Spatial extreme quantile estimation using a weighted log-likelihood approach
[Estimation de quantiles extrêmes spatiaux par la méthode de la log-vraisemblance pondérée]
Journal de la société française de statistique, Tome 152 (2011) no. 3, pp. 66-82.

Nous proposons d’estimer des quantiles extrêmes spatiaux par une approche de type log-vraisemblance pondérée. Pour cela, nous supposons que, conditionnellement aux covariables, la variable d’intérêt suit une loi des valeurs extrêmes. Les surfaces de réponse associées sont estimées en introduisant des poids dans la log-vraisemblance. Ces poids dépendent de la distance entre le point d’estimation et les observations. La construction d’une distance appropriée repose sur la combinaison d’une étape de dépliage par “multidimensional scaling” et d’une étape de régression par réseaux de neurones. Notre approche est illustrée sur des jeux de données réelles et simulées.

We propose to estimate spatial extreme quantiles by a weighted log-likelihood approach. It is assumed that the conditional distribution of the variable of interest follows a generalized extreme-value distribution. The associated response surfaces are estimated thanks to the introduction of weights in the log-likelihood. These weights depend on the distance between the point of interest and the observations. The construction of a proper distance relies on the combination of a multidimensional scaling unfolding with a neural network regression. Our approach is illustrated both on simulated and real rainfall datasets.

Mots clés : generalized extreme-value distribution, semi-parametric estimation, multidimensional scaling, neural networks
@article{JSFS_2011__152_3_66_0,
     author = {Carreau, Julie and Girard, St\'ephane},
     title = {Spatial extreme quantile estimation using a weighted log-likelihood approach},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {66--82},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {152},
     number = {3},
     year = {2011},
     mrnumber = {2871177},
     zbl = {1316.62062},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2011__152_3_66_0/}
}
TY  - JOUR
AU  - Carreau, Julie
AU  - Girard, Stéphane
TI  - Spatial extreme quantile estimation using a weighted log-likelihood approach
JO  - Journal de la société française de statistique
PY  - 2011
SP  - 66
EP  - 82
VL  - 152
IS  - 3
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2011__152_3_66_0/
LA  - en
ID  - JSFS_2011__152_3_66_0
ER  - 
%0 Journal Article
%A Carreau, Julie
%A Girard, Stéphane
%T Spatial extreme quantile estimation using a weighted log-likelihood approach
%J Journal de la société française de statistique
%D 2011
%P 66-82
%V 152
%N 3
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2011__152_3_66_0/
%G en
%F JSFS_2011__152_3_66_0
Carreau, Julie; Girard, Stéphane. Spatial extreme quantile estimation using a weighted log-likelihood approach. Journal de la société française de statistique, Tome 152 (2011) no. 3, pp. 66-82. http://www.numdam.org/item/JSFS_2011__152_3_66_0/

[1] Beirlant, J.; Goegebeur, Y. Regression with response distributions of Pareto-type, Computational Statistics and Data Analysis, Volume 42 (2003), pp. 595-619 | MR | Zbl

[2] Beirlant, J.; Goegebeur, Y. Local polynomial maximum likelihood estimation for Pareto-type distributions, Journal of Multivariate Analysis, Volume 89 (2004), pp. 97-118 | MR | Zbl

[3] Bishop, C. Neural Networks for Pattern Recognition, Oxford, 1995 | MR | Zbl

[4] Chavez-Demoulin, V.; A.C. Davison, A.C. Generalized additive modelling of sample extremes, Journal of the Royal Statistical Society, series C, Volume 54 (2005), pp. 207-222 | MR | Zbl

[5] Chen, C.; Härdle, W.; Unwin, A.; Cox, M. A. A.; Cox, T. F. Multidimensional Scaling, Handbook of Data Visualization (Springer Handbooks of Computational Statistics), Springer Berlin Heidelberg, 2008, pp. 315-347 | Zbl

[6] Dekkers, A.; de Haan, L. On the estimation of the extreme-value index and large quantile estimation, The Annals of Statistics, Volume 17 (1989) no. 4, pp. 1795-1832 | MR | Zbl

[7] Daouia, A.; Gardes, L.; Girard, S.; Lekina, A. Kernel estimators of extreme level curves, Test, Volume 20 (2011) no. 14, pp. 311-333 | MR | Zbl

[8] Davison, A.C.; Ramesh, N.I. Local likelihood smoothing of sample extremes, Journal of the Royal Statistical Society, series B, Volume 62 (2000), pp. 191-208 | MR | Zbl

[9] de Ridder, D.; Duin, R.P.W. Sammon’s mapping using neural networks: A comparison, Pattern Recognition Letters, Volume 18 (1997), pp. 1307-1316

[10] Davison, A. C.; Smith, R. L. Models for Exceedances over High Thresholds, Journal of the Royal Statistical Society. Series B, Volume 52 (1990) no. 3, pp. 393-442 | MR | Zbl

[11] Galambos, J. The Asymptotic Theory of Extreme Order Statistics, R.E. Krieger publishing company, 1987 | MR | Zbl

[12] Gardes, L.; Girard, S. Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, Extremes, Volume 13 (2010) no. 2, pp. 177-204 | MR | Zbl

[13] Guida, M.; Longo, M. Estimation of Probability Tails based on Generalized Extreme Value Distributions, Reliability Engineering and System Safety, Volume 20 (1988), pp. 219-242

[14] Hornik, K. M. Approximation capabilities of multilayer feedforward networks, Neural Networks, Volume 4 (1991) no. 2, pp. 251-257

[15] Hosking, J.R.M. Algorithm AS 215: Maximum Likelihood estimation of the parameters of the generalized extreme-value distribution, Applied Statistics, Volume 34 (1985), pp. 301-310

[16] Hall, P.; Tajvidi, N. Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data, Statistical Science, Volume 15 (2000), pp. 153-167 | MR

[17] Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J. The elements of statistical learning: data mining, inference and prediction, The Mathematical Intelligencer, Volume 27 (2005), pp. 83-85

[18] Hu, F.; Zidek, J. V. The weighted likelihood, The Canadian Journal of Statistics, Volume 30 (2002) no. 3, pp. 347-361 | MR | Zbl

[19] Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to nonmetric hypothesis, Psychometrika, Volume 29 (1964), p. 1-27,115-129 | MR | Zbl

[20] Macleod, A.J. AS R76– A remark on algorithm AS 215: Maximum Likelihood estimation of the parameters of the generalized extreme-value distribution, Applied Statistics, Volume 38 (1989), pp. 198-199

[21] Prescott, P.; Walden, A.T. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution, Biometrika, Volume 67 (1980), pp. 723-724 | MR

[22] R Development Core Team R: A Language and Environment for Statistical Computing (2010) http://www.R-project.org (ISBN 3-900051-07-0)

[23] Roweis, S.; Saul, L. Nonlinear dimensionality reduction by locally linear embedding, Science, Volume 290 (2000) no. 5500, pp. 2323-2326

[24] Smith, R. Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion), Statistical Science, Volume 4 (1989), pp. 367-393 | MR | Zbl

[25] Staniswalis, J. The Kernel Estimate of a Regression Function in Likelihood-Based Models, Journal of the American Statistical Association, Volume 84 (1989) no. 405, pp. 276-283 | MR | Zbl

[26] Stephens, M.A. EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Volume 69 (1974) no. 347, pp. 730-737

[27] Tramblay, Y.; Neppel, L.; Carreau, J. Climatic covariates for the frequency analysis of heavy rainfall events in the Mediterranean region, Natural Hazards and Earth System Sciences (2011)

[28] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE, Journal of Machine Learning Research, Volume 9 (2008), pp. 2579-2605 | Zbl

[29] Wotling, G.; Bouvier, Ch.; Danloux, J.; Fritsch, J.-M. Regionalization of extreme precipitation distribution using the principal components of topographical environment, Journal of Hydrology, Volume 233 (2000), pp. 86-101

[30] Weissman, I. Estimation of Parameters and Large Quantiles Based on the k Largest Observations, Journal of the American Statistical Association, Volume 73 (1978) no. 364, pp. 812-815 | MR | Zbl

[31] Zhou, C. Existence and consistency of the maximum likelihood estimator for the extreme value index, Journal of Multivariate Analysis, Volume 100 (2009), pp. 794-815 | MR | Zbl

[32] Zhou, C. The extent of the maximum likelihood estimator for the extreme value index, Journal of Multivariate Analysis, Volume 101 (2010), pp. 971-983 | MR | Zbl