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ABSTRACT

Spatial Bayesian clustering algorithms can provide correct inference of population
genetic structure when applied to populations for which continuous variation of
allele frequencies is disrupted by small discontinuities. Here we review works which
used Bayesian clustering algorithms for studying the Scandinavian brown bears,
with particular attention to a recent method based on hidden Markov random field.
We provide a summary of current knowledge about the genetic structure of this
endangered population potentially useful for its conservation.
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RÉSUMÉ

Les algorithmes de classification bayésienne spatiale sont utiles afin d’étudier la
structure génétique de populations pour lesquelles on observe une variation des
fréquences d’allèles généralement continue en espace, mais localement interrompue
par de petites discontinuités. Dans cet article, nous présentons une synthèse de
travaux récents appliquant ces algorithmes à l’étude de l’ours brun de Scandinavie
et nous résumons les connaissances actuelles sur la structure de cette population
potentiellement utiles pour sa conservation.

Mots-clés : Structure génétique des populations, Analyse bayésienne spatiale, Anal-
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1. Introduction

The improvements of molecular tools in population genetics and ecology
have led to an increasing use of Bayesian clustering algorithms in studies
of population structure. The aim of conservation biologists and managers is
to determine what constitutes a natural break in populations. But the ability
to delineate evolutionary significant or conservation units strongly depends on
detecting population subdivision (Manel et al., 2003). In some situations, it is
easy to define subpopulations on the basis of spatial clustering of individuals.
However, individuals are not always arranged in clearly identified clusters, but
they may be uniformly distributed across space.
The detection of genetic discontinuities and the correlation of these discontinu-
ities with environmental or spatial features is a typical objective of the users of
the Bayesian clustering algorithms developed by Pritchard et al.(2000), Daw-
son and Belkhir (2001), Corander et al.(2003), which achieve this goal without
assuming predefined populations. Nevertheless, in these algorithms the spatial
data are not part of the modelling. In addition, it is still a matter of debate
to decide whether (or not) clusters identified by these algorithms are artifi-
cially detected structures emerging from uneven sampling along geographical
clines, i.e. directions along which allele frequencies vary continuously (Serre
and Pääbo, 2004).
We recently argued that Bayesian models offer a natural and appropriate
framework for including spatial prior information when assigning an individ-
ual to a fixed number of clusters (François et al., 2006). We presented a hier-
archical Bayes algorithm that incorporated models for the variation of allele
frequencies across space. This was achieved by using Hidden Markov Random
Fields (HMRF) as prior distributions on cluster membership. Markov Ran-
dom Fields are indeed mathematical models that account for the “continuity”
of discrete random variables on a graph or a network (for a rigorous defini-
tion of continuity in this context, refer to the book by Preston (1974)). The
term hidden indicates that the cluster configuration is unobserved, and that
it should be inferred from observations, often using Monte Carlo sampling.
In spatial genetics, continuous population usually refers to Wright’s famous
concept of isolation by distance (Wright, 1943), which can in turn be under-
stood in terms of the stepping stone model (Malécot, 1948), (Kimura and
Weiss, 1964). Because it considers interacting demographic units on a lattice,
the stepping stone model exhibits the same type of spatial Markov property
as does the HMRF model. However using the stepping stone model within a
Bayesian framework poses conceptual difficulties, whereas HMRF can capture
conditional independence in an efficient way.
In this study, we illustrate the application of HMRFs with the study of the
genetic structure of the Scandinavian brown bear population. Brown bears are
an example of a wild population with presumed continuous variation in allele
frequencies. We showed that HMRFs were powerful at detecting geographical
discontinuities in allele frequencies and regulating the number of clusters.
Here we briefly discuss the implication of these findings for the conservation
of Scandinavian brown bears. Most of the material presented in this review
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can be found in recent articles by Blum et al. (2004), Manel et al. (2004) and
François et al. (2006).

2. Hierarchical Bayes model

We devised a model-based clustering algorithm that identifies subgroups that
have distinctive allele frequencies, and which accounts for the fact that nearby
individuals are likely to share similar membership to the subgroups. To achieve
this goal, we used a hierarchical Bayesian model based on a HMRF, extending
a procedure implemented in the computer program STRUCTURE (Pritchard
et al. 2000) which places individuals into K clusters, where K is chosen in
advance but can be varied across independent runs of the algorithm.
The input data z = (zi) consist of multilocus genotypes obtained from n
diploid individuals located at fixed sampling sites which usually correspond
to the habitat. A genotype zi records paired alleles at L loci (za

i� and zb
i�,

� = 1, . . . , L). Each individual originates from a geographical cluster which
may span several sampling sites. The cluster to which individual i belongs
is labelled as ci, and the set of all labels c = (ci) is called the cluster
configuration.
In the model with no admixture, Pritchard et al. (2000) made a number of sim-
plifying biological assumptions. First, recombination events have eliminated
the potential correlation between the genetic markers (linkage equilibrium).
This is a reasonable assumption when the markers are separated by large
physical distances. The second assumption was Hardy-Weinberg equilibrium
within clusters, which implicates that genes evolve under selective neutrality
and local random mating. The program STRUCTURE can actually achieve the
statistical inference of θ = (c, f) where f = (fk�j) are the unknown allele fre-
quencies, k = 1, . . . ,K, j = 1, . . . , J�, and J� is the number of distinct alleles
observed at locus �. The probability of observing the n genotypes given the
parameter θ was computed as follows

π(z|θ) =
n∏

i=1

L∏

�=1

π(z�
i |ci, fci,�,.) =

n∏

i=1

L∏

�=1

Lk(fci�za
i�
, fci�zb

i�
) (1)

where Lk(f, f) = f2 and Lk(f, g) = 2fg for f �= g.
In the Bayesian approach we compute the posterior density function for (c, f)
by combining the likelihood function in (1) with a prior density for (c, f),
which we represent in general terms as π(c, f) = π(f |c)π(c).

π(θ|z) ∝ π(z|f, c)π(f |c)π(c). (2)

Conditional on the cluster label ci = k, the priors on allele frequencies fk,�,.

were Dirichlet distributions D(αk, . . . , αk). In practice we set αk = 1 for all k.
In the HMRF model, spatial information was modelled through the prior
distribution π(c). HMRF can account for the conditional independence of
individual cluster labels given the neighbours’ labels

π(ci|(cj) , j �= i) = π(ci|(cj) , j neighbours of i)
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for all i in 1, . . . , n. For this reason, this concept is particularly useful
for population genetics, because it can model the fact that individuals are
more likely to share cluster membership with their close neighbours than
with distant representatives. HMRF were also successfully applied in several
domains such as computer image analysis (Destrempes et al., 2005) or spatial
epidemiology (Green and Richardson 2002). More specifically we defined

π(c) =
exp(ψU(c))

Z
, c ∈ {1, . . . ,Kmax}n, (3)

where ψ is a nonnegative number called the interaction parameter, U(c) is
the number of neighbouring pairs that share the same labels in c, and Z is
a normalizing constant called the partition function. While the definition of
neighbourhood is immediate in the case of grid observations, it is less obvious
in the case of irregular sampling. In this study, we used the neighbourhood
structure obtained from the so-called Delaunay graph. Denoting by (si),
i = 1, . . . , n, the set of observation sites, each si is surrounded by regions
made of points which are closer to si than to any other sampling site. This
set of points is known as the Dirichlet cell (or tile). Two sampling sites were
neighbours if their cells shared a common edge.
Because computing partition functions is an highly difficult problem, infer-
ences on θ were carried out by simulating the posterior distribution π(θ|z)
through an MCMC algorithm. With ψ equal to 0, the model assumed a non-
informative spatial prior, and then matched the Bayesian clustering model of
Pritchard et al.
Note that Eq. 3 assumed the existence of at most Kmax clusters, i.e., ci ∈
{1, . . . ,Kmax}. In practice the constant Kmax may be considered larger than
the true (or presumed true) number of clusters, K. In order to estimate K
we used the approach proposed by François et al. (2006). This approach may
be viewed as a regularisation method that, loosely speaking, let the algorithm
decide which number of clusters can achieve the best trade-off between the
influences of genetic and spatial data on the inference of θ.

3. Scandinavian brown bears

As in many other places in Europe, brown bears Ursus arctos were almost
exterminated in Scandinavia by the end of the nineteenth century. But
bounties elimination in 1893 and making killed bears State property in
1927, were efforts that contributed to protect bears in Sweden. The near
extinction and recovery of bears in Scandinavia has been well documented and
thus provides an excellent record of a population bottleneck and subsequent
population expansion (Swenson et al., 1994), (Swenson et al., 1995), (Swenson
et al., 1998). After the protection efforts in Sweden, the bear population
has recovered from four female concentration areas. These areas were mainly
identified from hunting data during the years 1981-1993 as North North (NN),
North South (NS), Middle (M) and South (S) (see Fig. 1). Until recently these
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areas were believed to represent the surviving relict subpopulations after the
1930’s bottleneck maintained separately because of the strong philopatry of
females (see e.g. (Waits et al., 2000)). Using a coalescent approach, Blum et
al. (2004) computed a female spatial dispersal rate and found an estimate of
9 km per generation, which was consistent with field observations.
The structure of the Scandinavian brown bear population into subpopulations
was studied both from mtDNA data (Taberlet et al., 1995) and nuclear DNA
markers, which give further characterization of the population genetic status
(Waits et al., 2000). Waits et al. used 19 microsatellite markers collected from
380 bears in this population, and assignment tests to quantify and compare
the levels of nuclear DNA diversity for the total population and for each of
the four predefined subpopulations. They also estimated the degree of genetic
differentiation and the level of gene flow among these four subpopulations.
Using F-statistics, they were unable to confirm the existence of a contact
zone S/M identified from mtDNA by Taberlet et al. (1995).
Manel et al. (2004) investigated the persistence of the four relict geographical
areas using the multilocus genotypes without predefining populations. From
two independent methods (neighbour-joining trees and the Bayesian clustering
algorithm structure), a new subdivision of the population was identified. They
found four genetic clusters which also matched with geographical clusters, but
two of them were distinct from the original female concentration areas.
Because of the low dispersal rate, continuity can be considered as a reasonable
assumption to be included in a Bayesian model for Scandinavian brown bear
genetic diversity. We analysed the same data set as did the two previous
studies. We first used a full-Bayes approach where the prior on ψ was
uniform over (0, 1). Values of ψ in this range allowed the prior coexistence
of several clusters (simulations not reported), and we ran the algorithm with
Kmax = 4 − 7. After 30,000 cycles, the runs with Kmax = 4 led to the same
clusters as described by Manel et al. (2004). We referred to these clusters as
the S (South), M (Middle), NWN (North West North) and NN (North North)
areas. With Kmax = 5 − 7, the HMRF model yielded 5 clusters, three of
which coincided with the Kmax = 4 run and the fourth (S) was splitted into
two subsets with random shapes. The spatial interaction parameter ψ had
posterior mode in the range (0.6, 0.8) (95% credible interval). However, the
irregular shapes of the two S subclusters indicated that the MCMC might have
not been run long enough for warranting convergence, perhaps due to the large
amount of computational resource spent into the estimation of ψ. Therefore
we performed 10 additional runs of the algorithm for two values of interaction
parameter ψ = 0.7−0.8. The runs that reached the highest likelihood resulted
in the same four clusters as previously observed (see Fig. 1).
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FIG 1. — Left: The spatial distribution of brown bears in Scandinavia. The four

subpopulations (NN, NS, M, S) were defined as areas of female concentration. Right:

Estimated cluster configuration using the HMRF model. ψ = 0.7 and Kmax = 6.

Two clusters (diamonds, triangles) coincided with predefined the populations S and

M. Two clusters (black and white circles) differred from the predefined populations

NN and NS.

4. Discussion

Detecting population subdivision is a subject of great interest to population
geneticists, and a large body of approaches have been developed to this aim.
In this study, we presented a Bayesian clustering algorithm that incorporated
HMRFs as prior distributions on cluster configurations. The Scandinavian
brown bear was an example for which local genetic similarities can be
explained by the fact that female disperse at a very low rate. Because of the
low dispersal rate in this population, MRF can be considered as an appropriate
prior distribution to be included in a Bayesian model. The results provided a
reasonable estimate of the number of clusters (four clusters). They confirmed
that the genetic structure of the Scandinavian brown bear matches with the
four relict clusters only partially, because two of the identified clusters were
distinct from the four female concentration areas inferred from female bears
killed by hunters.
A potential issue of non-spatial Bayesian algorithms is that they may produce
spurious clustering due to irregular sampling design. Inferences were carried
out using a large fixed value of the interaction parameter. This large value
favored cluster configurations made of few large clusters. The fact that we
obtained the same clusters as the non-spatial algorithm provided evidence
that the 4 clusters were robust to the inclusion of a continuity prior. In fact,
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this study gave support to the hypothesis of 4 clusters resulting from genetic
discontinuities within the population rather than artificial clusters created by
sampling artifacts.
A long shared genealogical history is one criterion (among others) for biologists
to define a significant evolutionary unit of conservation. A closer look at the
NWN cluster showed that this cluster actually consisted of few individuals
(about 34). A parentage analysis was conducted by Manel et al. (2004). This
analysis concluded that bears were closely related within the group. Actually,
one male was responsible for 88% of the descendants (the male was the father
of 70% of them, grandfather of 12% and great-grandfather for 6% of them, and
probably the uncle for 9% of them). The cluster might then be explained by
matriarchal structure which is known to occur in bears (Rogers, 1987) or by a
recent founder effect caused by the expansion of the population. These results
suggested to aggregate the NWN and NN clusters into a single evolutionary
unit, because the NWN cluster is probably too recent to meet the significance
criterion. The overall results confirmed that there was no particular reason for
distinguishing the NS and NN bear subpopulations, and we recommended that
the Scandinavian brown bear population be viewed as three subpopulations
connected by male-mediated gene flow and separated by small relict genetic
discontinuities.
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MANEL S., E. BELLEMAIN, J. SWENSON, and O. FRANÇOIS (2004) Assumed
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SERRE D. and S. PÄÄBO (2004). Evidence for gradients of human genetic diversity
within and among continents. Genome Research 14: 16791685.

SWENSON J., F. SANDEGREN, A. BJARVALL, A. SODERBERG, M. WABAKKEN, and
M. FRANZEN (1994). Size, trend, distribution and conservation of the brown
bear, Ursus arctos, population in Sweden. Biological Conservation 70: 9-17.

SWENSON J. E., F. SANDEGREN, A. BJARVALL, M. FRANZEN, and A. SODERBERG

(1995). The near extinction and recovery of brown bears in Scandinavia in
relation to the bear management policies of Norway and Sweden. Wildlife
Biology 1: 11-25.

SWENSON J. E., F. SANDEGREN, and A. SODERBERG (1998). Geographic expansion
of an increasing brown bear population: evidence for presaturation dispersal.
Journal of Animal Ecology 67: 819-826.

TABERLET P., J. SWENSON, F. SANDEGREN, and A. BJARVALL (1995). Localization
of a contact zone between two highly divergent mitochondrial DNA lineages
of the brown bear Ursos arctos in Scandinavia. Conservation Biology 9: 1255-
1261.

WAITS L., P. TABERLET, J. SWENSON, F. SANDEGREN, and R. FRANZEN (2000).
Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the
Scandinavian brown bear Ursus arctos. Molecular Ecology 9: 610-621.

WRIGHT S. (1943). Isolation by distance. Genetics 28: 114-138.

38


