
STATE-SPACE MODELS
FOR MAXIMA PRECIPITATION

Philippe NAVEAU 1, Paul PONCET 2

ABSTRACT

A very active research field in atmospheric sciences is centered around the modeling
of weather extremes. This is mainly due to the large economic and human impacts
of such extreme events. In this paper, we focus on the statistical temporal modeling
of precipitation maxima because daily and monthly maxima have been recorded for
many decades and at various sites.

Our goal is to propose two new state-space models whose distributional foundations
lie in Extreme Value Theory (EVT). Our first model takes advantage of max-
stable processes, previously studied by Davis and Resnick (1989), among others.
It can be viewed as a “translation” of the Gaussian linear Kalman filter into a
Fréchet-type world in which the classical addition a + b has been replaced by
the max operator a ∨ b = max(a, b) and the noise component is from a heavy-
tailed distribution instead of being Gaussian. Our second state-space model is
built from the mixture extremes framework proposed by Fougères et al., (2006).
Its strong points are its flexibility and richness with respect to applications. In
addition to addressing the theoretical questions brought by our models, the main
benefit of introducing them is to propose simple and powerful connections between
EVT and data assimilation communities. The latter term “data assimilation”
regroups statistical/dynamical techniques extensively used in climate studies. These
procedures involve the combination of observational data with the underlying
dynamical principles governing the physical system under observation. Hence,
improving our knowledge about the representation of extremes in a state-space
model framework is of strong interest from a data assimilation point of view.

Keywords : Data assimilation, Kalman filter, Extreme Value Theory, Generalized
Extreme Value distribution, max-stable state-space model, GEV state-space model.

RÉSUMÉ

La modélisation des événements climatiques extrêmes est aujourd’hui un champ de
recherches particulièrement actif, notamment de par l’importance de leurs impacts
économiques et sociaux. Dans cet article nous portons notre attention sur la
modélisation statistique des maxima de précipitations, car de telles données sont
disponibles aux pas de temps journalier et mensuel sur plusieurs décennies et en de
nombreux sites.

Notre but est de proposer deux nouveaux modèles à espace d’états dont les
fondations probabilistes reposent sur la théorie des valeurs extrêmes (EVT en
anglais). Notre premier modèle tire parti des processus max-stables, étudiés entre
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autres par Davis and Resnick (1989). Il peut être vu comme la transposition du filtre
de Kalman linéaire et gaussien à un monde de type Fréchet, où l’addition a + b est
remplacée par l’opération maximum a∨ b = max(a, b), et où les bruits sont à queue
lourde au lieu d’être gaussiens. Notre second modèle se base sur le modèle de mélange
pour les extrêmes proposé par Fougères et al. (2006). Sa flexibilité et sa richesse
en termes d’applications en sont un atout essentiel. En plus des interrogations
théoriques que suscitent nos modèles, leur principal intérêt est de créer des liens
simples et puissants entre la EVT et le domaine de l’assimilation de données. Ce
dernier regroupe des techniques statistiques et dynamiques abondamment utilisées
dans les études climatiques. Ces procédures nécessitent de combiner d’une part des
données issues d’observations et d’autre part les principes dynamiques sous-jacents
qui gouvernent le système physique à l’œuvre. C’est pourquoi l’amélioration de notre
connaissance des extrêmes et de leur représentation dans le cadre d’un modèle à
espace d’états est d’un intérêt tout particulier du point de vue de l’assimilation de
données.

Mots-clés : Assimilation de données, filtre de Kalman, théorie des valeurs extrêmes,
distribution généralisée des valeurs extrêmes, modèle à espace d’états max-stable,
modèle à espace d’états GEV.

1. Introduction

1.1. Statistical modeling of extreme events

Currently there is an increasing research activity in the area of climate
extremes because they represent a key manifestation of complex systems and
they have an enormous impact on economic and social human activities. Our
understanding of the mean behavior of climate and its normal variability
has been improving significantly during the last decades. In comparison,
our knowledge of extreme events frequency and amplitude is much more
incomplete and partial. Before motivating this work in detail, we first need to
recall the basic principles of EVT.
EVT is the branch of statistics which describes the behavior of the largest
observations in a data set and it has a long history going back to 1928 (Fisher
and Tippett, 1928). It has been applied to a variety of problems in finance
(Embrechts et al., 1997) and hydrology (Katz et al., 2002). Surprisingly, its
application to climate studies has been fairly recent, e.g. Kharin and Zwiers
(2000). Similarly to many results in mathematics and physics, a stability
property is the key element to understand EVT. One may wonder which
types of distribution are closed for maxima (up to affine transformations),
i.e. which family law allows that the observations and their maximum have
the same type of distribution. For example, the Gaussian distribution does
not satisfy this condition, since the maximum of Gaussian variables is not
Gaussian (although the sum is and that’s why the Gaussian law belongs to
the family of stable laws). The solution of our question is called the group
of max-stable distributions which is composed of three types of distribution:
Fréchet, Weibull and Gumbel, see Embrechts et al. (1997) for more details on
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EVT. These three types can be summarized by the GEV(µ, σ, ξ) distribution
defined by

F (x) = exp

{
−

[
1 + ξ

(
x − µ

σ

)]−1/ξ

+

}
(1)

where a+ = a∨ 0, i.e. max(a, 0). The parameters σ > 0 and µ represent scale
and location, respectively. The shape parameter ξ describes the tail behavior
of the distribution. If ξ is negative (Weibull type), the upper tail is bounded.
If ξ is zero 1 (Gumbel type), all moments are finite. If ξ is positive (Fréchet
type), the upper tail is still unbounded but higher moments eventually become
infinite. These three cases are termed “bounded”, “light-tailed”, and “heavy-
tailed”, respectively. The justification for the GEV distribution arises from
an asymptotic argument, for, as the sample size increases and under mild
conditions, the distribution of the sample maximum asymptotically follows
either a Fréchet, Weibull, or Gumbel distribution. Its flexibility to describe
all three types of tail behavior makes it a universal tool for modeling block
maxima. When considering the difference between the classical Gaussian and
the GEV distributions, it is important to notice that the former does not
encompass heavy tails and there is much evidence in the literature that the
distributions of hydrological and climatological variables are heavy tailed,
especially precipitation. Although it can be difficult to determine from one
single site unless the record is relatively long, the distribution of maximum
precipitation amount (e.g., daily) appears consistently to have a heavy tail
(Katz et al., 2002). Regional analyses of precipitation extremes, in which
the shape parameter is constrained to be constant within the area, provide
clear evidence of heavy tails (Buishand, 1991). To illustrate the heavy-tailed
distribution, we comment on a simple but typical type of extremes, daily
maxima precipitation. For example, we can look at the city of N̂imes in France
in Figure 1. The x-axis corresponds to the days with positive precipitation
(this explains that we have less than 365 points per year) and the y-axis
represents the maximum of precipitation for these days. Such a time series
exhibits the specific characteristics of heavy-tailed extremes. Its values can
sometimes be very large, and consequently they cannot be well represented
by Gaussian processes.

1.2 Statistical issues when assimilating extreme events

The fundamental problem of data assimilation may be simply stated as
follows: given the state of atmospheric variables at one time, what is the state
at a later time? To answer such a question, the basic laws and principles of
physics, biology and chemistry are classically used to describe the evolution
of the state variables forward in time. From a probabilistic point of view,
understanding the present and future state variables is intimately linked to
state-space modeling.

1. This case corresponds to the limiting case ξ → 0 in (1), i.e. F (x) = exp
{
−exp(−x − µ

σ
)
}

.
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FIG 1. — Daily maxima of precipitation amounts recorded every three hours in

Nîmes, France. The x-axis corresponds to the days with positive precipitation and

the y-axis represents the maximum of precipitation for these days.

In the previous section, we recalled that a mathematical based theory states
that maxima should be adequately represented by a GEV distribution and
numerous studies have confirmed this approach, e.g. Katz et al. (2002);
Kharin and Zwiers (2000); Koutsoyiannis and Baloutsos (2000); Hosking et al.
(1985). Consequently, it is fundamental to assess if classical data assimilation
techniques can integrate this distributional constraint within the available
dynamical information, i.e., how to link GEV distributed observations with
state-space dynamics. Classically, data assilimilation in geosciences relies
on Gaussian distributions for observations and for prior information, e.g.,
Rodgers (2000). In order to preserve the Gaussian hypothesis, some studies
filter or threshold data to remove large observations, e.g., Chevallier et al.
(2004). When (limited) non-Gaussian features of the distributions are present,
e.g., Dharssi et al. (1992) and Evensen (1994), they are not cycled in the
Kalman filter, which reduces the optimality of the assimilation system. Our
study aims at extending the data assimilation theoretical framework. To
include heavy tailed distributions, we will propose simple and innovative
models based on EVT that can better handle this complex topic of dealing
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with extreme values. More precisely, the fundamental question that we would
like to address in this work is the following one. If observations, say Yt (e.g.
daily maxima precipitation amounts recorded every three hours, see Figure 1),
follow a GEV distribution (as expected from the theory and justified by past
studies), what are the dynamical models that can produce such GEV outputs?
To start answering this question, we have to address the issue of modeling
temporal dependence that represents an essential component of data assimi-
lation techniques. To illustrate the problem, we can look at one of the simplest
temporal structures, the classical auto-regressive model of order one

Zt = aZt−1 + noiset

where the sample noise is i.i.d. (independently and identically distributed).
With this simple model, we can compare two cases of noise: either (a) Gaussian
or (b) GEV with a heavy tail. In Figure 2, we fix a = 0.35 and we explore two
cases of noise.

FIG 2. — Comparing AR(1) model with Gaussian (left panels) and Fréchet noises

(right panels). The straight gray lines (lower panels) correspond to the slope of the

AR model.
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In the left panels, we assume that the noise follows a standardized Gaussian
distribution. In contrast, the right panels are obtained by plugging in a heavy-
tailed noise (here a Fréchet random variable with shape parameter equal
to 1.9). The upper panels show a realization for the two cases. While it is
possible to simulate very large extremes with the Fréchet noise, the Gaussian
model is very limited in generating values greater than twice the standard
deviation. The lower panels also indicate another strong difference between
the two models. For the Gaussian noise, the temporal dependence obtained
by plotting the values of Zt at time t versus its values at time t + 1 is
rather linear (with the gray slope equal to a). For the Fréchet noise, the
lower right panel tells us a different story. Very large values occur in a
burst and they dominate the temporal structure for a short period. It also
means that the classical statistical reasoning based on the covariance function
may not be adapted for capturing the temporal dependence in maxima
behavior. Overall, comparing Figures 1 and 2 indicates that observed temporal
precipitation patterns could be better mimicked with the Fréchet model than
the Gaussian one. Although this toy example can generate interesting non-
Gaussian responses with the right choice of noise, it has many limitations.
First, its simplicity does not allow the practitioner to blend observations
with larger scale atmospheric information, and this constraint is fundamental
for data assimilation. Secondly, it is rather difficult to derive the statistical
properties of the process Zt because the GEV distribution is not stable for the
sum, i.e. Zt does not follow a GEV even when the noise is GEV distributed.

2. Data-assimilation for maxima

2.1. The classical state-space model

Kalman filtering and state-space modeling have been at the core of past
statistical data assimilation procedures. Given the state of the atmosphere
at time t, the question of interest for climatologists is to determine the state
of the atmosphere at time t + 1 given that observations are available at
time t. To perform such a task, it is classically assumed that the underlying
dynamical principles governing the system are known and the link between the
observations and the state are also given. Mathematically, this corresponds to
a state-space formulation in which the state equation drives the dynamics of
the system and the observational equation integrates the measurements with
the state variables. State-space models have been widely studied in statistics,
e.g., West and Harrison (1997) and Shepard (1994). These models have become
a powerful tool for modeling and forecasting dynamical systems and they
have been used in a wide range of disciplines such as biology, economics,
engineerings, climatology and statistics (Guo et al., 1999; Naveau et al.,
2005). The basic idea of a state-space model is that the dimensional vector
of observations Yt at time t is generated by two equations, the observational
and the system equations. The first equation describes how the observations
vary as a function of the unobserved state vector Xt:

Yt = Ft(Xt, εt),
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where εt represent a noise and Ft is a function that is assumed to be known.
The temporal dynamical structure is incorporated via the system equation:

Xt = Gt(Xt−1, ηt),

where ηt represents a noise and Gt is a function that is assumed to be known.
In practice, such observational and state equations are too complex for real
applications and extra assumptions are classically added. The three most
common ones are: (a) independence between and within observation and state
noises, (b) Gaussian noises, and (c) linearity for the observational and state
equations, i.e.

Yt = FtXt + εt and Xt = GtXt−1 + ηt. (2)

If the sequence {Yt} represents the observation of precipitation maxima, and
if one assumes that Yt follows a GEV distribution, then it is, by design,
impossible to work with (2) under both assumptions (a) and (b). Of course,
models that have the advantage of obeying the distributional GEV constraint
have to break one of the three assumptions. Basically, assumption (a) is needed
to insure simple and manageable estimation procedures. Hence, we keep this
assumption in this paper and propose alternatives to (b) and (c) in the next
section.
Note that, to simplify the exposition and the computations, we assume in this
paper that the dimension of all vectors is equal to one and that the sampling
is equally spaced, t = 1, ..., T . While it is straightforward to remove the latter
assumption if needed, going from the univariate to the multivariate case is
much more challenging and further research is needed to resolve this issue.

2.2. Max-stable state-space models

Before defining our max-stable state-space models, we need to recall basic
properties and ideas concerning max-stable laws. We can start with the simple
max-stable auto-regressive model Zt = (aZt−1) ∨ εt where a � 0, Z0 and
εt are Fréchet distributed and independent. Such an auto-regressive model
is max-stable because any combination of the type

∨
i aiZi with ai � 0

remains in the same distributional class. Such a concept can be generalized
(Davis and Resnick, 1989) and max-stable processes have been used in a
variety of applications. For example, Helland and Nilsen (1976) considered
a max-autoregressive model with a random coefficient to model deep water
exchanges in a sill fjord. In their model, Zt represents the annual density of
resident water in the fjord basin and εt corresponds to the annual density of
coastal water adjacent to the fjord. Using the operator ∨ allowed them to
model a non-linear exchange of water. Max-autoregressive processes have also
been taken advantage of for solving utility problems. Suppose that Zt is the
utility of the computer model currently held and εt is the utility of the new
model. If εt is much larger than Zt, then a switch is made, i.e. Zt+1 = εt,
otherwise the current utility falls by a certain percentage due to aging, i.e.
Zt+1 = aZt. Because of its simplicity to model non-linear behaviors with
intermittent bursts, such models have also been implemented to a variety of
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others applications, e.g. queueing and storage theory with abrupt changes in
job loads.
But, to our knowledge, no one has yet developed a Kalman filter method for
max-stable state-space models. In order to start filling this methodological
gap, we propose the following max-stable state-space model. The observation
equation becomes

Yt = FtXt ∨ εt, (3)

where εt represents an i.i.d. noise with a Fréchet margin, and Ft > 0. We also
replace the sum operator by the max operator in the system equation:

Xt = GtXt−1 ∨ ηt, (4)

where Gt > 0 and ηt represent an i.i.d. noise with a Fréchet margin. By design,
if Yt records a precipitation maximum that follows a Fréchet distribution,
then (3) and (4) ensure that this distributional constraint is satisfied while
introducing a dynamical temporal structure. Concerning the interpretation of
(3), the variable εt should not be viewed as a measurement error, but rather
as a source of strong variability. It could be interpreted as an unobservable
physical variable that has the power to highly influence observed precipitation
maxima. For example, one may think of the vertical velocity (denoted W in
meteorology). The latter is very likely to be heavy-tailed, and strong vertical
wind bursts in a column of moisture (advection) could create the condition
for heavy rainfall (Wilson and Toumi, 2005). In other words, whenever a
strong and intermittent wind burst occurs a switch is made (i.e. Yt = εt),
otherwise the current state decreases proportionally to the quantity Ft. Of
course, such an interpretation remains, at this stage, hypothetical and more
collaboration with the atmospheric community is required to validate such a
scheme. To illustrate the stochastic behavior of this system, Figure 3 shows the
trajectories of Xt (vertical gray lines) and Yt (solid line) in the case Gt = 0.7
and Ft = 0.9. As in a Kalman filter context, one of the main statistical
questions is to determine how to estimate Xt given the past observations
(Y1, . . . , Yt). One difficult issue to solve before answering such a question is
that classical minimization schemes based on the mean and variance cannot be
implemented because the assumption of Fréchet margins does not guarantee
that these moments are finite. While it is beyond the scope of this paper to
solve this complex issue, it is easy to derive bounds that provide valuable
information on the almost sure trajectory of Xt. Indeed, a natural upper
bound for Xt can be defined by

Xt =
Yt

Ft

, for all t � 0. (5)

One can also derive an almost sure lower bound. To do this, we first need to
introduce the random times T0 = 0 and

Tj+1 = inf

{
t > Tj :

Yt

Yt−1

a.s.=
FtGt

Ft−1

}
, for j = 0, 1, 2, . . . (6)
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and then, we define sequentially X0 = 0 and for t � 1

Xt =

{
Yt
Ft

, if t = Tj for some j,

GtXt−1 , otherwise.
(7)

Note that the events εt/εt−1 = FtGt/Ft−1 have a null probability of occuring.
Figure 4 displays the upper and lower bounds defined by (5) and (7),
respectively the solid and dotted lines. As in Figure 3, the vertical grey lines
represent the trajectory of Xt. The vertical dotted lines represent the random
times defined by (6). Note that the upper and lower bounds intersect at these
random times. This means that the value of Xt is completely determined
at these occurrences. Overall, this figure clearly indicates that these bounds
provide useful feature about the hidden values of (Xt).

FIG 3. — One realization of Xt (vertical grey lines) and Yt (solid line) obtained from

the system (3) and (4) for which Gt = 0.7 and Ft = 0.9. The x-axis represents the

time t = 0, . . . , 100 and the y-axis corresponds to the values of Xt and Yt.

In our examples and for the model defined by (3) and (4) we opted to work with
Fréchet margins. This choice was made since precipitation maxima are heavy-
tailed, and it is also convenient from a theoretical point of view, although our
model could be easily extended to GEV margins.
Despite the fact that the system defined by (3) and (4) has the advantage of
being simple to define and of introducing an interesting temporal dependence,
it has a substantial limitation. Some researchers in climatology may have
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FIG 4. — Upper and lower bounds defined by (5) and (7), respectively the solid and

dotted lines, of the realization of Xt (grey vertical lines) from Figure 3. The vertical

dotted lines correspond to the random times defined by (6).

concerns about working with the max operator a ∨ b = max(a, b) and they
would much prefer to deal with an additive model. To resolve this issue and to
provide alternatives to max-stable processes, we propose in the next section
an additive-type model based on the Gumbel distribution which also belongs
to the GEV family.

2.3. The GEV state-space model

In this section we recall the main result obtained by Fougères et al. (2006)
about stable linear processes driven by Gumbel dynamics. It stems from Tawn
(1990) and it is based on the properties of stable laws 2. In climate studies, it
is often overlooked that the Gaussian law is only one member of this stable
family. Some heavy tailed distributions like the Cauchy law can also be closed
under summation. In our case, we work with a sub-class of stable variables.
Let S be a positive α-stable random variable whose Laplace transform is such
that E[exp(−xS)] = exp(−xα), for all x > 0 and for some α ∈ (0, 1). This

2. Recall that a random variable S is said to be stable if for all non-negative real numbers

c1, c2, there exists a positive real a and a real b such that c1S1 + c2S2
d
= aS + b where

S1, S2 are iid copies of S and where
d
= denotes equality in distribution.
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definition allows us to recall a proposition found in Fougères et al. (2006). If

Yt = Ft log

(∑
a∈A

ct,aSa

)
+ εt, with t = 0, . . . , T, (8)

where {ct,a} are non-negative constants, {Sa, a ∈ A} are independent positive
α-stable variables, εt follows an i.i.d. GEV(µt, Ft, 0) distribution (that is a
Gumbel distribution), and all variables are mutually independent, then we
have

P(Yt � xt, t = 0, . . . , T ) =
∏
a∈A

exp

(
−(

T∑
t=0

ct,ae
−xt − µt

Ft )α

)
. (9)

Although rather complex at first sight, this result tells us that Equation (8)
can generate observations that follow a Gumbel distribution, and even more
importantly, the multivariate distribution of the vector (Y0, . . . , YT ) can be
explicitly written, see Equation (9). Hence, Equation (8) provides a solid
foundation to construct state-space models for extremes, as we shall see.
From Equation (8) and the structure of the classical state-space model
described in Section 2.1, it is natural to propose the following Gumbel state-
space model. The observation equation becomes

Yt = Ft log Xt + εt, (10)

where εt represents an i.i.d. Gumbel noise and Ft is a non-negative scalar.
The system equation has now the following form

Xt = GtXt−1 + St, (11)

where Gt is non-negative scalar and St represents an i.i.d. positive α-stable
noise. Because of its stability, the vector Xt also follows a positive α-stable
distribution. More precisely, we can write that

Xt =
t∑

i=0

ct,iSi,

where ct,t = 1 and ct,i =
∏t

k=i+1 Gk for i < t. This implies

Yt = Ft log

(
t∑

i=0

ct,iSi

)
+ εt.

This latter form of Yt corresponds to Equation (8). Consequently, we know
exactly the distribution of (Y0, . . . , YT ) through Equation (9), as well as
the distribution of (X0, . . . , XT ). Hence, the system of equations (10) and
(11) provides a state-space model in which the observations and the state
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vector can be expressed in a closed Gumbel form. For the first time (to our
knowledge), such a structure offers an additive and flexible way to perform
data assimilation on maxima within EVT.
The estimation of Xt given the observations is a problem that we have not
solved yet. A possible strategy is to extend the work of Stuck (1977), who
found the Kalman filter steps for symmetric α-stable laws, within our Gumbel
state-space model context. More precisely, suppose that we have the additive
model defined by (2) where εt and ηt are i.i.d symmetric α-stable noises.
For this case, Stuck derived the best linear estimate of Xt with respect to a
distance called dispersion. To do so, he minimized γt := γ(Xt − X̂t), where
Xt − X̂t denotes the error and γ(Z) is the positive coefficient such that
E[exp(ixZ)] = exp(−γ(Z)|x|α), x ∈ R, for any symmetric α-stable variable Z.
His results generalized the classical Kalman filter in the Gaussian case (α = 2).
However, extending Stuck’s approach to our model is not straightforward and
more research is needed in this direction.

FIG 5. — One realization of Xt (vertical grey lines) and exp(Yt) (solid line) obtained

from the system (10) and (11) for which α = 0.6, F = 0.8 and G = 0.5. The x-axis

represents the time t = 0, . . . , 100 and the y-axis corresponds to the values of Xt

and Yt.

3. Conclusion

Although Gaussian linear state-space models have been very successful in
classical time series analysis, they are not adapted to represent temporal
changes of maxima. In this context, our main motivation was to introduce
two state-space models that are in compliance with EVT. Such models have
strong potential but still, a lot of work remains to understand their properties,
drawbacks and qualities. More precisely, we identify at least two questions for
future research:
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1. Given the observations Yt and the dynamics of our model (i.e. Ft and Gt),
what is the optimal procedure to estimate Xt in equations (3) and (10) at
each time step? This question amounts to finding the Kalman filter steps
for our models.

2. What is the error when applying a classical Gaussian Kalman filter to
maxima?
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