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ABSTRACT

When assessing marine resources, inferring spatial models has to be performed from
a unique realisation. The situations with repetitive surveys that can be considered
as repetition of the same regionalized variable are (obviously) rare. In intrinsic
geostatistics, this question is usually solved by a couple of key assumptions namely
stationarity and ergodicity. Unfortunately, these assumptions and their consequences
are often too strong with regards to the reality of fish survey data. It is especially
unrealistic to assume that the spatial structure is independent from the geometry
of field.

Transitive geostatistics has proven to be an operational alternative to intrinsic
geostatistics and was the seed for the development of a framework called ”statistics
per individual”. This article presents the rationale of the approach and sketches
the main tools developed during the past few years with practical illustrations.
Statistics per individual have the advantage to be simple and thus more robust
than intrinsic approaches (robust in the sense that the properties of the estimator
are based on fewer and checkable assumptions). On the one hand, ”statistics per
individual” allow for summarizing and describing series of spatial distributions into
few quantitative features. On the other hand, as developed in the first ages of
geostatistics, they allow for estimating global abundance with estimation variance
thanks to the (transitive) covariogram and for interpolating between observations
(transitive kriging). The price to pay for the simplicity of the method is that it leads
to fewer possible applications than the intrinsic geostatistical approaches and that,
as a design based approach, it is constrained to some specific sampling schemes (e.g.
the regular, stratified regular or point process survey strategies).
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RESUME

En écologie halieutique, linférence des modeles spatiaux se fait le plus souvent
a partir d’'une réalisation unique du phénomeéne. En effet, les cas ou plusieurs
campagnes d’observations pourraient étre considérées comme des répétitions d’un
méme phénomene sont rares voire inexistants. Cette carence de répétition est
contournée en géostatistique intrinseque par des hypotheses d’ergodicité et de
stationnarité portant sur le modele. Cependant, dans la pratique, ces hypotheses
clefs apparaissent souvent trop fortes par rapport aux caractéristiques réelles des
données. En particulier, il parait non fondé de supposer que la structure spatiale des
individus d’une population donnée est indépendante de la position de ces individus
par rapport aux frontiéres ou au cceur de la zone de présence de la population.

La géostatistique transitive est dorénavant reconnue, en écologie halieutique, comme
une alternative opérationnelle & D’approche intrinseque et a été a l'origine du
développement de statistiques dites «par individus ». L’objectif de cet article est de
rappeler les fondements théoriques de cette approche et de donner un apergu illustré
des développements méthodologiques réalisés ces dernieres années. Les statistiques
par individus présentent I’avantage d’étre simples et robustes car fondées sur des
hypotheses en faible nombre et falsifiables. Ces statistiques permettent d’une part,
de résumer des séries de distributions spatiales & 1’aide de quelques descripteurs
et, d’autre part, de fournir, grace au covariogramme, des variances d’estimations
globales ou des cartes d’interpolation (krigeage transitif). En contrepartie de sa
simplicité, la démarche transitive offre un spectre d’applications du modele plus
restreint qu’en géostatistique intrinseque et une utilisation restreinte a certains types
d’échantillonnage (e.g. régulier, aléatoire stratifié ou processus ponctuel).

Mots-clés : Géostatistique transitive, covariogramme, réalisation unique, variance
d’estimation.

1. Introduction

Monitoring marine resources, and more specifically fish populations, puts for-
ward two major estimation questions for which an appropriate methodolog-
ical choice is needed: the estimation of total abundance and the definition
and estimation of relevant summary statistics of key spatial features of these
fish populations. Contrary to mining from which geostatistics originated, fish
stock estimations cannot be confronted to field truth and one must be very
cautious not to overpass modelling thresholds and parsimony principles. This
is all the more required that statistical inference is to be performed from one
single realisation of the study variable. The situations where repetitive sur-
veys can be considered as repetition of the same regionalized variable are rare.
Following Matheron recommendation on parsimony (1989), this should lead
practionners to choose models based on as few as possible and as tractable
as possible assumptions because this reduces the possibilities to observe dis-
crepancies between the characteristics of the data and the assumptions on
which the estimator is based (robustness). In fact, this is also the choice to-
wards which the confrontation between fish survey data and random function
models led part of the fisheries community.
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Geostatistics often follows the so called intrinsic approach using random func-
tions. In this framework, expectations (expected value, variance, variogram,
etc) are theoretically considered over all possible realisations of the random
function. Although this is possible in theory, this does not hold in practice
when one single realisation is available. This problem is usually solved by a
couple of key assumptions namely stationarity and ergodicity. Unfortunately,
these assumptions and their consequences, are often too strong and are most
likely not supported by the reality of fish survey data. It may well be unrealis-
tic to assume that fish spatial distribution is independent from the geometry
of its field and that large values can occur anywhere in the field. In addi-
tion the expectations and their practical translations in terms of averages are
strongly influenced by the zero samples observed outside the area of presence
of fish. While extending sampling beyond the area of presence of fish ought
to insure that the whole targetted population has been sampled, the influence
of zero density values is undesirable. This question extends to the influence
of the very numerous low densities that are observed on large areas at the
borders of fish populations. All together, this raises the question of the sub-
jective delineation of a population field, and indicates how carefully we should
use statistics that are affected by zeroes and more generally by low concen-
trations. Although some authors are suggesting more robust estimators for
the variogram (Cressie 1991), the method itself, i.e. the intrinsic geostatistical
approach, also might be regarded as based on too strong hypotheses in the
particular case of fish data.

An alternative has been considered in fish applications with the objectives
to allow pragmatic answers to the two questions of interest (global estima-
tion and summary spatial statistics) and to cope with data characteristics.
This alternative derives from the transitive approach, a design-based method
developed by Matheron (1971) which requires fewer and more easily control-
lable hypotheses than the intrinsic one. Despite its simplicity, the transitive
approach, first designed for regular samplings, has not been widely spred in
the fisheries community. However, this method has recently been shown to
be appropriate for the treatment of spatial data sets with numerous zeroes
(Bez and Rivoirard 2001) and for global estimation variance in case of ran-
dom stratified samplings (Bez et al. 1995; Bez 2002). This led the fisheries
community to more widely endorse it. The first objective of the paper is to
present in details the theory and the practical implementation of the transitive
approach.

Scientific surveys objectives are not only to estimate stock abundances at a
given time of the year. Yearly surveys feed time series whose trends (positive
or negative) are of great influence on scientific diagnostics and management
decisions, and help monitor any changes in the spatial distributions of various
components of a given ecosystem. For this latter reason, time series of surveys
need to be summarised with appropriate tools. Given the characteristics of fish
data above mentioned, criteria for evaluating and choosing summary statistics
must be revisited with considerations on field dependency, support effect,
and sensitivity to the zero. Derived from the transitive approach, statistics
per individual have been developed and applied to several survey series. The
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second objective of the paper is to present the general principles of this family
of summary statisics and its practical implementation.

This paper is a review of existing pieces of work for which references are given.
Most of the figures used to illustrate the ideas described in the present review
are borrowed to those references. The annex corresponds to new material.

2. Transitive approach

2.1. Theory

2.1.1. Regionalised variable, covariogram and, standardised covariogram

A notation inspired from one dimension conventions is chosen for simplicity:
x represents a point in space. Contrary to intrinsic geostatistics where the
fish density is considered as a realisation of a random function, in transitive
geostatistics, the fish density, denoted z(x), is considered as a deterministic
function and is called a regionalised variable. This regionalised variable is
often expressed in practice as the number of individuals per unit surface area
(e.g., ind-m~2). The covariogram (Matheron 1971):

g(h) = /z(x)z(x +h) dx

is the convolution product of the fish densities (h being the distance). In
2D case studies, it is expressed as the square number of individuals per unit
surface area (e.g., ind>-m~=2). The total fish abundance @ is the first quantity
of interest:

Q= /z(x)dw

Using the density relative to the total abundance leads to the standardised
covariogram (Bez and Rivoirard 2001).

s - g(h) _ /z(x)z(x + h)dx

C [y

The standardised covariogram is homogeneous to the inverse of a surface
area. It globally decreases from its maximum value §(0) taken as an index of
aggregation (as it will be justified in section 3) to 0 for long distance (Figure 1).
The distance at which the covariogram reaches zero (strictly or approximately
for exponentially decreasing covariograms) is called the range. It quantifies the
maximal diameter of the population in the particular direction of concern.

The standardised covariogram is analogous to the correlogram used for
random functions replacing space integrals by expected values. As a matter
of fact, for centered random function, the correlogram is:

E(Z(x)Z(z + 1))

)= B )
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g(h)=Col, ,+Ci f(h)

Ci f(h)

AN
I

Distance (/)

0

F1G 1. — Definition of a standardised covariogram model g(h) : nugget effect (1,—¢)
with sill Cp and continuous part (f(h)) with sill C; and range a;.

Contrary to the correlogram, the range of a covariogram is a geometrical
property of the field. As the latter is never circular in real studies, covariograms
of fish densities will generally be anisotropic, although it is sometimes difficult
to model in practice.

The behaviour of the covariogram near the origin is related to the spatial
continuity of the fish density and is often reduced to a discontinuity. One
usually considers two causes for this discontinuity: the small-scale variability
of the fish distribution itself and measurement errors. The standardized
covariogram for z(x) can thus be written (Figure 1 and annex A) as

g(h) = Co 1h—o + C1 f(h)

where Cy 1j,— corresponds to the discontinuous part (nugget effect) and
Cy f(h) to the continuous part.

2.1.2. Global estimation for strictly regular sampling

Following the 1D notation, the origin of the sampling grid is denoted x(, and
the grid mesh interval, s. A sample point is then located at zq + ks, i.e., the
origin plus an integer multiple of the grid mesh interval. Several actual fish
surveys do follow a regular sampling: e.g. most of acoustic surveys, the ICES
triennial egg surveys (ICES 2003), cod and haddock survey in the Barents
Sea (Jakobsen et al. 1997), halibut surveys in the North Pacific (Hoag et al.
1980), etc. The total fish abundance is estimated by:

Q" (xg) =s Zz(mo + ks)

k
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a deterministic quantity. Assuming that z is the outcome of a random
uniform variable over a grid cell, the estimator, now denoted Q*(Xjy), becomes

a random variable. Its bias is zero due to the uniform distribution of Xg:

EQ (X0 = [ Q") &

After Matheron (1971), the estimated coefficient of variation is:

OV = w - \/s;g(ks) - /g(h) dh

i.e. the square root difference between the exact integral of the standardised
covariogram model and its discrete approximation at the grid spacing level.
The latter quantity is never negative since

ElQ"(X0)Y = s glks) and B[QY] = Q* = / g(h) dh
k

and since the covariogram function is positive definite (Matheron 1965, p 74).
Directly from this definition, also comes that (i) the smaller the grid mesh
interval, the smaller the estimation CV, (ii) the more irregular the spatial
distribution, i.e., the larger the nugget effect, the larger the estimated CV
(Figure 2). When a significant nugget effect exists, it explains nearly all the
estimated CV which can then be approximated by (Bez 2002):

CVE%\/&@O

The unbiasness of the estimators refers to all the estimations generated by all
the possible grid origins. To avoid systematic errors over a series of annual
surveys, one should change the origin of the grid from year to year. One
alternative is to use a random stratified sampling.
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FiG 2. — Global estimation coefficient of variation and behavior of the standardised

covariogram near the origin. The estimation CV corresponds graphically to the
difference between the black and the grey areas. It increases when the spatial
local heterogeneity of the fish density, i.e., Co, increases : (a) No nugget effect
and parabolic behavior, very small estimation CV, (b) No nugget effect and
linear behavior, small estimation CV, (c¢) Reasonable nugget effect and linear
behavior, large estimation CV, (d) Large nugget effect and linear behavior, very
large estimation CV.

2.1.3. Global estimation for random stratified sampling

In a regular stratified sampling, each sample point Xy, for k € [1, N] where
N is the number of samples, is random uniform in its grid cell si. Many
surveys use this sampling design: e.g. the International Bottom Trawl Surveys
in the North Sea (ICES 1997), the snow crab survey in Canada (Conan et al.
1988), and the Moroccan cephalopod surveys (Faraj and Bez, submitted).
The estimator of the abundance is a random variable, function of a set of
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i.i.d. random variables:

Q ({Xx}) = sy 2(X)
k
As the X} are random uniform over s, the estimator is unbiased:

E[Q*({X:})] = SZE[Z(Xk)]
k
dr
=s z(x) —
RS

-Q

Due to the independence of the Xj, Matheron (1989) showed that the

estimation CV
Vi = s (3(0) - 3(5))

only depends on the behaviour of the covariogram at distances smaller than

the grid mesh size. §(s) is the mean value of the standardised covariogram
between two points x and y located independently in a grid cell s :

0= [ [ o= ay

Qe

2.1.4. Transitive kriging

Transitive kriging is a linear interpolation procedure where each unknown
value z(x) is estimated by a weighted average of the neighbouring sample

values:

The weights are chosen so that if the kriging configuration made of the points
x and x + h; were translated in all possible locations, the sum of squared
errors between true and estimated values would be minimised. This sum can
be written as a function of the covariogram (Bez et al. 1997):

/ (2(z) — Z*(x))zdm =g(0) -2 Z)\ig(hi) + ZZ XiXjg(hi — hj)

The covariogram model can then be used to choose the weights that minimise
this sum (Matheron 1989, 119-122 pp). Transitive kriging is thus, in an
algorithm perspective, similar to stationary kriging with mean equal to 0. The
unbiasness of the interpolation procedure is obtained by assuming that the
total abundance is recovered when running the kriging configuration over the
entire field. This provides a supplementary condition on the weights similar
to ordinary kriging: Z A =1.

(2
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2.2. Practical implementation

2.2.1. Covariogram estimation

In case of regular grids, which are preferred, the standardised covariogram is
estimated for any distance and direction in the grid. Most logical directions
correspond to the two main directions of the grid where sampling density is
highest, but all the diagonal directions can be looked at. The standardised
covariogram for a distance equal to a multiple | number of grid intervals is
estimated by the sum of the products of pairs of densities separated by [ grid
nodes (Matheron 1971):

Z z2(xo + ks) - z(xg + ks + 1s)

g*(ls) =% D)

k

This assumes that the fish density is zero beyond the sampling area.

For random stratified sampling, things are more complicated, because when
the first point of a pair sweeps its grid cell, the other one does not. A solution
suggested by Bez et al. (1995) is based on the use of the surfaces of influence
of sample points (Voronoi polygons). Given the links between the covariogram
and the covariance, they suggested the following weighted procedures:

Z ZlSl Z ZlSl

1 1 ~ ~h—
g*(h): . szsk.§ I~k+h +l k—h
; D5 S
Z 2 Sk I~k+h I~k—h
k

2.2.2. Numerical layout and units

When computing covariogram, fish density and grid mesh surface area should
be expressed with compatible units. However there are cases where the fish
density gets units that do not simplify with those of a surface area (i.e.,
kg-h™1). A standardised covariogram is expressed as the inverse of a surface
area whatever the units of the fish density which makes it more practical:

. 2 . .
mits of (géf;)) ~ (units of 2)? - (units of s) 1

((units of s) - (units of 2))2  (units of s)

2.2.3. Reference system

Computation of distances between points often requires the projection of data
points in a Euclidean reference system. Regular sampling might be no longer
regular after projection due to some cosine operations.
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2.2.4. Covariogram fitting

The covariogram models must be symmetrical, bounded, positive or null when
the fish density is positive or null, and must be positive definite to ensure that
the estimation variances are always positive (or null). The range is either the
distance beyond which the function is null (model with finite support, e.g.
spherical model) or below 5 % of the value at the origin (model with infinite
support, e.g. exponential model). Given that fish distributions do not extend
to infinity, models with finite true range are recommended.

In intrinsic geostatistics, anisotropies are generally zonal or geometrical
(Chiles and Delfiner 1999). Models with zonal anisotropy cannot be used for
covariogram as they become negative after some distance and for some direc-
tions. The type of anisotropy that is left is thus the geometrical anisotropy
based on two parameters: the direction in which the range is given, and the
coefficient by which the range has to be divided to get the range in the or-
thogonal direction; the range for an intermediate direction corresponding to
the radius of the ellipse defined by the maximum and minimum range in the
appropriate directions. When a covariogram is made of several functions, the
anisotropy of each function can be different from the other one.

Classical hole effect models (e.g. Bessel model) cannot be used either as they
are alternatively positive and negative around their sill, i.e. around 0. However,
fish distributions often exhibits few large aggregations and hole effect models
are needed to endorse these situations. By construction, convolution products
are positive definite functions. This is used here to build a hole effect model
based on the convolution of a regionalised variable equal to two bigaussian
like aggregations (see annex B).

Fitting consists in estimating the model parameters by ad hoc means (manual,
least squares, etc).

3. Statistics per individual and summary statistics
3.1. Theory
3.1.1. Random individuals

Individuals (fish, larvae or eggs) at a given location are all the more numerous
when the density at this location is larger. So if we consider an individual I
taken at random in the whole population, I € [1,Q)], the probability density
function (p.d.f.) of its location z; is:

Knowing the p.d.f. of the random variable x;, one can derive several statistics.
The mean location of a random individual

. i _/w~z(x)dw
xj/xz(x)dx/z(x)dx
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is the center of mass of the whole population and is usefully expressed
in geographical coordinates (e.g. longitude and latitude). The trace of the
variance-covariance matrix of x; corresponds to the inertia of the population
and measures its spatial dispersion:

/Hx—afz\l 2(a)da
/(@m

In 2D cases, inertia is homogenous to a surface area (e.g. square nautical
miles). In 2D cases, a weighted principal component analysis (PCA) of the
inertia provides two orthogonal factors equal to linear combination of the two
input coordinates, i.e., the spatial directions that explain respectively most
and least of the fish spatial distribution. The ratio of the smallest axis over
the largest axis is a proxy for quantifying isotropy. When the individuals are
distributed in all directions with no preference, the two axes get the same
length and the index is 1. On the contrary when individuals are organised
along a straight line, the index is 0.

tr Var I’I

Being a convolution product, the standardised covariogram represents the
p.d.f. of the random vector H = x;—=x» where I and I’ denote two individuals
taken at random and independently in the population. As a function of H,
the expected value of square distance between two random individuals || H||?
can be written as follows:

E(IH|P) /ﬂmﬁ~ Jdh = 2 x tr(var(zy)).

So the inertia of the population can also be defined as the average (semi
square) distance between two individuals taken at random in the field:

tr(var(zy)) /||h||2 g

Meanwhile, §(0) is the density of probability for two random individuals to
be at the same location, that is, aggregated in the same location, hence the
use of §(0) as an aggregation index (Bez and Rivoirard 2001). In practice,
densities are measured on a non punctual support and aggregation must be
considered at that support.

3.1.2. Global and local indices of collocation (GIC and LIC)

Let us consider two populations: z;(z) and z9(x). When coefficients of
correlation (and further cross variograms or cross covariances) are concerned,
the domain on which they are computed cannot be relevant simultaneously
for the two species. Imagine that species 1 has a wider distribution than
population 2. Taking the area of presence of population 1 for the computation
introduces a set of undesirable zero values when computing population 2
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statistics. On the contrary, the area of presence of population 2 does not allow
one to take all the positive samples of population 1 for the computation. Using
statistics per individual allows turning into a domain free version analysis
of variance type of criteria and coefficient of correlation (Bez and Rivoirard
2000a).

Let us consider ACG the distance between the centers of gravity of popula-
tions 1 and 2 and I; and I their inertia. Comparing the (square) mean dis-
tance between a random individual of population 1 and a random individual
of population 2 (||ACG]||?), and that between two individuals taken at ran-
dom and independently from any of the two populations (||ACG||> + I + I5),
leads to the global index of collocation (GIC) .

B |ACG||?
|ACG|2+ 1, + Iy’

GIC =1

This index ranges between 0, in the extreme case where each population is
concentrated on a single but different location (inertia equal 0), and 1, when
the two centres of gravity are confounded. By way of illustration, GICs were
computed for simplistic situations (isotropic Gaussian fish density with fish
density being set to zero for densities below the quantile 5%). From this, a
GIC between 0.6 and 0.8 is considered as a low value and 0.8 a threshold for
good and poor collocations (Figure 3).

Population 1 Population 2

2 km = radius distance radius= 4 km
0.75 km? = inertia inertia = 3 km?2
41 km?2 = surface surface= 161 km?
distance = 1km 2 km 3 km 4 km
‘ Population 2 x Population 2
GIC= 085 0.60 0.40 0.27
Population 1 x Population 2
GIC= 079 0.48 0.29 0.19

@ @ Population 1 x Population 1

GIC= 0.60 0.27 0.14 0.08

Fic 3. — Global Indices of Collocations (GICs) for simplistic situations. Fish
distributions are considered to be isotropic and distributed according to a Gaussian
distribution with fish density being set to zero for densities below the quantile 5%.
Two types of fish populations are concerned (patchy or spred). Several possible
distances between the centers of mass are concerned.
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Replacing averages by sums in the coeflicient of correlation leads to the local
index of collocation (LIC)

/ z1(x) 2o (2)dx

\/ / z%(x)dx\/ 22 (x)dx

As it is based on sums, this index is not impacted by the zeroes contrary to
the usual coefficient of correlation. When z1 (z) and zo(x) are all identical or
proportional, this index is 1. On the other hand, when no individuals of the
two species are found simultaneously in any sample, it is equal to 0. Hence
this index measures local collocation between the populations. This index is
not affected by a permuation of samples values in space.

LIC =

3.1.3. Crossing fish density and environmental parameters

We now consider an environmental parameter, e.g. water temperature, de-
noted t(z). The value of this regionalised variable at the location of a random
individual is a random variable, ¢(xy), function of xy, called the temperature
per individual. By definition, the expected value and the variance (or inertia)
of the temperature per individual are

Elt(z)] =1 = / Ha)t(w)da
varlt(z1)] = / 5o)(t(a) — 1) de

Similarly to the use of toroidal shifts to test for associations between point
processes, Bez and Rivoirard (2000b) developed the concept of inertiogram
to test for the association between a fish distribution with fuzzy, limited,
and unknown geographical extension and an environmental variable with
unlimited field. The very nature of the fish distributions is aggregative while
environmental variables are spatially smooth. A large part of the populations
concentrate themselve in narrow intervals of temperature values exhibiting
a mode in their relationship while they are independent. The inertiogram is
defined as the graph of the inertia of the parameter when the fish distribution
is translated in all possible directions and distances h

E,, (h) = /E(z)t(z + h)dx
I, (h) = /Z(x)(t(x +h)— Et,(h))zdac

A minimum in the inertiogram for h=0 means that the inertia increases when
the population is translated and suggests that the match between the fish
density and the parameter was largest for the actual situation. Inertia, and
then inertiogram, can be developed for multi-parameters situations.
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3.2. Practical layout

3.2.1. Estimations

For regular samplings, the estimators are straightforward:
Zxkzk Z(xk *x_I*)QZk
=+ tr(var(z))* = -~
DL DL
k k
Z te2k Z(tk — t(l‘]) )QZk
=F _ var(t(a)t = &
> >
k k

——%

Z

t(zr)

The zero values sampled (or assumed) on the grid outside the area of presence
of fish do not contribute to these statistics. If the origin of the grid is random
uniform, these estimators are unbiased.

For irregular sampling designs, weighting by the areas of influence is required:
Zxkzksk Z(xk —T7°)? 21,5
k k
> S > 1Sk
k k
Ztkszk Z(tk — t(.%‘])*)QZkSk
k * k
= — var(t(xr))* =
T P
k k

tr(var(zy))* =

t(zr)

3.2.2. Reference system

Distances between points must be computed in a Euclidean reference system.
For the center of gravity and the ellisposoid of inertia whose final objective
is often to be represented on a geographical map, back transformation is
required. However, while the two factors of the PCA are orthogonal in the
Euclidean system, this is no longer true after backtransformation.
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4. Discussion

4.1. Summarizing series of distributions

Together with the transitive approach that allows estimating fish abundances
with estimation variances and interpolating fish densities, statistics per indi-
vidual lead to efficient summary statistics for summarizing series of surveys.

For instance, in the case of the cephalopod (Octopus vulgaris) off Morocco,
trawl surveys are regularly performed twice a year by the National Institute
of Fisheries Research (INRH). Since 1998, a random stratified survey is used
with a 11 nautical miles by 11 nautical miles grid cell (Figure 4) targeting
both juveniles and mature females. Based on the use of the above mentioned
statistics per individual Faraj and Bez (submitted) indicated that juveniles
are more coastal (center of gravity), less spatially dispersed (inertia), more
anisotropically distributed (index of isotropy), and more patchy (index of
aggregation) than the mature female. Transitive krigings allowed the authors
getting a series of spatial distributions.

26 1§
: :+
¥ ; n.
sl L S0
L g
h + =0
L) ’—1 L'
z e gy
o 24 . B
S .
£ : N
B3 - 5
NI,
AN Morocco
22 -
+ 0
o 10
21 - [Ja319

175 170 165 160 155 150 145
Longitude ( © W)

Fic¢ 4. — Cephalopod (Octopus vulgaris) trawl surveys. Representation of the
stratified random sampling: location of the trawl hauls at random in 11 n.mi. x 11
n.mi. cells. Courtesy of National Institute of Fisheries Research (INRH) — Morroco.
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4.2. Support effect

Compared to the survey domain, the support on which fish density is measured
is generally small enough to be considered as a point. But support may change
from survey to survey and needs to be considered. Let v be the support, v(x)
this support when centered at point z, and |v| the absolute size of the support.
The fish density on support v is the following moving average:

1

IR

z(x + h)dh

v(x)

2y ()

The regularisation affects the covariogram. In particular, the value of the
standardised covariogram at the origin, and so the index of aggregation,
decrease with regularisation:

This is why the same support should be used when comparing the spatial
properties of two populations.

4.3. Design-based versus model-based geostatistical approaches

Within a given probabilistic framework, the quality of an estimator is quanti-
fied by its bias, its convergence and its precision. However, the sole use of these
three quality parameters could be misleading when choosing between estima-
tors that are not based on the same assumptions. In particular, when choosing
between a design-based and a model-based estimator, one should consider the
number of hypotheses of the respective approaches and our ability the control
their adequacy to field data in practice.

In the transitive approach, which is a design-based approach, the major
assumption concerns the randomness of either the origin of the sampling
grid, or the location of sampling points in the grid cells. Such assumptions
are easy to control in practice. In the classical model-based geostatistical
approach the stochastic part of the model and thus the constituent hypotheses
concern the fish density itself considered as a realisation of a random function.
Assumptions concern the stationarity of some aspects of the random process
(e.g., the expected value and the variance for simple cases) and are much more
difficult to control in practice.

4.4. Area-based versus area-free approaches

All the samples, including the zero data, are considered. Zero data do not
influence the results because the method refers to spatial integrals and because
sums are unaffected by the addition of zero data. The method does not
require the delineation of the transition zone between inside and outside the
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population. This explains the term transitive and makes the technique area-
free. Still, the zeroes are not ignored and represent crucial information. Their
presence tells us whether or not the whole population has been sampled and,
thus, allows for the meaningful use of the method. In practice zeroes must
have been observed or assumptions are to be made for unsampled (generally
assumed empty).

4.5. Infra versus supra support spatial statistics

Most spatial summary statistics are area-based and are relevant or mean-
ingful in a given predefined geographical field. While they originated from
the statistical framework (e.g. clumping index, Lloyd’s index of patchiness,
overdispersed index), they quantify what happens at scale smaller than the
support of the information (typically the swept area in trawl data) and are
not affected by permutation of the sample values in space. This remains true
for some of the statistics per individual like the index of aggregation or the
local index of collocation.

The rest of them, i.e., the center of gravity, the inertia, the global index of
collocation, are affected by permutation of the sample values in space but are
unaffected by spatial re-allocation of fish at scale smaller than the support.

The former are infra support statistics. The latter are supra support ones.

5. Conclusions

Statistics per individual benefit from the properties of transitive approach:
they have a strong descriptive power, insensitive to zero densities, weakly
sensitive to outliers, most suited for regular samplings but also operational
for random stratified ones.

The transitive approach, a spatially explicit technique, allows for a design-
based global estimation of abundance with an estimation variance for regular
or regular stratified sampling. The theory makes relatively few assumptions
(randomness of either the origin of the sampling grid or the location of data
points in grid cells) which are easily controllable in practice. Together with
the low number of parameters to be estimated, this ensures robust results.
Such transitive geostatistics are in operation to give abundance assessments
in several fisheries institutes.
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Annex A: Nugget effects

To account for measurements errors, the regionalised variable z(x) can be
interpreted as a white noise wy () superimposed to a regionalized variable
y(x)

() = y(z) +wy (z)

The white noise is defined as the restriction to the field V' of a realization of
a random function with a pure nugget covariance. The means of wy () and
y(z) over the field are denoted m,, and m, respectively. Considering that (i)
the field is large enough for ergodicity to apply for the white noise and (ii)
that the two components are independent in the transitive sense (Matheron,
1965, p 97), i.e. that

Gu,y(h) = /wv(x)y(m + h)dx = mymy K (h)

the covariogram of z(z) is
g=(h) = gy(h) + QmwmyK(h) + O—E;K(O) “Ih=o

where 1;,—¢ represents the indicator function equal to 1 for distance h = 0 and
0 otherwise and K (h) the geometrical covariogram of the field:

The above formula indicates that the contribution of a white noise is po-
tentially twofold: it contributes to the nugget effect by a term equal to the
variance of the white noise times the surface of the field; but it also modifies
the continuous part of the structure by a quantity equal to the geometrical
covariogram times the product of the global means of y(z) and wy (z). This
happens to be fundamentally different from the impact of a white noise in
intrinsic geostatistics.

Unsystematic measurement errors (m,, ~ 0) add only to the nugget effect of
y(z). In practice, the respective contributions of y(z) and wy (z) to the overall
nugget effect are unknown, and splitting the discontinuity of the covariogram
into terms for measurement errors and small-scale structures is impossible.
The covariogram for z(z) can thus be written (Figure 1):

g(h) = gy(h) + 02 K(0) - 1p—0

Let us considered that the covariogram of y(x) is made of a discontinuous
part (nugget effect) and a continuous part so that

gy(h) = Co 1p=o + C1 f(h)
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Then, we have:
g(h) = gy(h) + 05K (0) - 1n—o
=Cp lh—o + C1 f(h) + 2K (0) - 1=
= (Co + 02K (0)) - 1h=o + C1 f(h)
=Co lp=0 + C1 f(h)
which leads to the following standardised covariogram

§(h) = Co Ln—o + C1 f(h).

Annex B: A single hole effect model

By construction, convolution products of a function by its transposed value
(f*f) are positive definite. The idea is thus to explicit the covariogram
obtained for a regionalized variable of the following form (Figure 5):

2(x,y) = g1(z,y) + g2(te — 2,8y — y)
= Clg(mayv al) + CQQ(tm - xaty - Y, a2)

where g(z,y, a1) is the probability density function (pdf) of a bigaussian vector
of random variables without correlation (p = 0) and with the same standard
deviation (a1 ):

g(z,y,a1) = o2

Parameters a; and as are expressed in distance units. In the bigaussian
pdf they correspond to the standard deviation of each variable. In the
present context they correspond to the spatial extension of each dome of
the regionalization. Parameters C; and C5 are expressed in the variable units.
They quantify the level of each dome. The difference between the centers of
the two bigaussian is A = (¢, t,).

The computation of the covariogram amounts to the following:

g(hg, hy) // z2(z,y)z(x + ha,y + hy)dzdy
= // [91(2,y) + g2(te — x,ty — y)]-
[91(2 + ha,y + hy) + go(te — @ — hy, ty — y — hy)]dzdy
// 91(x,y)g1(x + ha,y + hy)dzdy
+//gz(tm —@,ty = y)g2(te — & — ha,ty —y — hy)dzdy
+//91 z,Y)g2(te —x — ha, ty —y — hy)dxdy

//92 — y)g1(@ + hayy + hy)dady
gll 4+ ¢22 + g12 + ¢21
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g(tx_xaty_y:v 32)

y b
A
g(Xay:al)
S, C -
Fi1G 5. — Map a regionalized variable made of two bigaussian probability density

functions. The circles represent isoprobability lines. Definition of the notations.

After developments, we get:

gll = 1 L e 4ai
Tay
2 -llr|1?
922: 4022 e 4a§
Tas

—[AI2+]|A]]*=2(A,h)
o0 I ,
12 e 2(“%*‘“%)

27 (af + a3)

gl2 =

2 2
GG —lIA|P+IA]P+2(A )
= —F ¢ 2(a’+al)
2r(af + a3)

where (A, h) represents the scalar product of A and h. Finally, it comes:

g21

|IA||? 2 =ln)1?
1 [c2 -l C ]
g(h): 1 4af + 2 e 4a§
2 2
A7 | ay as
,HAHZH\;HQ (A
2(a?+ s (A,h)
01026 (agta3) a2 ta2 T 22%a2
3 3 e“17% + e 1%
27 (ay + a3)

In particular:
-llal”?

=L [G G, Cilaettited
I =4 a? = a3 m(a? + a3)
When ||A||? is large enough for the two domes not to overlap (or nearly so):
1 {C’f C? C1Cs

0)~ — “2 e B
9(0) 47 | a2 a3 2m (a3 + a3)

} and g(A) ~
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Interestingly, given that for gaussian distributions, 95% of the data belong to
the interval centered on the mean +/— twice the standard deviation, we can
define a practical range equals to ||A|| 42 - (a1 + a2) in the direction defined
by the two maxima of the two bumps. So defined, the ”double-gaussian”
hole effect function gets a parabolic shape at the origin. Hence it can be
considered for regular regionalized variables. The anisotropy is quite specific:
full hole effect in the direction parallel to the line joining the two maxima of
the regionalized variable; gaussian covariogram in a direction perpendicular
to it.

This hole effect function is defined by 6 parameters:
e 2 parameters defining the spatial extension of each dome (a1, as)
e 2 parameters defining the level of each dome (Cy, Cs)

e 2 parameters defining the distance and orientation between the two
maxima (A)
An even more parameterized model can be considered when each bigaussian
distribution corresponds to a vector of random variable with correlation
(p # 0) and with different standard deviations (a1,1,a1,2,a2,1,a2,2). In this
case, the model gets 9 parameters.

Figure 6 represents situations for a; = as = 0.75 and C7; = 1 with two
different distances between domes (A) and two levels for the second dome
(C3). When the domes are explicit but not enough apart one from each other,
the hole effect might not be visible in the corresponding covariogram. The
covariograms obtained for ||A|| = 2 do not get a clear hole effect despite the
fish distributions.
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Fic 6. — Hole effect. Regionalised variables and corresponding covariograms for
a1 = ag = 0.75 and Cq = 1 with two different distances between domes (A) and two
levels for the second dome (C2). Covariograms are given for three directions: z =0
(continuous line), y = 0 (dashed line) and = = y (dotted line).
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