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ABSTRACT

Understanding the spatial and temporal dynamics of rain forests is a challenge for
assessing the impact of disturbance on forest stands and tree populations. Still few
studies address the modelling of spatial patterns of tree density. Here, we present
Hierarchical Bayesian (HB) models for the local density of juveniles trees in a tropical
forest. These models are specifically designed to handle zero inflation and spatial
autocorrelation in the data.

Height types of models were built and compared through a Hierarchical Bayesian
approach: Poisson and Negative Binomial generalized linear models, zero-inflated
versions of these models and finally a spatial generalization of the four previous
models. Spatial dependency in juvenile pattern was modeled through a Conditional
Auto Regressive process.

An application is presented at the Paracou experimental site (French Guiana).
At this site, permanent sample plots settled in a previously undisturbed forest
received silvicultural treatments in 1986-1988. Juvenile density of a timber species,
Eperua falcata (Caesalpiniaceae), was evaluated in 2003 within 10 mx 10 m cells and
served as response in the models. Explanatory variables described three aspects of
environmental heterogeneity inside the plots: topography (elevation and slope) was
derived from a Digital Elevation Model; stand variables and population variables,
either static or dynamic, were calculated from basal area on 20 m-radius circular
subplots.

Keywords : Spatial pattern, Hierarchical models, Zero-inflation, MCMC, conditional
autoregressive process.

RESUME

Comprendre la dynamique spatio-temporelle des foréts tropicales humides est un
défi dans I’évaluation de 'impact des perturbations sur les peuplements et popu-
lations d’arbres forestiers. Cependant peu d’études concernent la modélisation des
répartitions spatiales de la densité d’arbres. Dans cet article, nous présentons des
modeles hiérarchiques bayésiens (HB) de densité d’arbres juvéniles en forét tro-
picale. Ces modeéles sont construits spécifiquement en prenant en compte la sur-
représentation de zéros et I’autocorrélation spatiale dans les observations.
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BAYESIAN MODELS OF TREE DENSITY

Huit modeles sont construits et comparés selon une approche hiérarchique bayésien-
ne : les modeles linéaires généralisés utilisant les distributions de Poisson et Négative
Binomiale, une version de ces modeles prenant en compte I’exces de zéros, et enfin
une généralisation de ces quatre modeles avec autocorrélation spatiale. Un processus
Conditionnel Auto-Régressif est utilisé pour modéliser la dépendance spatiale au sein
de la répartition des juvéniles.

Une application est présentée sur le site expérimental de Paracou en Guyane
frangaise. Sur ce site, des parcelles ont été initialement installées en forét non per-
turbée puis ont subi des traitements sylvicoles pendant la période 1986-1988. La
densité des juvéniles d’une espece de canopée exploitée (Eperua falcata, Caesalpini-
aceae) a été évaluée en 2002 par quadrats de 10 mx 10 m et utilisée comme réponse
dans les modeles construits. Les variables explicatives utilisées quantifient trois as-
pects de I’hétérogénéité environnementale au sein des parcelles : la topographie
(altitude et pente) a été évaluée a partir d’'un modele numérique de terrain ; des
variables de peuplement et de population, statiques et dynamiques, ont été calculées
sur des placettes circulaires de 20 m de rayon.

Mots-clés : Répartition spatiale, Modele hiérarchique, Zero-inflation, MCMC, Pro-
cessus conditionnel autorégressif.

1. Introduction

The certification of forests is a process by which loggers become accredited by
a seal of quality in exchange of the respect of sylvicultural rules compatible
with the sustainability of timber production (OAB-OIBT, 2003). In order to
propose relevant rules, it is necessary to correctly predict the recovery of the
stock after timber logging, that is the dynamics of tree populations, on the
mid and long term. Mid term prediction of stock recovery is relatively easy
to achieve because the reaction to disturbance of trees above 10 cm diameter
at breast height is well documented (Gourlet-Fleury et al., 2004). But poor
knowledge of regeneration processes hinders long term prediction: little is
known about which factors explain the presence of juveniles at a given place.
In particular, the respective part played by physical factors (topography),
resources (light, nutrients, water) and relationships with conspecific trees is
rarely stated or quantified. In this study, our objective was to model the
relationships between juvenile density and those factors in order to predict
the spatial pattern of trees.

We used data from the Paracou experimental site (French Guiana) which
is dedicated to the study of the impact of silvicultural treatments (logging,
logging + thinning) on stands and tree populations dynamics, through a more
than 20 years monitoring of 12 large permanent sample plots. We focused on
Eperua falcata (Caesalpiniaceae), a canopy tree species logged for timber.
We used a survey of the juveniles of Eperua falcata conducted in 2002-2003.
Juvenile density was estimated in 10 mx10 m quadrats and constituted the
observations. Each quadrat was characterized by 7 environmental variables
describing topography, stand structure and disturbance. The basal area of
conspecific trees (=10 cm DBH) was also taken into account.
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When observations are count data, Poisson or Negative Binomial models are
classically used (McCullagh and Nelder, 1989). But the spatial patterns of
tropical tree species are often clumped (Condit et al., 2000), so that the local
density of a given life-stage is likely to show spatial autocorrelation (Legen-
dre, 1993). Autocorrelation challenges the common statistical hypothesis of
observations being independent. Moreover, quadrat-sampling may also induce
dispersion in the data due to many zero counts (zero inflation, McCullagh and
Nelder, 1989; Ridout et al., 1998). Zero inflation leads to very poor fits of clas-
sical models. Alternatively, mixture models formulation can be used to take
zero inflation into account.

In this paper we present and compare four models classically used for count
data (Poisson, Negative Binomial, Zero Inflated Poisson and Zero Inflated
Negative Binomial models) and their spatial generalization to predict the spa-
tial pattern of juveniles in a tropical rainforest. The statistical models were
specified in order to handle zero inflation and autocorrelation through a Hier-
archical Bayesian approach (HB, Clark, 2005). This method allows to model
complex biological data into a series of simpler conditional models (Wikle,
2003; Clark, 2005). Moreover, the Bayesian paradigm offers attractive advan-
tages through its ability to formally incorporate prior knowledge or opinion
into model specification, via prior distributions (Banerjee et al., 2003), and
allows to take excess of variability into account Clark (2005). Within this
framework, we addressed the two following questions: which variables, among
physical factors, stand structure, disturbance and intraspecific relationships,
are the main determinants of the spatial patterns of juveniles? Which statis-
tical model appears more relevant to model those spatial patterns?

2. Statistical Models

2.1. Models for count data with zero inflation
and spatial correlation

To simplify notations and to be in accordance with the Hierarchical Bayesien
approach described in section 2.1.3, we noted in the sections 2.1.1 and
2.1.2, the parametric probability mass function of a random variable Z with
parameter 6 as P (Z|0).

2.1.1. Count data

Count data are classically modeled using Poisson distributions P (McCullagh
and Nelder, 1989). Let Z be a random count variable. Z is distributed as a
Poisson model with intensity p if the mass function can be written as:

P(Z = z|u) = (1)

z!

Expectation and variance are then equal to u. But when overdispersion occurs
(i.e. expectation is less than variance), fits of Poisson models can be very poor.
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Plackett (1981) proposed to use the Negative Binomial distribution (NMB),
defined as a continuous mixture of Poisson distributions. This definition allows
the Poisson mean p to be gamma distributed. More specifically, the Negative
Binomial mass function is defined as:

Pz =)= 2D () (L) s

zII'(7) \p+r7 w47

for z=1{0,1,2,...} and T the gamma function. Expectation and variance are
given by p and p + p/7. The Negative Binomial distribution approaches a
Poisson distribution when 7 tends to infinity. In the particular case of zero
inflation, fits of Negative Binomial models can still be very poor.

2.1.2. Zero inflation

Authors proposed the use of a mixture formulation to take zero inflation into
account. They proposed the use of Zero Inflated models such as Zero Inflated
Poisson models (ZIP) or Zero Inflated Negative Binomial models (ZINB).
These models assign a mass of w to extra zeroes and a mass of (1 — w) to a
Poisson or negative binomial distribution, where 0 < w < 1. Both models are
characterized by the following probability function

w+(1-wP(Z=0p) ifz=0
P(Z = z|lw, p) =
(1 -w)P(Z #0|p) if z>0

where P depends on the considered model (Poisson, eq. 1, or Negative Bino-
mial, eq. 2). Using the mixture formulation, the mass functions respectively
equal

P(Zlw, 1) = w x (0) + (1 — w)B(Z]p) (3)

for the ZIP model, where 6(0) is the Dirac distribution at zero, and
P(Z|w, p,7) = w x 6(0) + (1 — w)P(Z|p, T) (4)

for the ZINB model.

Mixture models can be expressed through latent class random variables, which
has many benefits. First, the expression of the likelihood is simplified. Second
the models can be easily generalized to take covariables into account. Third,
estimation and inference are also simplified. Let C be a latent class random
variable, so that C' equals ¢ = 0 if Z > 0 or if Z equals zero but drawn from
P(u) (vesp. NB(u, 7)), and ¢ = 1if Z equals 0 coming from zero-inflated state.
The marginal distribution of C' is then a Bernoulli distribution C' ~ B(w) with
parameter w = P(C = 1), and the joint distribution of (Z,C) equals

P(Z,Clw, p) = P(Z|C = ¢, w, p)P(Clw) ()
=w°[(1-w)P(Z)8)] "

where P(Z1]0) with 8 = p is the Poisson mass function for the ZIP model (eq. 1)
and with 0 = (p, 7) is the Negative Binomial mass function for the ZINB model
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(eq. 2). Moreover, the generalization of ZIP and ZINB using covariables and
the classical link functions of Generalized Linear Models (McCullagh and
Nelder, 1989) induce the following equations

logit(w) = By (6)

and

log(p) = Xp (7)
where B and X are two matrices of covariables, either equal or not, and -~y
and § unknown parameter vectors.

2.1.3. Spatial correlation

A major issue in spatial modeling is to correctly describe the covariance
structure of the data, i.e. possible autocorrelation between observations. In
this purpose, the Hierarchical Bayesian (HB) approach helps decomposing a
complex problem into a series of simpler conditional levels (Banerjee et al.,
2003; Wikle, 2003): at a given hypothesis level, inference conditionally relies
on hypotheses made at higher levels. Three basic levels constitute a model:
a data level specifies the conditional distribution of data Z given parameters
and underlying processes; a process level specifies the conditional distributions
of the processes given their own parameters; a parameter level specifies prior
distributions for all parameters (Wikle, 2003). Additional levels can specify
prior distributions for hyperparameters. Then, following the HB approach, a
spatial generalization of Poisson models can be defined as follows:

data level : Z(s)|u(s) ~ P [u(s)]
process level : log[u(8)]|Bs, a(s) = Xsfs + a(s)
parameter level : priors for Bs and «

hyperparameter level :  hyperpriors for parameters of «

where s is a known vector of spatial locations at which explicative covariables
are measured and fixed effects are to be estimated, Xg is the matrix of covari-
ables, s is the vector of regression parameters, and «(s) is a spatial random
effect. The hypothesis of conditional independence of observations given pa-
rameter u(s) then replaces the usual hypothesis of complete independence.
This model is a special case of generalized linear mixed models (GLMM).

The ZIP and ZINB formulations were also extended to include spatial auto-
correlation. At the data level, we supposed that the response variable Z was
spatial (Z = Z(s)), and ZIP distributed: Z(s)|w(s), u(s) ~ ZIZP [w(s), u(s)].
At the process level, w(s) and u(s) were linked with covariables through canon-
ical link functions and we defined u(s) = logit [w(s)] and v(s) = log[u(s)]
(McCullagh and Nelder, 1989). Hence, the intensity of the Poisson process in
the ZIP model depended on a set of covariables and on an underlying spatial
process «f(s)

u(s)hs = Bss (8)
v(s)|fs, a(s) = Xsfs + afs) (9)
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As for the Poisson case, the subscript indicates that covariables and fixed
effects are measured at locations identified by s. However, explicit spatial
dependency is included through the random effect a(s) only (see below). The
generalization used was identical for the ZINB model.

At the parameter level, we used weak or non informative prior Gaussian
distributions for regression parameters s and [3s. Given that the observations
were located on a discrete grid (lattice with 625 cells, see section 3), the prior
distribution for the spatial process was defined as a Conditional Autoregressive
Process (CAR, Besag, 1974), which is a special case of Markov process. As
a neighborhood, we used a Moore neighborhood around each cell (the chess
king’s move). The spatial process intensity, a(s), then followed a conditional
Gaussian distribution given intensities in the neighborhood:

a(si)|a(s;),j €vin N [ p > wijals;), 1/o (10)

JEV;

where p and o are two unknown parameters, (w;;) is a set of known spatial
weights and v; is the neighborhood of s; (Banerjee et al., 2003). The spatial
weights (w;;) were set proportional to the inverse of the number of neighbors
in v; and such that Zj w;; = 1. In this model, p measures the strength of the
relationship between a(s;) and «(s;) in v;, while o is the conditional precision
of the process (1/0 is the conditional variance). Finally, at the hyperparameter
level, the prior distribution of p was uniform on a constrained interval (see
Banerjee et al. (2003) for details) and o followed a gamma distribution.

2.2. Inference and models comparison criterion

In this section, we describe modeling and inference in a complete Bayesian
framework. The Bayesian framework allows to specify prior distributions
which represent the best guesses about the parameters before information
provided by the data is taken into account. In general, given data and model
parameters, the Bayesian model specification requires a likelihood function
and prior distributions. The posterior density of the parameters given the
data is then obtained by Bayes’ theorem as proportional to the product of
the likelihood and the priors. This approach is advantageous in that it allows
to take uncertainty on the estimates of the parameters into account. For the
ZIP and ZINB models, the posterior distributions are given by

W(ﬁsn C, s, o, p, U|Z) = f<Z|C, Vs Bs, O‘)W(Cl'ys)ﬂ-(alp’ 02)
™(Bs)m () (p)7(0?) (11)

where f is either the Poisson density function for the ZIP model or the Neg-
ative Binomial density function for the ZINB model, 7(8s), 7(7s), 7(|p, 02)
are prior distributions of the regression parameters and spatial effect, and
7(p) and w(0?) are hyperprior distributions for the parameters of the spatial
random process (CAR model, eq. 10).
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Model calibration was performed using OpenBUGS and the BRugs package for
R Development Core Team (2004) with 100000 iterations on one Monte Carlo
Markov chain (MCMC) including an initial burning step of 20000 iterations.

Comparing models in a HB context is not a simple task. The effective number
of parameters or degrees of freedom is not always clearly defined and can
be very different from the actual number of parameters (Spiegelhalter et
al., 2002). Hence, common criteria, such as Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC), are suspicious. Spiegelhalter
et al. (2002) proposed a Deviance Information Criterion (DIC) based on the

moments of the deviance to compare hierarchical models: DIC = D(0) + pp,

where 6 is the parameter set of the model, D(#) the mean of the Bayesian
deviance D(0) for all MCMC samples. The effective number of parameters is
defined as pp = D(6) — D(f), where 0 is the mean of all MCMC samples of 6.
pp is thus approximately proportional to the deviance variance and measures
the complexity of the model (Spiegelhalter et al., 2002). In this paper, DIC
has been used for convenient computation reasons. Nevertheless, Celeux et al.
(2006) have shown the sensibility of DIC to model parameterization and in
particular in missing data problems with unobserved latent variables.

3. Application

3.1. Study site

The study was conducted at the Paracou experimental site (5°18" N, 52°23’
W) in French Guiana. The site lies in a terra firme rain forest of the coastal
plain under an equatorial climate. A dry season occurs from August to mid-
November. From March to April, a short drier period interrupts the rainy
season (Gourlet-Fleury et al., 2004). The physiography of the site shows
smooth slopes incised by minor streams. Part of the site is covered by
permanently waterlogged areas. The experimental design of the site consists
in three blocks of four 300 m x 300 m permanent sample plots with a 25 m
inner buffer zone. In each central 250 m x 250 m square, all trees over
10 cm pBH (diameter at breast height) were identified and georeferenced.
Since 1984, girth at breast height, standing deaths, treefalls and newly
recruited trees over 10 cm DBH have been monitored annually (Gourlet-
Fleury et al., 2004). In each block, stands experienced three treatments during
the 1986-1988 period combining selective logging of increasing intensity and
additional thinning by poison-girdling. One plot per block was left as control.
The present work focused on the four plots of the Southern Block (three
treated plots and one undisturbed control plot). We defined two periods in
order to describe past disturbance and dynamics: the logging period (1986-
1989) and the recovery period (1989-2003).
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3.2. Focal species

E. falcata is a canopy timber species whose largest trees reach more than 90 cm
pBH. The species is mid-shade-tolerant (Favrichon, 1994; Collinet, 1997) able
to germinate in the understorey and to bear shaded conditions. Its dispersal
mode is autochory: the seeds are dispersed by pods exploding at maturity in
the trees, with a possible secondary dispersal by water. The spatial pattern
of the trees > 10 cm DBH is highly aggregated (Collinet, 1997; Flores et al.,
2006). Trees are aggregated at various scales: they form little aggregates of
about 30 m of diameter, inside large clumps of about 100 m of diameter.
Within the aggregates, the trees are randomly distributed. The clumps are
located along bottomlands. They can be clearly delimited and no isolated
tree stands outside the clumps.

3.3. Variables

Juvenile 1-4 cm DBH density was evaluated within 10 mx10 m cells and
served as the response in the models. Ecological descriptors of the environment
(see Table 1) either derived from a Digital Elevation Model of the study site
(elevation and slope) or were calculated from the basal area of trees >10
cm DBH on 20 m-radius circular subplots centered on the sampling cells. This
design was used to take into account neighborhood effects of surrounding trees
on the observed juveniles density. Disturbance was quantified by the loss in
basal area due to treefalls, standing deaths during the logging period and
basal area of recruits (¢tF'L, sD and Re). Distance to the nearest adult (dna)
measured juvenile spatial dispersal around adults. Finally, the basal area of
conspecific trees over 10 cm DBH in 2002 measured intraspecific competition.

TABLE 1. — Ecological variables derived from a DEM (Digital Elevation Model)
of Paracou, or from census data of trees >>10 cm DBH (units in brackets) on 20-m
circular subplots centered on sampling cells. The period indicates calculus years:
1986-1988 (logging) or 1989-2002 (recovery). Statistical variables were calculated in
2002.

Type Label Description Period
Ele Elevation (m)
Topography
Slo Slope (°)
tFL Basal area lost in treefalls (m?) logging
Stand sD Basal area lost in standing deaths (m2) recovery
Re Basal area of recruits > 10 cm DBH m2)
dna Distance to the nearest adult
Population 2002

Geons Basal area of conspecific trees > 10 cm DBH (m?)
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3.4. Results

We first built the ZIP model without spatial effect: we selected variables B
(see eq. 6) using a logistic cLm of sapling presence/absence as proposed by
Barry and Welsh (2002). Given B, we then selected variables X (see eq. 7) in
a complete ZIP model. Covariables were selected among candidates variables
(not shown) with a classical stepwise selection using Maximum Likelihood
Estimation and Akaike Information Criterion (AIC, McCullagh and Nelder,
1989). The retained models were (see eq. 6 and 7)

By = Int; + y!Ele +42Slo + 72Re + y2dna
and
X3s = Inty + B1Ele + 32Slo + 3tFL + 328D + 8 Geons + S°Re

where Int; and Int, were two unknown intercepts and s and (s the
unknown regression parameters. The same covariables were used for the ZINB
and SZINB models. For the Poisson and Spatial Poisson models, we used
covariables associated to the Poisson intensity model only, X calibrated on
the ZIP model.

Table 2 shows the Deviance Information Criterion associated with the eight
models. The results underlined that each spatial version was better than the
non spatial one. Moreover, taking into account zero inflation allowed to obtain
better fits. While the NB model was better than the classical Poisson model,
DIC associated to the ZINB model was higher than the DIC of the ZIP model.
These results tend to underline that after taking into account the zero over-
representation, data was not overdispersed. DIC value of the spatial Poisson
showed that the model clearly improved the non spatial version of Poisson
and Negative Binomial. The spatial effect could account for zero inflation by
taking into account the spatial structure of the data. Finally, the SZIP model
was the best one according to DIC. In the following, we present results only
for the SZIP model.

TABLE 2. — Deviance Information Criterion of the eight estimated models.

P NB 71P ZINB SP SNB SZIP  SZINB

37724 3113.6 27229 2958.7 2662.5 3105.7 2527.3 2906.8

Table 3 presents the Posterior means and standard deviations of regression
parameters. It appeared that distance to the nearest adult (dna) had a strong
influence on the Bernouilli part of the model. This result was consistent with
the dispersal mode of the species, i.e. autochory, which implies short dispersal
distances (most seeds land under the tree crown), even if secondary dispersal
by water (hydrochory) may occur and increase those distances. The species
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is abundant in the bottomlands (permanently waterlogged areas) of Paracou
which may favor such dispersal. This topographic position was detected in
the model because the presence of juveniles was negatively correlated with
elevation (Ele). Slope (Slo) and recruitment (Re) had non significant effect on
the Bernouilli distribution: this is coherent with the mid-tolerant temperament
reported for the species. Likewise, no specific variable had clear influence on
the intensity of the Poisson distribution. However, the loss of basal area in
standing deaths (sD), and recruitment (Re) to a lesser extent, had non-zero
effects (Table 3). Hence, juveniles could take advantage of the standing deaths
of large trees to durably settle in their neighborhood.

Weak effects of covariables on the intensity of the Poisson distribution were
due to the strong influence of the spatial process. Indeed, in the non-spatial
ZIP covariables were initially selected because of their explanatory power on
juveniles intensity. In the spatial version, they finally showed non-significant
or weak effects. The spatial correlation (p) and the precision of the CAR
model (1/0) were estimated to 0.984 (sd: 0.0112) and 2.899 (sd: 0.4522).
These results underlined the strong autocorrelation in the observed density.
The variogram of models residuals (Fig. 1) shows that the CAR distribution
fairly took spatial dependency into account as a prior distribution for the
spatial process.

TABLE 3. — Posterior mean and standard deviation (sd) of regression parameters
in the Bernoulli (w) and Poisson (\) intensities in the SZIP model.

w A
mean sd mean sd
Int;  5.34900 0.80720 Inty  -0.44150  0.10550
Ele  -1.84900 0.52400 Ele  -0.12440 0.12700

Slo  -0.03705  0.39700 Slo  0.05044  0.06599
Re  -0.31240  0.33050 tFL  0.05310 0.08128
dna  13.52000 2.35300 sD 0.12860  0.06292
Geons -0.07920  0.07533

Re 0.14710  0.12400

Finally, figure 2 presents the observed and predicted spatial juvenile patterns
in the four permanent sample plots of the study. The two patterns showed
good agreement which underlined the efficiency of the SZIP model to take
into account the features of the observed pattern, that are zero-inflation and
autocorrelation, through the HB approach.

48



BAYESIAN MODELS OF TREE DENSITY

0 —
T —observed + SP_ A ZIP x SZIP
Q]
£
o
(=)
kel
3
o
o
S SRS SRR EEEEEE RS S S A5 S S S S
o |
o
\ T T T T \
0 100 200 300 400 500
Distance (m)
F1G 1. — Spatial structure at the site scale: the solid line shows the empirical

variogram of juvenile density (observed), while symbols show variograms calculated
on the residuals of the three models (Spatial Poisson, SP; Zero-Inflated Poisson,
ZIP; Spatial ZIP model, SZIP).

4. Conclusion

This study underlined the relevance of the Hierarchical Bayesian approach
to model spatial patterns of early-life stages in plant populations. The HB
framework allowed to take random spatial effects into account, which is critical
in highly heterogeneous ecosystems such as tropical forests. The flexibility
of HB models could allow to include more sources of uncertainty, or other
effects regarding dispersal. But Markov prior specification for the spatial effect
appeared to be very strong. When the random spatial effect was included,
the effects of the main covariables strongly decreased as if they were hidden
by the CAR structure. Consequently, a more realistic treatment of spatial
patterns would certainly refine our understanding of disturbance and dispersal
effects on tropical tree species populations and increase the predictive power
of models.
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F1G 2. — Observed (a) and estimated (b) spatial patterns of E. falcata: local density
of juveniles between 1 and 4 cm DBH in 10 mx 10 m cells.
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