@article{JSFS_2004__145_1_31_0, author = {Nussbaum, Michael}, title = {\'Equivalence asymptotique des exp\'eriences statistiques}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {31--45}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {145}, number = {1}, year = {2004}, language = {fr}, url = {http://www.numdam.org/item/JSFS_2004__145_1_31_0/} }
TY - JOUR AU - Nussbaum, Michael TI - Équivalence asymptotique des expériences statistiques JO - Journal de la Société française de statistique PY - 2004 SP - 31 EP - 45 VL - 145 IS - 1 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2004__145_1_31_0/ LA - fr ID - JSFS_2004__145_1_31_0 ER -
Nussbaum, Michael. Équivalence asymptotique des expériences statistiques. Journal de la Société française de statistique, Tome 145 (2004) no. 1, pp. 31-45. http://www.numdam.org/item/JSFS_2004__145_1_31_0/
[1] Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. | MR | Zbl
and (1996).[2] Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. To appear, Ann. Statist. 32 (5). | MR | Zbl
, , and (2004).[3] Asymptotic nonequivalence of non-parametric experiments when the smoothness index is 1/2. Ann. Statist. 26, 279-287. | MR | Zbl
and (1998).[4] Deficiency distance between multinomial and multivariate normal experiments. Ann. Statist. 30 708-730. | MR | Zbl
(2002).[5] Asymptotic inference in stationary Gaussian time-series, Adv. Appl. Probab. 5, 469-497. | MR | Zbl
(1973).[6] Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. Springer-Verlag, New York Inc. | MR
(1986).[7] Eléments de Statistique Asymptotique. Mathématiques et Applications 11, Springer Verlag, Paris. | MR | Zbl
et (1993).[8] Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Statist. 30 731-753. | MR | Zbl
, , (2002).[9] Asymptotic equivalence of spectral density estimation and Gaussian white noise. En préparation. | Zbl
, and (2004).[10] Asymptotic equivalence for nonparametric generalized linear models. Prob. Theor. Rel. Fields, 111, 167-214. | MR | Zbl
and (1998).[11] Asymptotic equivalence for nonparametric regression. Math. Meth. Statist. 11 (1) 1-36. | MR | Zbl
and (2002).[12] Asymptotic equivalence of nonparametric regression and white noise, Ann. Statist. 24 2384-2398 (1996). | MR | Zbl
and (1996).[13] Théorie Asymptotique de la Décision Statistique. Les Presses de l'Université de Montréal. | MR | Zbl
(1969).[14] Sur l'approximation de familles de mesures par des familles gaussiennes. Ann. Inst. Henri Poincaré 21 (3) 225-287. | Numdam | MR | Zbl
(1985).[15] Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. | MR | Zbl
(1986).[16] Asymptotics in Statistics, 2nd ed.. Springer-Verlag, New-York. | MR | Zbl
and (2000).[17] The increase of risk due to inaccurate models. Symposia Mathematica. Instituto Nazionale di Alta Mathematica, Vol. 25. | MR
(1981).[18] Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24, 2399-2430. | MR | Zbl
(1996).[19] On local and global asymptotic normality. Math. Meth. Statist. 4 115-136 | MR | Zbl
(1995).[20] Statistical Experiments and Decisions : Asymptotic Theory. World Scientifîc, Singapore. | MR | Zbl
and (2000).[21] Mathematical Theory of Statistics. de Gruyter, Berlin. | MR | Zbl
(1985).[22] Asymptotic Statistics. Cambridge University Press. | MR | Zbl
(1998).[23] The statistical work of Lucien Le Cam. Ann. Statist. 30 631-682. | MR | Zbl
(2002).[24] Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426-482. | MR | Zbl
(1943).