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ABSTRACT

Recent decades have seen an unprecedented decline in biodiversity that has led to
a growing concern about the consequences of biodiversity loss for the functioning of
ecosystems. Key research in plant community ecology seeks to reveal the mechanisms
that allow a large number of species to coexist and sustain biodiversity. Processes in
plant communities are predominantly local and interactions take place in a spatial
context. They thus need to be modelled from the individual plants’ perspective.

Several ecological theories of plant species coexistence have been proposed with
niche theory and neutral theory being the most prominent. They differ mainly in
the extent to which functional differences between species are considered necessary
for preventing competitive exclusion. This results in different predictions about
interactions among the plants and between the plants and the environment.

Extensive spatially explicit data sets of plant communities have become available.
This paper outlines how the theories’ predictions may be assessed using spatial point
process modelling and how this approach may be suitably applied to these data sets
to contribute to the discussion.

Keywords : Spatial point processes, multivariate spatial point patterns, biodiversity,
plant communities, tropical rainforest

RÉSUMÉ

Les dernières décennies ont connu une chute de la biodiversité sans précédent,
qui soulève des inquiétudes quant à ses conséquences pour le fonctionnement des
écosystèmes. Les recherches en écologie des communautés cherchent à établir les
mécanismes permetttant la coexistence d’un grand nombre d’espèces et le maintien
de la biodiversité. Les processus mis en jeu au sein des communautés végétales
sont principalement des interactions locales et prennent place dans un contexte
spatial. Ils doivent donc être modélisés à l’échelle des individus. Plusieurs théories
ont été proposées pour la coexistence des plantes, parmi lesquelles la théorie
de la niche écologique et la théorie neutraliste sont prédominantes. Ces théories
diffèrent principalement par le degré auquel les différences fonctionnelles entre
espèces sont jugées nécessaires pour limiter l’exclusion compétitive. Il en résulte des
prédictions différentes concernant les interactions entre espèces et entre les plantes et
l’environnement. De grands jeux de données spatialisées sont à présent disponibles
sur des communautés végétales, comportant la localisation de chaque plante. Cet
article discute comment les prédictions des différentes théories peuvent être évaluées

1. School of Biological Sciences, University of Aberdeen, UK, j.illian@abdn.ac.uk
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à l’aide de modèles de processus ponctuels et comment l’approche peut être appliquée
à ces jeux de données pour contribuer à la discussion.

Mots-clés : Processus ponctuels spatialisés, semis de points multivariés, biodiversité,
communautés végétales, forêt tropicale humide

1. Introduction

Ultimately, the earth as a system is dependent on the functioning of natural
and managed ecosystems since it is regulated by the biogeochemical processes
derived from them (Loreau et al., 2001). Recent decades have seen an increas-
ing decline in species’ biodiversity as a result of human interference (Cardi-
nale et al., 2004 ; Regan et al., 2001). The potential ecological consequences
of biodiversity loss have led to a growing concern about the future survival
of ecosystems and their functioning (Mouquet et al., 2002). Consequently the
relationship between biodiversity and ecosystem functioning constitutes a ma-
jor scientific issue today (Loreau, 2000 ; Tilamn et al., 1996, 2001 ; Hector et
al., 1999). However, understanding the impact of biodiversity loss on function
requires an understanding of the processes that structure communities and
the mechanisms that sustain biodiversity (Bell, 2001 ; Hubbell, 2001 ; Chave,
2004; Condit et al., 2002 ; Duivenvoorden et al., 2002). These mechanisms are
poorly understood.
Key research in community ecology thus seeks to reveal the mechanisms that
allow a large number of species to coexist (Murrell et al., 2001; Loreau et
al., 2001). Coexistence is determined in part by the inter- and intra-specific
interactions in a community (Durrett and Levin, 1998). Since individual plants
interact mainly with their neighbours (Tilman, 1994; Dieckmann et al., 2000;
Pruves and Law, 2003; Stoll and Weiner, 2000), interactions between plants
in plant communities typically take place in a spatial context and hence
current modelling approaches consider individuals in spatially explicit models
(Chesson, 2000; DeAngelis and Gross, 1992; Huston et al., 1988; Judson,
1994). It has long been recognised that processes in plant communities are
predominantly local and need to be modelled from the ”plant’s eye view”
(Turkington and Harper, 1979; Hubbell, 1979; Law et al.., 2003), i.e. from
the point of view of every individual in a plant community, thus taking local
growing conditions as well as local competition into account. Spatial point
processes are stochastic models that describe the spatial pattern formed by
the locations of objects in two- or more dimensional space. The locations are
regarded as points and the aim is to describe the pattern formed by these
points. In this paper we aim to outline why we believe that spatial point
process models may serve as an appropriate tool for the analysis of pattern
formations in ecological communities and illustrate how they may contribute
to debates in biodiversity theory by enabling tests of competing theories of
plant species coexistence.
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We believe that spatial point process methods are an appropriate statistical
tool for analysing the relationship between underlying ecological processes and
the resulting spatial pattern. Being based on individual plants, the approach
takes the plant’s eye-view into account and has the capacity to summarise the
observed pattern with a few parameters whilst still taking the individuals as
well as the underlying processes into account.
However, up to now spatial point process methodology has only rarely been
applied to model entire plant communities, and has merely been used in a
descriptive manner (Diggle, 2003; Mateu et al., 1998). Recent developments
in both spatial point process theory and ecology have made the methods
more applicable in this context, in particular through the development of
multivariate methods for spatial point processes and parsimonious modelling
techniques (Illian et al., 2004, 2005, 2006), see below.
This paper is organised as follows. Section 2 presents a short overview of the
debate concerning the maintenance of species richness in plant communities,
Section 3 briefly introduces spatial point process theory, Section 4 details
current and future contributions of the methodology to resolve the ongoing
discussion in biodiversity theory.

2. Biodiversity – the theoretical debate

Although many theories of plant species coexistence have been proposed, the
principle criterion that distinguishes between them is the extent to which
functional differences between species (their individual niches) are necessary
and important for preventing competitive exclusion. We briefly describe two
of the main theories.

2.1. Niche theory

The term ecological niche, which originates in Elton (1927) and Grinnell
(1917) and more formally in Hutchinson (1957, 1959), refers to the multi-
dimensional summary of a species’ ecological attributes, including its abiotic
tolerances, its maximum relative growth rate, its phenology, its susceptibil-
ity to enemies and its relative ability to compete with other plant species
(Crawley, 1997).
Classically, plant ecological theory has maintained that different species
occupy different niches, i.e. that they have adapted to survive in a specialised
environment by exploiting the available resources. Speciation prevents inter-
specific competition from driving competitive exclusion and thus promotes
long-term coexistence of several species in the same area. Niche theory
states that species-specific differences influence the population dynamics and
therefore the behaviour of the whole community (Purves and Pacala, 2005).
As a consequence, biodiversity and functioning are directly linked from a niche
theoretical perspective; loss in biodiversity directly influences a community’s
functioning.

11



CONTRIBUTIONS OF SPATIAL POINT PROCESS MODELLING

2.2. Neutral theory

Alternative models, of which Hubbell’s (2001) neutral theory is the most
prominent, have relaxed or abandoned this assumption of individual species’
niche partitioning and model species persistence as a balance between the
dynamics of extinction, immigration from the metacommunity and species
accumulation through speciation. It assumes that all species and thus all
individuals in a community are equivalent, such that they are interchangeable,
independent of environmental conditions and of space and time (Purves and
Pacala, 2005; Chave, 2004). The theory acknowledges that while there are
differences in species’ properties, these do not affect the population dynamics
and hence have no impact on the behaviour of a community or its biodiversity
(Hubbell, 2001). In fact, in a completely neutral community all but one species
can be eliminated without affecting the biogeochemical functioning of the
community.
The theory postulates that species abundances follow a random walk or
drift, with equal per capita probabilities of birth and death. The only
constraint here is that the total number of individuals over all species in
the community is constant (de Mazancourt, 2001). There is no superior
competitor and the probabilities of death and birth, dispersion patterns and
speciation are equivalent for all species. The community is saturated with
individuals; as soon as one individual dies its place will be taken up by
another individual, leading to strong competition (Gaston and Crown, 2005).
Despite the assumption of ecological equivalence, simulated communities
whose dynamics are governed only by ecological drift have emergent properties
that closely approximate those of real communities (Hubbell 2001), which
lends credibility to the idea that species differences need not be important in
community assembly.

2.3. Niche or neutrality?

The relative importance to species coexistence of niche partitioning deter-
mined by differences among species and ecological drift due to species’ equiv-
alence is still unclear. Both theories are supported by substantial bodies of
evidence (Bell, 2001; Hubbell, 2001; Chave, 2004; Condit et al., 2002; Duiden-
voorden et al., 2002). The neutral theory assumes that all species are ecologi-
cally equivalent, and therefore infers that biodiversity must be uncoupled from
ecosystem functioning. Testing the relative importance of niche partitioning
and neutrality is therefore very important to predicting how ecosystem ser-
vices such as productivity, resilience to disturbance and carbon storage will
respond to reductions in biodiversity (Purves and Pacala, 2005).
Testing the relative importance of the various mechanisms proposed for the
maintenance of species richness in plant communities has been complicated
by their overlapping predictions when applied to real plant communities, and
by a lack of concensus over an appropriate framework for the analyses. We
propose that spatial point process methodology should be considered as one
candidate analytical framework for testing these competing theories.
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Above all, spatial point process methodology is suitable for application
to the problem of species coexistence in plant communities because the
alternative mechanisms reviewed above all have embedded predictions about
the spatial arrangement of individuals in communities, or of interactions
between neighbours in space. For example, most definitions of a plant’s niche
infer non-randomness in its association with underlying biophysical factors
such as microclimate, soil conditions or parent material (Grubb, 1977), and
interactions that define an appropriate abiotic and biotic environment for
regeneration (Schoener, 1989).

3. Spatial point processes

This section will provide a very brief introduction to spatial point processes. A
very rigorous theoretical introduction to the general theory of point processes
may be found in Daley and Vere-Jones (1988). Overviews of the theory of
spatial point processes are given in Møller and Waagepetersen (2003a,b); van
Lieshout (2000); Stoyan and Stoyan (1994); Stoyan et al.(1995); Stoyan and
Penttinen (2000); Diggle (2003).

3.1. Definition

A spatial point process X is defined as follows.

DEFINITION 1. — For each Borel set B ⊂ R
2, let φX(B) be the number of

points of X in B. Here, we identify a point configuration with a counting
measure φX on Borel sets on R

2.

Let N be the set of all such measures. On N define N as the smallest σ-algebra
generated by sets of the form

{φ ∈ N : φ(B) = n n ∈ {0, 1, 2, . . .}, B some bounded Borel set}.

Let (Ω,A, P ) be some probability space. A spatial point process X may then
be regarded as a measurable mapping from (Ω,A) into (N,N ), i.e. as a
random variable. A spatial point pattern x is then a realisation of this random
variable.

To avoid unnecessary notation we will not distinguish between X and the
measure φX defined by it, i.e. X(B) denotes the number of points X has in
B. In the applications considered here, the process X lives in some subset W
of R

2 and patterns are only observed in a bounded area S ⊂ W . Even though
S can be of a very general form, we assume here that without loss of generality
S is a rectangular set S ⊂ W ⊂ R

2. Individual points in X will typically be
denoted by ξ and η. Locations in S which may or may not coincide with a
point in X will be denoted by u.
Note that more general spaces may be considered such as the R

d or other
metric spaces equipped with a metric d(., .) which are Polish, i.e. complete
and separable. For details see Daley and Veres-Jones (1988).
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Note also that we assume X to be simple, i.e. not more than one point may
occur in any location. In situations where additional data exist on the objects
that form the spatial point pattern under investigation, this is denoted a
marked point process.

DEFINITION 2. — Let Z be a simple point process in R
2. Attach a random

mark mξ ∈ M, where M is some mark space, to each point ξ ∈ Z. This yields
a marked point process

Xm = {(ξ,mξ) : ξ ∈ Z}.

In most applications, the mark space M is a subset of R
d with d � 1, but

more general mark spaces may be considered, see Schlather (2001) or Stoyan
and Stoyan (1994).
Note that if M = {1, . . . , k}, X is a multi-type point process with k different
types of points. Note further that a multi-type process can also be regarded
as a k-tuple of different subprocesses (X1, ..., Xk).

3.2. The spatial Poisson process

A very simple point process model is the spatial Poisson process.

DEFINITION 3. — Let ρ be a locally finite and diffuse measure defined on the
Borel sets in S, i.e. ρ(B) < ∞ for all bounded Borel sets B on S and ρ has no
mass at any point in S. Then the Poisson process on S with intensity measure
ρ written as

X ∼ Poisson(S, ρ)

has the following properties:

(1) For any Borel set B in S the cardinality of B, X(B), follows a Poisson
distribution with mean ρ(B).

(2) For any disjoint Borel sets B1, . . . , Bn0 ⊆ S with an arbitrary n0 �
2, X(B1), . . . X(Bn0) are independent.

If the measure ρ is given by a density λ with respect to the Lebesgue
measure then we call λ the intensity function of the process and write
X ∼ Poisson(S, λ) instead of X ∼ Poisson(S, ρ).
Note that Poisson process

X ∼ Poisson(S, µ · λ0),

with constant intensity λ0 is termed the homogeneous Poisson process, where
µ is the Lebesgue measure. The homogeneous Poisson process is a suitable
null model to describe complete spatial randomness (Stoyan et al., 1995) and
is used as a reference for the exploratory analysis of a spatial pattern.
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It is often convenient to express a more general point process model in terms
of its density, notably for the class of Markov processes, see below, with regard
to the unit rate homogeneous Poisson process in accordance with the Radon-
Nikodym theorem (Møller and Waagepetersen, 2003b).
Note, that general Poisson processes are always absolutely continuous with
respect to the standard or unit rate Poisson process, i.e. the Poisson process
with constant intensity λ0 = 1, when defined on a bounded subset S of R

d

(Møller and Waagepetersen, 2003b).
For a general Poisson process

f(x) =
n(x)∏
i=1

λ(xi)exp
(
−

∫
S

[λ(µ) − 1]dµ
)

is the density function (Møller and Waagepetersen, 2003b). We will present
further examples below.

3.3. Summary characteristics

3.3.1. First order summary characteristics

For a point process X the intensity measure is given by

Λ(B) = E[φ(B)], for any Borel set B,

where φ is a counting measure as defined above and E[.] denotes the expected
value. If Λ is absolutely continuous with regard to the Lebesgue measure, a
density function, the intensity function λ : B → R

+ exists, such that

Λ(B) =
∫

B

λ(x)dx.

Details on the estimation of first order summary characteristics may be found
e.g. in Stoyan et al.(1995); Møller and Waagepetersen (2003b).

3.3.2. Second order summary characteristics

Several second order summary characteristics have been proposed in the lit-
erature (see for example Ripley (1976)). Second order summary characteris-
tics suitable for homogeneous data such as Ripley’s K-function have become
standard tools in applications (Diggle, 2003). We thus only discuss the inho-
mogeneous K- and L-function as well as the inhomogeneous pair correlation
function as introduced in Baddeley et al.(2000) as these are less well-known.
The inhomogeneous K-function is defined as

Kinhom(r) = E
∑

ξ∈X, η∈X,ξ �=η

1[‖ξ − η‖ � r]/(λ(ξ)λ(η)). (1)
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Often, the variance stabilising L-function is used instead, where

Linhom(r) =

√
Kinhom(r)

π
.

Another second order summary characteristics commonly used is the pair
correlation function. For two Borel sets B1 and B2 we define the second order
factorial moment measure µ(2) as

µ(2)(B1 ×B2) = E
∑

ξ∈X,η∈X,ξ �=η

1[ξ ∈ B1, η ∈ B2].

If µ(2) has a density function ρ(2), i.e. if

µ(2)(B1 ×B2) =
∫

B1

∫
B2

ρ(2)(ξ, η)dξ dη

then ρ(2) is called the second-order product density. The pair correlation
function is defined as

g(ξ, η) =
ρ(2)(ξ, η)

λ(ξ)λ(η)
.

Details on the estimation of second order summary characteristics may
be found e.g. in Stoyan et al.(1995); Baddeley et al.(2000); Møller and
Waagepetersen (2003b).
Note that the second order summary characteristics may be used to distin-
guish clustered, random and regular patterns. For a Poisson process we have
K(r) = πr2, L(r) = r and g(r) = 1. Thus, if K(r) > πr2 at close distances
we have a clustered pattern, K(r) < πr2 indicates a regular pattern and
analogously for the other characteristics.

3.4. More general models

The concept of the Poisson process may be generalised to provide more flexible
models that are more suitable for applications.

3.4.1. Markov point processes

The class of spatial Markov point processes models patterns exhibiting aggre-
gation (or inhibition) due to interaction between points (van lieshout, 2000).
A special case of Markov point processes are pairwise interaction processes.
Its density is of the following form:

f(x) = α

n(x)∏
i=1

β(ξ)
∏

ξ,η∈X, ξ �=η

h(‖ξ − η‖), (2)

where α is a normalising constant, β(.) is a function describing the intensity
of the process and h(.) is a non-negative interaction function.
A number of interaction functions have been considered in the literature; van
Lieshout (2000) gives a detailed overview of various choices of interaction
functions. For restrictions on the choice of interaction functions see, for
example Diggle (2003).
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3.4.2. Neyman-Scott processes

Neyman-Scott processes, are a class of spatial point processes that describe a
”mother-daughter” relationship between points (Diggle, 2003; Stoyan et al.,
1995). These processes are constructed in two steps.

1. ”Mother” points are generated from a Poisson process with intensity func-
tion λ.

2. For each mother, a random number of ”daughters” is generated, where the
number of offspring is independently identically realised from a univariate
distribution for each parent, and the locations of the daughters follow a
bivariate distribution around the mother points.

The locations of the points in the daughter process form the Neyman-Scott
process. Examples of Neyman-Scott processes include the Matérn cluster
process, where the locations of the daughter points are uniformly distributed
on the area of a circle with radius rT around the mother points. Similarly,
the Thomas processes is a point process model, where the locations of the
daughter points follow a bivariate normal distribution with mean 0 and
variance-covariance matrix σ2

MI around the mother plants, where I denotes
the 2 × 2 unit matrix (Møller and Waagepetersen, 2003b). Neyman-Scott
processes are appealing in an applied context since closed form expressions of
the theoretical summary statistics are known for some of these models. This
facilitates parameter estimation (Diggle, 1983).

3.4.3 Cox processes

Cox processes are a class of models describing aggregation or clustering
resulting from unobserved environmental variability influencing the location
of points in a process. This variability is assumed to be a stochastic process in
itself leading to the Cox processes being called ”doubly-stochastic” processes,
a term introduced in Cox (1955). They are constructed such that the resulting
process is a Poisson process, given the underlying random process.
Formally, this yields the following definition:

DEFINITION 4. — Let Z = {Z(u) : u ∈ S} be a non-negative locally finite
random field on S. If the conditional distribution of a spatial point process X
given Z, denoted by X|Z has X|Z ∼ Poisson(S,Z), then X is called a Cox
process conditional on Z.

Remark. — For the exact definition of a random field and its properties, see for
example Adler (1981). For our purposes it suffices to say that Z(u) is a random
variable for all u ∈ S. Hence, we can regard Z as a random intensity function.
Under certain regularity conditions, Z can be associated with a corresponding
measure Λ, say, i.e. a Cox process can equivalently be defined in terms of a
random measure, for details see Møller and Waagepetersen (2003b).
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3.5. Multivariate methods for spatial point processes

Recently, attempts have been made to develop multivariate approaches and,
most notably, principal component analysis for spatial point pattern data
(Illian et al., 2004, 2005). These use methods from functional data analysis on
the second order summary statistics. We briefly describe the approach here.

3.5.1. Functional principal component analysis

For a more detailed introduction to functional data analysis see Ramsay and
Silverman (1994, 2002). Functional data analysis operates on functional data,
i.e. observations that are functions interpreted as single entities rather than as
consecutive measurements. Generally, the record of a functional observation
x consists of n pairs (tj , yj), j = 1, . . . , n, where yj is an observation of the
function x(tj) at time tj . Since the functions are usually observed at a finite
number of values of tj only, interpolation or smoothing techniques have to be
applied to yield a functional representation of the data. This is typically done
using the basis function method where a function is represented by a linear
combination of K unknown basis functions ψk, i.e. x(t) =

∑K
k=1 ckψk(t). The

coefficients ck of the expansion are determined by minimising the least square
criterion

LS(y|c) =
n∑

j=1

[yj −
K∑

k=1

ckψk(tj)]2.

Now, in the context of functional principal components analysis (FPCA) we
consider function values ui(t) and define

fi =
∫

β(t)ui(t) dt,

where β(t) is a weight function, and maximise N−1
N∑
i

f2
i1 under the constraint

‖w1‖2 =
∫
w1(t)2 dt = 1 and have an eigenequation

∫
v(t, s)w(s) ds = λw(t)

with variance-covariance function v(t, s) = N−1
N∑

i=1

ui(t)ui(s). The solution to

this eigenequation with largest eigenvalue solves the maximisation problem.

In the subsequent p steps maximise N−1
N∑
i

f2
ik, where k = 1, . . . , p, subject

to ‖wi‖2 =
∫
wi(t)2 dt = 1. Further analysis will examine the scores fik for

each of the original smoothed curves on the first p principal components, with
p � k in connection with an interpretation of the shape of these principal
components.
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3.5.2. Principal component analysis for spatial point patterns

To apply the above approach to spatial point pattern data consider the
following. Let Z be a spatial point process on R

2. Let X be a multitype
point process X = {(ζ,mζ) : ζ ∈ Z} with mζ ∈ M and M = {1, . . . , k}
a set, where no other marks are available, and subprocesses Xi ⊂ X with
Xi = {(ζ,mζ) : ζ ∈ Z and mζ = i} and i = 1, . . . , k. Consider a realisation x
of X. We use second-order summary statistics, in particular pair correlation
functions, to characterise the spatial behaviour of the individual subpatterns
xi.
We smooth the estimated second-order summary statistics using cubic B-
splines. We subsequently perform a functional PCA on the smoothed func-
tions. Through this, the subprocesses may be grouped on the basis of their
scores on the (functional) principal components and those aspects of spatial
behaviour that vary most among the species are revealed (Illian et al., 2004,
2005). To illustrate this Figure 1 shows the first two principal components
resulting from a functional PCA based on pair correlation functions for a
data set derived from a species-rich shrub community in western Australia
(see Armstrong (1991); Illian et al.(2005) and Section 4.1 for more details on
the data set). The plot indicates that the species’ spatial behaviour varies
most with regard to presence and absence of clustering at close distances as
described by the first PC (Illian, 2006).
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6

distance

FIG 1. — Plot of the first two principal component functions for the Australian data

set; the full line is the 1st PC, the dotted line is the 2nd PC.

Figure 2 plots the scores on the first principal components for each of the
species. This yields a characterisation of the species’ spatial behaviour in two-
dimensional space.
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FIG 2. — Plot of the scores on the first two principal components for the Australian

data set; numbers indicate species numbers as in Illian (2006).

4. Spatial point processes and biodiversity theory

Until recently, ecologists lacked substantial datasets that were suitable for
testing the explicit predictions of the competing theories of biodiversity. A
suitable dataset is one in which the locations of individual plants are spatially
referenced, identified to species, and censused over ecologically meaningful
timescales. To our knowledge, the most substantive current datasets that
possess these characteristics have been obtained from the network of tropical
forest plots coordinated by the Center for Tropical Forest Science of the
Smithsonian Tropical Research Institute. For example, on the first plot in
the network, the 50 ha forest dynamics plot on Barro Colorado Island (BCI)
in Panama, Hubbell & Foster (1986a,b, 1987) first recorded the locations and
sizes (diameter at breast height) of 235,349 individuals of 304 tree species
in 1982 (Condit et al., 2000). Since then, additional environmental data have
been collected, including information on soil properties, water availability and
topography. The plot has been recensused every five years since 1985 (Condit
et al., 2002). Similar plots have now been established to create a network of
16 tropical forest plots in 14 countries that all follow standardised protocols
for data collection.
A large number of studies has been conducted using the data collected from
these plots (summarised in Losos & Leigh 2005), but to date spatial point
process methodology has not been applied to plant community data sets, other
than in a descriptive way (Coomes et al., 1999). We advocate the application
of spatial point process modelling techniques to the spatially explicit tropical
forest data because of their potential ability to test the spatial predictions
of the competing models of species coexistence. We focus on three subject
areas where application of spatial point process modelling techniques might
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stimulate exciting new breakthroughs in our understanding of plant species
coexistence.

4.1. Interaction strength and neighbourhood identity

We preface this discussion with the observation that the terms ”interaction”
and ”interaction strength” have different meanings in theoretical ecology
and spatial statistics. The interaction parameters in spatial point process
models refer to the probability of individuals of the same or of different
species occurring in close proximity. This should not be confused with the
term interaction in ecology, which refers to a change in state of one or more
organisms over time as a result of a process in which they participate.
Within a species the interaction parameters in a spatial point process model
reflect the deviation of a particular pattern from a random pattern, i.e. it’s
tendency to be either aggregated or repulsive. Between species they reflect
the deviation of independence of the species’ patterns, i.e. the tendency of
individuals from different species to appear more frequently or less frequently
in close proximity than if the pattern were independent. One might term the
concept that these parameters represent ”spatial interaction”; we shall refer to
it as interaction from now on. The strength, direction, range and significance
of this interaction may be assessed (van Lieshout, 2000), i.e. the models may
be applied to inform on inter-individual interaction in a given community as
reflected by the spatial pattern.
Exploratory data analysis and principal component analysis for spatial point
patterns of a species-rich shrub community in western Australia (Illian et al.,
2005) have revealed that intra-specific interaction varies among species. Illian
et al.(2006) present a spatial point process model for the Australian data using
the following approach.
The species in the data set basically have two different fire regeneration
strategies, they either survive a fire underground (resprouter species) or shed
their seed triggered by a fire event (seeder species). The seeders are modelled
conditional on the resprouters to yield an improved understanding of the
nature of the inter-species interactions among them.
Denote by W the 22 m by 22 m plot where the plants were recorded,
x1, . . . , x19 the observed point patterns for the 19 resprouters, y1, . . . , y5 the
observed point patterns for the 5 seeders, and X1, . . . , X19, Y1, . . . , Y5 the
corresponding spatial point processes, i.e. here each Xj or Yi is considered
to be a random finite subset of W .
Conditional on X1 = x1, . . . , X19 = x19 assume that Y1, . . . , Y5 are indepen-
dent Poisson processes, i.e. that there is no intra-species interaction for the
seeder species. Also assume that each Yi has intensity function

λ(ξ|x, θi) = exp
(
θis(ξ|x)T

)
, ξ ∈ W, (3)

where x = (x1, . . . , x19) is the collection of all 19 resprouter point patterns;
θi = (θi0, . . . , θi19) is a vector of parameters, where θi0 ∈ R is an intercept and
for j = 1, . . . , 19, θij ∈ R controls the influence of the jth resprouter on the
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ith seeder (a positive value of θij means a positive/attractive association;
a negative value of θij means a negative/repulsive association); s(ξ|x) =
(1, s1(ξ|x), . . . , s19(ξ|x)) with

sj(ξ|x) =
∑
η∈xj

hη(‖ξ − η‖), j = 1, . . . , 19,

where ‖·‖ denotes Euclidean distance; and hη is a smooth interaction function
given by

hη(r) =
{ (

1 − (r/Rη))2
)2 if 0 < r � Rη

0 else

for r � 0, where Rη � 0 defines the radii of interaction of a given resprouter
at location η.
Thus, given the resprouters x the number Ni of points in Yi is Poisson
distributed with mean value

∫
W

λ(ξ|x, θi)dξ, and if we also condition on Ni,
the points in Yi are independent and identically distributed with a density
proportional to λ(ξ|x, θi). It follows that the log likelihood function based on
the 5 seeder point patterns y = (y1, . . . , y5) is

l(θ,R; y|x) =
5∑

i=1

[
θi

∑
ξ∈yi

s(ξ|x)T −
∫

W

exp(θis
(
ξ|x)T)

)
dξ

]
, (4)

where θ = (θ1, . . . , θ5) is the vector of all 100 parameters θij and R is the
vector of all 3168 radii Rη, η ∈ xj , j = 1, . . . , 19 of the 3168 resprouter plants
from the 19 species.
The results indicate that interaction strength and direction vary with the iden-
tity of the species concerned, since negative, positive and no interactions were
found. The findings support the prediction of niche theory that the identity of
neighbouring plants influences spatial structure within a population. However,
both significant and non-significant interaction parameters were found when
all species pairs where analysed, therefore it would be premature to conclude
that niche theory is supported universally by this community.

4.2. Microhabitat specialisation

Evidence of microhabitat specialisation provides support for niche-assembly
models of community dynamics, as evidence of adaptation to specific envi-
ronments challenges the assumption of ecological equivalence that is inherent
in neutral theory (Harms et al., 2001). A spatial point process analysis is
able to detect these aggregations and models the spatial pattern formed by
the individuals taking local environmental conditions into account. By merely
analysing the spatial point pattern of the species alone it is not possible to dis-
tinguish between aggregation due to dispersal, interactions or environmental
heterogeneity unless data on the environmental conditions in specific locations
are available.
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The point pattern data for the Australian shrub community lack supplemen-
tary data on environmental covariates, and an analysis of microhabitat spe-
cialisation is therefore not possible. Nevertheless, for the Australian data set
one may assume that the growth conditions are homogeneous throughout the
plot and interpret the resulting pattern as resulting primarily from intra- and
inter-specific interactions. Using principal component methodology, groups of
species with similar intra-specific behaviour could be identified. More impor-
tantly, those aspects of spatial behaviour that vary most among the species
could be established. This is interesting because the data set is derived from a
truly ancient community, which has established its dynamics over thousands
of generations in an area that has undergone substantial climatic changes
dixon:05. One may assume that we are dealing with a very stable community
that has adapted to the given circumstances in an optimal way resulting in
the species developing niche behaviour that is crucial for stable coexistence. It
could thus be concluded that the spatial behaviour at small distances consti-
tutes a niche-behaviour, which may support coexistence of the large number
of species in the area under investigation.
By contrast, the spatially explicit tropical forest tree position data have
linked data-sets on elevation, aspect, and in some cases soil conditions
(reviewed in Losos & Leigh 2005) and therefore provide an opportunity to
test for associations between species distribution and microhabitat variation.
Waagepetersen (in press) determined the functional relationship between the
intensity of two species, Ocotea whitei and Beilschmiedia pendula (both
Lauraceae), and elevation and gradient of the slope on Barro Colorado Island,
Panama. Here, an inhomogeneous Neyman-Scott process was applied in which
the clusters XC around a ”mother” point were modelled as independent
Poisson processes with intensity functions

λC(ξ) = αk(ξ − c;ω)exp(z1:p(ξ)βT
1:p)

where α > 0, β1:p is a 1 × p vector of regression parameters and k is
a probability density depending on a parameter ω > 0 that determines
the spread of daughter points around the cluster centre c. The regression
parameters describe the dependence of the spatial pattern on covariates such
as soil or topographic variables.
Parameter estimation exploited the fact that second order summary statistics,
in particular the K-functions are known in closed form such that minimum-
contrast methods could be applied. The result indicated that there is a
significant association of both species with the slope habitat but that they
do not favour specific altitudes.
Further application and development of these techniques will undoubtedly
yield major advances in our understanding of habitat relationships for tropical
trees and other plant communities. For example using the 50-ha plot data from
Pasoh, Peninsular Malaysia, recent analyses have shown that up to 60% of
tree species had significant associations with one or more of ten soil chemical
variables. See Figure 3 for a plot of the locations of the species Aporosa
bracteosa on the estimated surface for calcium (Gimona et al., unpublished
data).
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FIG 3. — Locations of species Aporosa bracteosa with estimated levels of Calcium.

4.3. Density dependent processes

The Janzen-Connell hypothesis (Janzen, 1970; Connell, 1971) predicts that
the mortality of seeds and seedlings is positively related to conspecific seed
or seedling density, and negatively related to increasing distance from a
conspecific adult. According to this hypothesis, increasing distance of a
seed or seedling from an adult plant, and/or lower seedling density, reduces
susceptibility to natural enemies and increases its survival. This mechanism
would result in a recruitment advantage for locally rare species and regulate
the upper limit of species abundance.
The Janzen-Connell hypothesis makes very clear predictions about the spatial
dependencies in the temporal dynamics of plant populations that are amenable
to analysis using spatial point process models. For example, it predicts a
less aggregated distribution of adult trees than juveniles. An appropriate
model would seek to analyse the effects of habitat specialisation and density
dependent interactions, as proposed by Diggle et al. (2006).
Exploratory data analysis based on second order summary statistics revealed
that a large proportion of the species in the Australian shrubland vegetation
exhibit clustering. The Janzen-Connell hypothesis predicts that species’ sur-
vival is improved with increasing distance from the location of a conspecific
and decreases with the number of conspecific individuals in close vicinity.
This would result in older individuals tending to form a more regular pat-
tern than juvenile individuals of the same species that might be clustered as
a result of initial seed dispersal. However, the spatial patterning of juvenile
and mature individuals cannot be compared in this community because of
the unique age/size structure of many of its constituent species. Species that
resprout are potentially hundreds of years old whereas others (seeder plants)
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have been present for at most ten years- the period since the last fire. Compar-
ing the spatial patterning between the species would result in a confounding
of species and age effects.
The analysis of the Australian data set revealed that some resprouters, after
having survived for extremely long times, still exhibit spatial clustering.
This may provide evidence against the Janzen-Connell hypothesis for that
community. However, spatial point process methods would contribute to the
discussion in a more detailed way if data on the age of the individuals were
available. More specifically, PCA methods, as described in Illian et al. (2005),
may be applied to analysing the underlying structure in the variation in spatial
patterns among species. For example, species might be divided into age classes
and PCA methods can be used to analyse the differences in spatial patterns
with regard to species and age class. If different age-groups of the same species
are allocated to groups with different spatial behaviours, and most notably
with different degrees of clustering, this may support the Janzen-Connell
hypothesis.
Many detailed analyses of the tropical forest plot data have addressed the
role of density dependence in regulating the abundance and distribution of
the resident tree populations (Wills et al. 1997, 2006; Hubbell et al. 2001,
Peters 2003). There is strong evidence from this recent work of pervasive
negative and positive relationships between local conspecific adult density
and recruitment and mortality rates respectively of saplings across multiple
species. Only one of these papers considers the relationship of mortality and
recruitment to local adult density in continuous space whilst allowing for the
spatial autocorrelation in mortality, and here also the Janzen-Connell hypoth-
esis is supported (Hubbell et al. 2001). Therefore, there is considerable scope
for developing spatial point process models to conduct more realistic tests of
the Janzen-Connell hypothesis taking account of additional factors such as
spatial structure, environmental covariates, individual size, and phylogenetic
relatedness, across multiple sites and species. These models would enhance sig-
nificantly our understanding of the relative importance of different processes
in the maintenance of species richness in tropical tree communities.

5. Discussion

This paper proposes the application of spatial point process methodology to
biodiverse plant communities with the aim of gaining an improved understand-
ing of the mechanisms that sustain biodiversity. Current studies have shown
promising results but there is definitely scope for further work, most notably
in the context of the rainforest data sets mentioned in the introduction.
In particular, current modelling approaches need to be extended further to
incorporate simultaneously interactions within species, among species and
between species and the environment. Further, multivariate data analysis
methods for spatial point pattern data need to be extended as they are highly
relevant for the multivariate data sets of biodiverse communities. This may
for example include the application of principal component analysis but also
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canonical correlation analysis to a data set of juvenile and adult (rainforest)
trees.
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