Extreme Value distribution, Regional Frequency Analysis, Stochastic hourly rainfall generator
Mot clés : Loi des valeurs extrêmes généralisée, Analyse régionale fréquentielle, générateur stochastique de pluie horaire
@article{JSFS_2013__154_2_119_0,
     author = {Carreau, Julie and Neppel, Luc and Arnaud, Patrick and Cantet, Philippe},
     title = {Extreme {Rainfall} {Analysis} at {Ungauged} {Sites} in the {South} of {France~:} {Comparison} of {Three} {Approaches}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {119--138},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {154},
     number = {2},
     year = {2013},
     mrnumber = {3120439},
     zbl = {1316.62166},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2013__154_2_119_0/}
}
TY  - JOUR
AU  - Carreau, Julie
AU  - Neppel, Luc
AU  - Arnaud, Patrick
AU  - Cantet, Philippe
TI  - Extreme Rainfall Analysis at Ungauged Sites in the South of France : Comparison of Three Approaches
JO  - Journal de la société française de statistique
PY  - 2013
SP  - 119
EP  - 138
VL  - 154
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2013__154_2_119_0/
LA  - en
ID  - JSFS_2013__154_2_119_0
ER  - 
%0 Journal Article
%A Carreau, Julie
%A Neppel, Luc
%A Arnaud, Patrick
%A Cantet, Philippe
%T Extreme Rainfall Analysis at Ungauged Sites in the South of France : Comparison of Three Approaches
%J Journal de la société française de statistique
%D 2013
%P 119-138
%V 154
%N 2
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2013__154_2_119_0/
%G en
%F JSFS_2013__154_2_119_0
Carreau, Julie; Neppel, Luc; Arnaud, Patrick; Cantet, Philippe. Extreme Rainfall Analysis at Ungauged Sites in the South of France : Comparison of Three Approaches. Journal de la société française de statistique, Tome 154 (2013) no. 2, pp. 119-138. http://www.numdam.org/item/JSFS_2013__154_2_119_0/

[1] Arnaud, P.; Fine, J.A.; Lavabre, J. An hourly rainfall generation model adapted to all types of climate, Atmospheric Research, Volume 85 (2007), pp. 230-242

[2] Arnaud, P.; Lavabre, J. Using a stochastic model for generating hourly hyetographs to study extreme rainfalls, Hydrological Sciences Journal, Volume 44 (1999) no. 3, pp. 433-446

[3] Buishand, T.; Brandsma, T. Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling, Water Resources Research, Volume 37 (2001), pp. 2761-2776

[4] Bishop, C. Neural Networks for Pattern Recognition, Oxford, 1995 | MR | Zbl

[5] Burton, A.; Kilsby, C.G.; Fowler, H.J.; Cowpertwait, P.S.P.; O’Connell, P.E. RainSim: A spatial–temporal stochastic rainfall modelling system, Environmental Modelling & Software, Volume 23 (2008) no. 12, pp. 1356-1369

[6] Burn, D.H. Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, Volume 26 (1990) no. 10, pp. 2257-2265

[7] Cantet, P. Impacts du changement climatique sur les pluies extrêmes par l’utilisation d’un générateur stochastique de pluies, University of Montpellier, Montpellier, France (2009) (Ph. D. Thesis)

[8] Castellarin, A.; Burn, D.H.; Brath, A. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis, Journal of Hydrology, Volume 241 (2001) no. 3, pp. 270-285

[9] Charles, S.; Bates, B.; Hughes, J. A spatiotemporal model for downscaling precipitation occurrence and amounts, Journal of Geophysical Research, Volume 104 (1999) no. D24, pp. 31657-31669

[10] Carreau, J.; Girard, S. Spatial extreme quantile estimation using a weighted log-likelihood approach, Journal de la Société Française de Statistique, Volume 152 (2011) no. 3, pp. 66-83 | HAL | Numdam | MR | Zbl

[11] Cernesson, F.; Lavabre, J.; Masson, J.M. Stochastic model for generating hourly hyetographs, Atmospheric Research, Volume 42 (1996) no. 1-4, pp. 149-161

[12] Coles, S. An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer, 2001 | MR | Zbl

[13] Ceresetti, D.; Ursu, E.; Carreau, J.; Anquetin, S.; Creutin, J.-D.; Gardes, L.; Girard, S.; Molinie, G. Evaluation of classical spatial-analysis schemes of extreme rainfall, Natural Hazards and Earth System Sciences, Volume 12 (2012), pp. 3229-3240

[14] Carreau, J.; Vrac, M. Stochastic downscaling of precipitation with neural network conditional mixture models, Water Resources Research, Volume 47 (2011) no. 10

[15] Daouia, A.; Gardes, L.; Girard, S.; Lekina, A. Kernel estimators of extreme level curves, Test, Volume 20 (2011) no. 14, pp. 311-333 | MR | Zbl

[16] Delrieu, G.; Nicol, J.; Yates, E.; Kirstetter, P.-E.; Creutin, J.-D.; Anquetin, S.; Obled, C.; Saulnier, G.-M.; Ducrocq, V.; Gaume, E.; Payrastre, O.; Andrieu, H.; Ayral, P.-A.; Bouvier, C.; Neppel, L.; Livet, M.; Lang, M.; du-Châtelet, J. P.; Walpersdorf, A.; Wobrock, W. The Catastrophic Flash-Flood Event of 8-9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory, Journal of Hydrometeorology, Volume 6 (2005) no. 1, pp. 34-52

[17] Gardes, L.; Girard, S. Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, Extremes, Volume 13 (2010) no. 2, pp. 177-204 | MR | Zbl

[18] Hughes, J. P.; Guttorp, P.; Charles, S. P. A non-homogeneous hidden Markov model for precipitation occurrence, Applied Statistics, Volume 48 (1999), pp. 15-30 | Zbl

[19] Hosking, J. R. M.; Wallis, J. R. Regional Frequency Analysis : An Approach Based on L-Moments, Cambridge University Press, New York, 1997

[20] Kyselỳ, J.; Gaál, L.; Picek, J. Comparison of regional and at-site approaches to modelling probabilities of heavy precipitation, International Journal of Climatology, Volume 31 (2011) no. 10, pp. 1457-1472

[21] Kumaraswamy, P. A generalized probability density function for double-bounded random processes, Journal of Hydrology, Volume 46 (1980) no. 1-2, pp. 79-88

[22] Li, K.-C. Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, Volume 86 (1991) no. 414, pp. 316-327 | MR | Zbl

[23] Padoan, S. A.; Ribatet, M.; Sisson, S. A. Likelihood-Based Inference for Max-Stable Processes, Journal of the American Statistical Association, Volume 105 (2010) no. 489, pp. 263-277 | MR | Zbl

[24] Renard, B.; Kochanek, K.; Lang, M.; Garavaglia, F.; Paquet, E.; Neppel, L.; Carreau, J.; Arnaud, P.; Aubert, Y.; Borchi, F.; Soubeyroux, J.-M.; Jourdain, S.; Veysseire, J.-M.; Sauquet, E.; Cipriani, T.; Auffray, A. Data-based comparison of frequency analysis methods: a general framework, Accepted for publication in Water Resources Research (2013)

[25] Sol, B.; Desouches, C. Spatialisation à résolution kilométrique sur la France de paramètres liés aux précipitations (2005) no. 3 (Technical report)

[26] Viglione, A.; Laio, F.; Claps, P. A comparison of homogeneity tests for regional frequency analyis, Water Resources Research, Volume 43 (2007) no. 3