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A THEORY OF INTEGRAL INVARIANTS. 15  
Â theory of integral invariants,-

Bv A. E. TAYLOR.

Integral invariants were first studied by Poincaré, who used them
in his development of celeslial mechanics, and they have been studied
further by a number of authors, notably Goursat, Cartan, and De
Donder (‘). Cartan introduced « complete » integral invariants-,
which were subsequently shown to be a special kind of Poincaré
invariant in a manifold of one more dimension.

The purpose of this memoir is twofold. In the first place we pro-
pose to develop the theory of an integral invariant which is of a type
intermediate to those of Poincaré and Cartan; I have chosen to call
these invariants associated, because of their connection with an asso—

ciated differential system. Secondly, the associated integral inva—
riants are used to extend certain known results in the application of
the theory of integral invariants to the theory of differential equa-
tions. ‘

I wish to make special mention of theorem 5.2 and 5.3, which
were suggested to me by Prof. A. D. Michal. _

His criticism _ha_s
aided greatly in the completion of this work. 

(1) For works on integral invariants see bibliographyat the end of this paper.
More complete references may be found in the books of Cartan and De Donder
[1], [2]. (Numbers in parenthesis refer to the bibliography.)
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].

[. Pnaummnv cousmannrons. — We start with the fundamental
system of first order differential equations

ll.ü
dt (1_|) =;‘çfi,.....fl‘,ll (i=|,….,nl,

where the E‘ are continuous, with continuous partial derivativesof as
many orders as we shall require (in general only the first two); in a

certain region of n+ 1 dimensional space. We further require that
they do not vanish simultaneously in this region. Then the system
admits a unique solution
(1.2) J:‘=f'tt:x.‘,,...,JfllEf‘tfiæ“,
taking on the initial values æf,=f‘(tfi a:“) where the f ‘ are conti—
nuous, with continuous derivatives of (at least) the first two orders,
in a suitable region V,… . In what follows we shall restrict ourselves
to manifolds lying entirely within V,H ..

Consider a sub—space (E,) ofp (pg n) dimensions,within V,,+| , but
not generated by a p—parameter family of integral curves. Let it be
given analytically by
(13) l.L‘_.L‘(u‘, ...,ul),

lt=t (n', ...,u"),

where the u’s range over a domain (e,,) of u-space, and the matrix

«15 «EL
ôu' du' du»

(1.4)
àw‘ dæ" dl
Î)ÎÏI‘ (ÎÎI‘W

is of maximum rank.
Next we define a set of differentials

ôaŒJ=—â%du“
[r'=r,...,nl,

(1.5) '

dt .
_ô.,t =äaîdu" (a=1, ...,p (a free index)]
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the du', . . ., du" being arbitrary, and construct the differential form

['

2:
\ \

_ a \ 1 _ \
(

“l“ Aal"'aa‘*lllaafl'"al‘01 12°“. "ÔG—‘l .” (7—1 Oatôq+1æ C+‘.-.Opæ“p.
O'=l

\

‘
Aa,...a,, ô,æ°“ . . .o,,æ°‘p

((1.6)

We are using the summation convention of tensor analysis; the a's
are summed from 1 ton. The functions Aa‘___,P, A,|___,___,P are assumed
to be continuous functions of x‘, . . .,x”, t, with continuous partial
derivatives of (at least) the first two orders; we shall also suppose
that they are skew—symmetric, that is, two functions with different
indices will be distinct, but if the indices are the same except as to
order, then the functions are equal, or the negatives of one another,
according as the two permutations of the indices differ by an even or
Odd number of inversions. It follows from this that any function
With two equal subscripts is identically zero.

It will be convenient to adopt a symbolism for the differential
forms which we shall consider (‘). In doing so we follow Goursat
where possible. We write

.
\ '\'I)/, : .\11"'1I' 01 æalo . -O/;J«'al'!

! — \ \ \ \
œl,jî_ , : À:.…1G .,"15,.,--.Œ,.01—L1'---Ofr— , .:.-ïu—xoafiwîa- .. . .o,,æ“r,

(1 . 73 I'
SZ,, : mp +2 (”(/72186“

a_i

thus giving a concise expression for (| .6). We see that Q,, may be
regarded as a differential form analogous to (a,, in the variables
x', . . .,.v”, t). We shall also have occasion to consider the « con—
tracted » form

>—
' .(1.8) (0)… c_ la“: A…...rxgql‘aa' Papi/“61.53". . -'30'-f1 .];“o—i ôc+1 æ°‘a ' 1 . . .'3,,.L‘“l‘.

By the derived form of a form (» we mean ! \ "(,)l: au....a,. , 1011211. . '°/‘+l _L-1p ' «,

(1 .9) l
a _ dA1|"'“F _ df\apÿ,zæn_1,‘ dAal...1p_l1pli

°‘l"'°‘l‘ '— ()J:“pn ().v“: ()J°‘F , 
(') ()ur notations l'or &) and w' coincide essentiall_y with those of Goursat,

[3], Ch. Ill.
Journ. de Math., tome XVI. — Faso. 1. |337. 3
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fl',, is defined as the derived form of Q,,, regarded as a form in the
variables æ', . . . , a:”, t. This involves the further expression

( 552. : am,...a,_'uaa ‘ ‘...1,,+,61.L'a'...65_1.l'“a-185+1.I‘°‘ml...8,,+1æ1P'v!,
(1.l0) '

a
_dAai...n…ap - àAa,...ap.....ap dAx....n...ap_,ap…

._

°‘""""'°"" ‘_ ()w°‘r‘t 0t
_ ()w°‘r '

Then
p+1

(1.11) Q},=m',,+ZB}ÏQÔ,,L
G"‘l

Evidently w‘,,"_‘. differs from (œ}Î_‘,)’ only by terms involving the par—

tial derivatives of the A’s with respect to t. In fact
— ôA . \ \(1 . 12l (m‘,îî.)'= m',,”_'| + _Æ(ËÆ‘L£‘"ÔvlJ'al' _ _05_1.L'16f1_ . .O/,+l.l,'1l" '.

Corresponding to the differential fon—ms (» and 9 we have the inte-

gral forms fm, fQ extended over the manifold(E,,). For example,

if p = I, 2, we have, respectively

Aaôfl + A.,ôz,

ff\,,.,ô,p»ô..æ=+A…,«3.za.J-x=+ A…..ô..c“tô.t.

2. THE DEFINITIONS. — The manifold (Ep) is cut but once by any
given integral curve. Thus it determines a p—parameter family of
integral curves of the set (L2). The equations of this family may be

obtained by substituting(I .3)in (! . 2) and solvingfor the .*1‘0 in terms
of u', . . ., u" : æf,=xî‘,(u', . . .,u")ææ3(u). These are the equations
of the manifold (EZ) which is the « projection » of(E,,) on the space
t= to by integral curves. If these values are then substituted back
in (1 . 2) we have
(2.1) æf=ff[t;æo(u)],

as the equation of the family which we are seeking.
Let us now consider & p-dimensional manifold (Ep). derived from

(Ep) in the following manner : let each point ot (E,,) be carried over
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into the point on its integral curve for which t= t(u)+ T where T
is a fixed number. The equations of this new manifold are seen to be

‘æ‘°=f’{T +t(lll, œo(”)lv(2.2)
?

=t(u)+T.
If ffl is extended over this manifold, its value will not in general be
the same as when extended over (Ep). lt may be, however, that
these two integrals are equal, no matter what the value of T, for an
arbitrary original (EP). In this case we say that the integral is an
associated invariant of p"‘ order of the system (1 . 1). We designate
it by I; :

(2.3) |;,=fn.
A particular case arises if we restrict (EP) to be a manifold

throughout which t is constant. Then our original(E,,) may without
loss of generality be taken as (E?) and T=t——t… Under these
circumstances we call the integral a Poincaré integral invariant, and
designate it by [,,,
(2.4) 1,,=f….

Even more generally, however, we may consider manifolds defined
by (2.2), where T is not a constant, but an arbitrary uniform func—
tion of u', . . .,u". This amounts to making a deformation of(E,,)
along the integral curves. If the integral Q, extended over an
arbitrary manifold of this kind, has the same value as when extended
over (E,) [and also over (EZ)], then it is called a complete integral
invariant of the system (1 . 1). For this invariant we use the nota—
tion Iî. ,

The above definitions have been laid down on the supposition that
(Ep) need not be closed. If the conditions of the definition are ful-
filled when and only when (EP) is closed, the invariants are said to be
relative, and we use the notations J,,, J I,, J; to distinguish them from
those defined above, which Will be called absolute.

*

5. THE INVARIANCY CONDITIONS ron I,, AND IL. — Consider the diffe-
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rential system
de‘ da“ dt(8.1)

E‘ =...=Î=T=d‘r. 
This will be called the system associatedwith (4 . 1). The necessary
and sufficient conditions for an associated integral invariant (absolute

dï‘f
the integral being extended over the domain defined by (2 . 2).

Let us consider the geometrical significance of the associated
system. Its solution may be written

Sd=f‘(r—To+to; æ:,, . . .,w3),la” [t: r——ro+to,

where the f‘ are the same functions that occur in (1.2). If (63) is a
p—dimensional manifold imbedded in the (n + 1)-dimensional conti-
nuum of the variables æ:,, . . .,æÇ,', t.,, it determines a p-parameter
family of integral curves of the set (5.2), emanating from (ôf). If
(62) is defined by

æ(,= .L'f,(d', .. ., a”),
to =t., (d‘, . . ., a”),

then the manifold (62) is carried over into a manifold (ë,,) defined
by
(8.3) %'”I=fi[T—To+lo(ai;.z-o(a)],t = r-— ro+to(a).

If now we regard ffl as an integral form in the variablesx', ..., a:", t,

the necessary and sufficient condition that this be a Poincaré integral
invariant (absolute or relative) of the associated system (5. !) is
evidently that

d
ÆfQ-O,

where the integration is over (ê,,). The differentiation of the
integral is carried out bythe usual rules for differentiating under the
sign of integration. However, from the foregoing considerations,
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and a comparison of (2.2) and (5.3) we conclude that the conditions

diTf 52 = 0, di 52 = 0,
(E,… ? <s,,>

are equivalent. Hence we have proved the fundamental theorem :

THEOREM 5. 1 . — An associated integral invariant of the system (1 . |)
may be regarded as a Poincaré integral invariant of the associated
system (5. !) Conversely, a Poincaré integral invariant of (5.1) in
which the difl“erential form does not demand explicitly on ': may be
regarded as an associated invariant ( ‘) of (1 . l).

Suppose that I,, is an absolute Poincaré invariant of (1 . 1). The
necessary and sufficient conditions that this be so are well known (”).
They are   ,

(dAa,...ap __ dA/sa,…a,, __ _ dAa,...ap_,k “+ dAa,...a,,
()æk c)æ°‘t ' ' ' d.c°‘p ” dt

(34) â(Aka,…apgkl â(Aa....ap_,tîk
-+— _ÔŒT‘_ . . . +W_ 0

(a,k=1, ...,n).
For some purposes it is more convenient to write them in the form

à I: J'"(3.5) X(Aa,…apl + Akq5"'“l'dîîl + ' ° ' +Aa‘_'a”_‘kd.î°‘r
: 0’

where
. , df âf_çt__. _.(3.6) X(fl—s

dæk +d;
From equations (5. 5) and Theorem 5. 1 we can deduce the condi-

tions for an absolute associated invariant l;. They are
&"

a,,
d—ot:

(3-7) ‘ JE," ÔE"

(

+ Au,...k...a,,Ît +- - -+ Aa,....o..ap_,kÆ: °

X(Aa;..-aa_loadpln'all)+ Aka,...0... + ' ' '
 

(oz, /r=1, ...,n;a=t, ...,p)
together with (5. 5). 

(“) Michal has investigated invariants of the system (3.1) : see (g).
(’) See (3), p. 219.
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The invariant I;, is characterized by the following theorem.

THEOREM 5.2. — If I,“, =!Q,, is a known invariant, then I,,=fw,,
p—iand I,… =f[co‘°’ +(w,,, E).,] (a arbitrary) are absolute Poincaré inva—

riants of order p and p— 1 respectively. Conversely, if l,,=fw,, and

l,,_, = no,… are known invariants, we can construct an invariant l;,.

Proof : It is sufficient to consider o=p, since any other value
gives coefficients which are the same except perhaps as to sign.
Denote the coefficients of [m‘/", +(w,,, E),,] by Bon,...ap _. Thenl‘—

Ba.…a,,-,= Al,...ap .o+ Aa,...a,.. ,kE_k-

We must apply conditions (5.5) to these coefficients. Now, by
(5.5) and (5. 7),  ,

[: A rk ‘Æj A M dE/ _ dEkX(Aa....a,,_,k£ ) + ia,...a,-,kC, d.£°“ + - -+ a,...a,,-,ij W — a,...a,,-,k'd_t’
, ()Ïk ()î" ()E“

X(Aa,...aP- ‘n) + Aka,...z,,_…Ê +- - - + Am....a,“ ,/.-0 (Îp-l :_ a;...zp,,k Î)Î;

so that the Ba,...a,,_. are indeed coefficientsofan absolute integral inva—

riantoforderp— 1 . On the other hand, if fco,,._, is an invariant I,,-,,
with coefficients Ba....a,_., and I,, is known, then we may define

Aa....a,_,oz…....aF= Ba.…aa _,au |...a,, — Aa,___k,_ “PEk,

and these coefficients will satisfy equations (5 . 7), thus enabling us to
construct au 12.

From the equations written out in the foregoing proof it is easily
seen that if
(3.8) A ‘Æka,...ap_‘lc ()_l = 03

for arbitrary ou,, . . ., ou,… then the invariant lp_, arisingfrom I; may
be split into two separate invariants.

THEOREM 5. 3. — If l;=ffl,, is a known invariant, and if equations
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(5.8) are satù/Ïed, then /w}fl, and [(co,,, €),, are both absolute
Poincaré invariants.

It is also worthy of note that from the invariant I,,=fœ,, we

obtain the invariant I* =fœ,,8p+, twhoseintegrandis an Q,…, most/‘+l

of the terms of which are zero. For the case }) = 1 see Theorem 8. 1.
Before proceeding further with our investigations it will be conve-

nient to recall so me points in the theory of integral invariants as
developed by Goursat. In particular, we shall discuss invariants
attached to the trajectories of (1 . 1).

4. ATTACHED INTEGRAL INVARIANTS. — If an integral invariant of the
system (1 . 1) is also an integral invariant (of the same kind) of the
system

(4.1) =X(æ', ...,æ")E(æ‘,….,æ",t)

where X(æ’, . . ., œ”) is an arbitrary scalar function of such nature
that “AE" fulfills the conditions originally imposed on E‘. then the inte-
gral invariant is said to be attached to the trajectories of (1 . 1). Such
invariants were considered by Goursat (‘) only when the ? do not
depend on t. They may be interpreted geometrically as follows.
For any fixed value of t equations (l . 1) and (4.1) define the same
direction field in the n—dimensional space of the x’s. But (interpre-
ting t as the time) the change undergone by a manifold during a given
interval is not the same in the two cases. There is a re—allocation of
points of simultaneity on the trajectories. Thus the integral curves
in the space V,,+I are altered. !

To obtain the conditions for attached absolute invariants we
replace ? by 155 in (5.4). Because )\ in arbitrary we easily infer
that
(4'2) Aa,...ap_,kEk=0, m=o.dt 

(ï) See (3), p. 236.
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Similarly, from (5. 7) wc obtain the conditions

aA.,
()t

=().(4.3) Aa....o…a,, .t—îk=0a

These are, of course, conditions which must hold in addition to (5. 5)
and (5.7). This enables us to state the theorem :

THEOREM 4. | . — In order that absolute associated invariant l;:ffl,,
be attached to the trajectoriesof (1 . l), it is both necessary and sufji—

cient that the correspondingl ,, = fm,, be attached,and tbat l,… =fæ‘£L|
be an attached absolute invariant.

From Theorem 5.3 and equations (4.2) we have the following
theorem, due (in a slightly restricted form) to Poincaré and
Goursat(').

'I ueonm 4.2. — If l,,= fm,, is a known Ü!Wll‘lflht, and if the equa-
.!

ttons
ôA .(4.4) - &* —%;”—“ = 0.

are satisfied in addition to (5,8), then l,,_' : [(pw,,, €),, is an attached
absolute invariant.

5. COMPLETE INTEGRAL mvmums. — We mightdeduce the conditions
for complete invariants by a direct analytical process ("’).

But it is more elegant, as well as more instructive, to proceed in a
dilÏerent fashion. We shall give a new proof of the following theo—
rem of G0ursat (°). 

(‘) See (3), p. 242.
(") See for instance the method of parametrization used in my paper on non-

holonomic dynamical systems (12), p. 739-741. For this method of proof ] am
indebted to Prof. W. F. Osgood, to whose notes I had access.

(“) (4), p. 1089—1091. Goursat’s proof. for the case of absolute invariants,

may be summarized as follows. Given l,,= œ,,, we deduce I;…= œ,,ô,,..,l.
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THEOREM 5.1. — A complete integral invariant of (1.1) is a
Poincaré invariant attached to the trajectories of the associated
system (5 . 1).

Proof : The complete invariant fQ is characterized by the fact

that its value is unchanged when the domain of integration (Ep) is
deformedin an arbitrary, continuous manner along theintegralcurves
defined by (1.2). Now the trajectories of (5.1) are the integral
curves (i . 2) of the system (1 . 1). If we replace (5. 1) by the system

dæ‘ dæn i‘ _(“
.O&' 9E" ?

dT [P=p(æiv"°yænst)]s

where 9 is arbitrary, save as to restrictions of continuity, the trajec-
tories are unchanged, but the variation of 1.“ along them is altered.
Along a given trajectory, determined by 935, ..., œL‘, ,: and t are
related by

‘ dt—T= _: t,t,",æ".5..) . of.… ……æ… +< … .

cp(t;æ3, .. .,a:3)=p[f‘(t;æfl, .. .,f"(t;æ0), t].

Singling out a p-parameter family of trajectories, we see that
1=const. determines an (E,,), and that as ,,_. changes, (Ep) is defor—

med continously along the trajectories. However, since ffl is a

complete integral invariant, its value is unchanged. Therefore it
may be regarded as Poincaré invariant attached to the traiectories
of (5. 1). This proof of the theorem is valid for both relative and
absolute invariants.

'

To find the conditions for absolute complete invariants we write 0
as a differential form in the variables æ‘, . . . , a:", t, and utilize (4. 2).
The result may be stated as follows.

Tascam 5 . 2 — In order that fü,, be an absolute complete invariant 
(cf. 5 3). Then by Theorem 3. [ and 4.2 we deduce au 1; which is a Poincaré
invariant attached to the trajectories of (3. I). This turns out to be the 1% cor—
responding to Ip (see Theorem 5. 2 below).

Journ. de Math., tome XVI. — Faso. 1, (937. 4
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of (1 . !) it is both necessary and sufficient that it be an Il, for which
(5.3) Aa....a…,o…a,,+ Aa,...a,fl,;.—…a,,î":0 (CII, ...,/;).
The invariantcan be written

9I;i=an,….uplô1-Ïa'—- ïa‘ô1l] . . .I_ô.,l‘“P ——- E°‘I‘Ô°‘Pl].

From this theorem, Theorem 5.2, and the remark following
Theorem 5.3 we are able to infer the following interesting theorem.

Tueonm 5.3. — If 12: [Q,, is a known invariant, then we may
write

[‘

1;,= lî+f2[w‘ffl. +…… 5.16.t.
C:]

where [: corresponds to fm,, and the last integral is an associatedinva—

riant, the « Poincaré » portion of which is absent.

Since the E’s and A’s are independent of :, we can theorem 4.2 to
deduce an l;_, from I;,.

Tascam 5 .4. — To each l; =[Q,, corresponds an absolute invariant
of order one less :

p—I

l;—c =f‘°fli + (“’/H E)/l+2(w'Ëln E)/»ôp-‘-
p-=i

From (5. 3) we notice that if [; is attached to the trajectories
of (1 . 1), the coefficients Aa,…°._.,Pall vanish, so that Q,,æ w,,. ln other
words, there is no distinction between an attached If, and the corres-
ponding I,,. This could have been foresseen, from the natureof attached
invariants.

6. RELATIVE muaums. — ln this paragraphwe shall indicate briefly
the extension of the theory to relative associated integral invariants.
We make use of the generalized theorem of Stokes (‘) this theorem 

(‘) See (5). n. 336.
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asserts that the integralfw,,, extended over a closed p—_dimensional

manifold (EP) in (a:) space, is equal to the integral fm}, extended
over the (p + I) dimensional manifold bounded by (EP). Similarly,
the integral ffl,, extended over a closed manifold in (œ, t) space is

equal to the integral fn,, taken over the manifold bounded by the
first one. This gives us a means of passing from relative (or absolute)
invariants to absolute invariants of order one higher. It is almost at
once evident that attached relative invariants go over into attached
absolute invariants. The basic theorems are as follows.

Tascam 6.1. —— Let .]; =ffl,, be a known relative invariant. Then

J,,=f (a,, is a relative invariant, and

II,: w(pp_+£n + (œlpr £)p+h

I:... =[œ',. 6… z.

are absolute invariants. Furthermore, if
d"k(6.1) a.....… —ÿ,— =o.

the above invariant IP breaks up into two distinct invariants.

This theorem is a consequence of theorems 5.2, 5.3, and the
appended remarks. Analogous to theorem lt. 1 we have the result :

Tnnonnm 6.2. — In order that J,, be a relative associated invariant
attached to the trajectoriesof ( l . 1 ), it is both necessary andsuflïcientthat
the corresponding invariants J ,,=f to,, and J,,_. =fw‘” ’ be attached.p—l

Theorem 4. 2 enables us, under certain circumstances, to proceed
from a relative Poincaré invariant, to an attached absolute invariant
of the same order.

Tascam 6.3. — If J,,=[cc,, is a known invariant, and if the
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équations

0 " à .(6.2) au....a'k —dÎ
: 0,

EA. aaà.t..apk: O,

l/l=f(œ;I’ E)/lkl

is an attached absolute invariant.

are satisfied, then

Theorem 5.2 gives un a means of characterizing complete relative
invariants, and this result, together with Theorem 5.4, leads to the
following result. '

THEOREI 6.4. — T0 each invariant.”: [Q,, corresponds an absolute
complete invariant of the same order :

])

‘; =fŒ;Ë.'
‘ + (“lu El/'+1 +2 (“;—’. ! al‘—44160,-

d‘:l

Relative integral invariants of the first order are know to be of
especial interest when the différential system (! . 1) is of Hamiltonian
form, for such systems are characterized by the complete relative
invariant (') fp,-3(f“H8t. It is a fact of considerable interest that with
any system (1 . 1) which admits a complete relative invariant of the
first order there is associated a Lagrangian functionL and a canonical
system admitting the same invariant. We shall prove this result as a
consequence of our treatment of the relative associated invariant
without the use of Stokes’ theorem.

Tneonm 6. 5. — In order that

fn,, EfA,aJ«'-+ A.,ôt,

be 0 relative associated invariant .]: of (1. I) it is both necessary and 
(') See [1], p. 7 and [12], p. 740.
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safficient that the difl"érential equations

dL__ a_a_*

' dL a_gt—
Ô—t

=X(Ao)+Ak -d—t,

form a completely integrablesystem.

Proof : In the equations (1.2) let the initial values be made to
depend on a parameter in such manner that

(Co) æb=æb(u)

defines a regular, closed curve C0 in the (503, ..., œ: space.
There is thus defined a tube of integral curves of the set (1.2).

Consider two simple, closed circuits (‘) C, C' on this tube, where C
is defined by
(6.4) wÎ=f‘(t(tc), æo(u)) t:!(u),
and C’ is obtained by replacing t(u) by t(u)+T, where T is

a constant. The necessary and sufficient condition that ffl. be an

et d.L“‘ dt—

Lfi[Afä +Aod—ul
dll—O,

for arbitrary C0 and C, the differentiation being along the integral
curves. It is readily seen that the condition takes the form

(6.5) fl<xçm)+A.j”>ü+(X(A,)+A;.%ä->g‘] dt
C'

Now this is merely a line integraloveraclosed curve in the linearly
simply connected region V,…. Its vanishingimplies the existenceofa
single—valued function defined by

invariant is that

 

 (TJ) ,
(6.6) L(æ,t)=f <x< A)+A.ZÎ_Î)dæÎ+ (X(A)+Akî:>dl,(',—la"’ 

(‘) For this terminology see my paper (1.9. ), p. 737.
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and possessing derivatives which satisfy (6.3), which is therefore a
completely integrable system. Conversely, if the integrability condi-
tions for (6. 3) are satisfied, the integral (6. 5) vanishes (‘). This com-
pletes the proof.

From the integrability conditions for (6. 3) we can obtain the con-
ditions on the coefficients of!)' , and from these in turn, the conditions
for an attached invariant J}. These are found to be

(JA. _
a._s,> E,: n.

«)

<dA,— (M.): …(Î.Î* «L:—' (É 0Î_ÜÎ
È\_,_ @, Ï,_O _a_

us,, «M. _
«).u dt ”_ ' :): T.:-." Î>“°'

From the first set of equations,and Theorem 5. 1 we conclude that
the conditions for a relative complete invariant are :

(6.7)

():\,‘ ()l\k
.

()A; ().\
_

‘ _ __ _ gl; __ __ o =(6 … (da-" ().l") ‘ + ()t ().1." O

THEOREM 6.6. — A necessary and sufjîcicnt condition that J ‘, = Q,

be a complete invariant of (1. 1) is that equations (6.3) admit the
solution
(6.9) L: A,“gk+ A,.

Proof: That this function L satisfies (6.3) is an immediate conse-
quence of (6. 8). Conversely, if we suppose that (6.9) is a solution
of (6,3), we obtain (6.8) at once.

This L is, up to an added constant, the function defined by the
integral (6.6) when (6.8) hold.

Let us now suppose that we know an invariant J‘,' of ( l. 1), and let
us regard the function L as a function of x', . . ., x”, E‘, .. ., E”, :, the
x’s and t entering merely through the coefficientsA ,, A . , . . . , A… We
observe that

dL ,0Ak «»., 0L_
0ÎJ=E d.ü+ an’ag _ "'  

But
dA, _ ,0A. aA. _ 0L
717 —5 53 î)? — aî 

(’) See [10], p. 142-150. This proof does not depend on Stokes‘ theorem.
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because of (6.8). Thus, recalling that â:i= E’, we can write
d JL dL(6. 10) Ët äZÊ

—
(.)—;;:

These equations are equivalent to (6.8). If we regard Jf as given and
seek to find the system (1. 1) for. which it is invariant, the equations
take the Lagrangian form (6.10). As might be expected from the
analogy with dynamics, there is associated with (1. 1) a Hamiltonian
system, with 2 n independentvariables, which admits the invariantJ f.
To show this, we regard L as a function of a:‘, ..., a:", t, and A, as a
function ofA,, ..., A,,, a:“, ..., a:”, t :

Ao= L — Akîk.

From this standpoint the Hamiltonian system is

d.z-‘_ dA0_.. dA.— «M.,(‘s-“) Ît— au:—fi" "ZlÎ=î{i
and J ,” is the usual complete relative invariant of Cartan.

II.

7. DETERMINATION OF INTEGRAL INVARIANTS. — There are many funda-
mental interrelations existing betwen the integral invariants and
integrals of (1 . 1). These matters have been dealt with by Poincaré,
Goursat, and Cartan, by a variety of methods. We propose to
extend the known results to embrace the associated integral inva-
riants. It will then be found that these latter constitute a tool of
considerahlevalue in adding to the body of existing theorems.

Our first concern is to show how the integral invariant may be
found when (1.1) is regarded as a known system. The system
(5. !) admits n distinct integrals
(7.|) y%æ’,...,æ"t)=C" (i=1, ...,n),
and a last integral of the form

T=t+ C"'”.
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If we take y‘, . . ., y", t as our new variables, the system (5. 1) is
reduced to the canonical form

d A . .n(7.2) -L:.…:ëj—-:fl=dn
0 0 [

If I,”, =ffl,, is an invariant, it is & Poincaré invariant of (5. 1) and
if QF is transformed into ÏÎ,, (a form in y‘, . . ., y", !) by the change
of variables, then fÔ,, is an invariant of (7.2). In order that this
be so it is both necessary and sufficient (cf. theorem 5.1 and equa—

tion 5.5) that the coefficients in fi,, be independent of !. We can
therefore assert that there will always exist invariants I;,, I,,, ]; of the
system (1.1); indeed, if the solution of (! . 1) is known, we can
obtain all such invariants, for from (! .2) we can obtain (7.1)(').

8. FIRST ORDER INTEGRAL mumurs. — We have seen that when the
the integrals of (! . 1) are known, the integral invariants of the system
can be constructed. The reverse problem, that of passing from 

(‘) If the Ejs contain t explicitly there may not be any attached invariants I,“,

or l,,. Thus, l‘or instance, consider the system

! e" "

lt does not admit a non-zero attached invariant l,, as may easily be verified.
There are no attached invariants ]… but there may be attached invariants l,”,,

if the E's are independent of !, for under these circumstances there always exist
attached invariants ]… ifp < n (See [3], p. 212—214, p. 236-237). To find all
the attached invariants l,‘, of (1.1) when the £'.c do not contain !, we reduce to
canonical form  d:‘ d:""‘ ds"———:...: : — :d!

o o 1

where :‘(.Æ',...,.L‘"):C' (i:t,...,n---1),
:."(æ', ..., .::"):l-t—C"

are integrals of (1 . 11. The attached invariants l,, of this system are characterized
by the fact that ZÎ,, contains neither :" nor ô,,:", and an attached invariant l,‘, is
obtained from an attached [, and an attached l,,_..
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integral invariants to integrals, is of considerable interest. In this
paragraph we shall see what can be inferred from first order inva—
riants.

Tascam 8.1. —— 1fl:=ffl. is an invariants of(l .1),

A}E"+ A.,: const.

[‘ _is an integral. If A,fä—=O,A,Æ" and A() yield two distinct inte-
grals. If ]: is attached to the trajectories of (1 . l), A.,: const. is an
integral independent 0] t.

Proof : Q, = A,—3æi+ A.,8t. By (5. 5) and (5. 7) we have

X(AÆ*+A.,)=o
and ifAk%=otlien

X(AÆ*)=o, X(Ao)=u

separately. The last assertion of the theorem is a consequenceof the
fact that Ak E“'= 0 for attached invariants.

We may regard integrals of (1 . 1) as absolute Poincaré invariants
of zero order; if the integrals are independent of t they may be
regarded as attached invariants of zero order. With this convention
the foregoing theorem is merely a combination of theorems 5. 2, 5.3
and 4. 1 for the casep=1.

THEOREM 8. 2. — If If =ffi. is an invariant such that

dA; dAk_@” BET—

then A,—dæi+ Aodt is an exact diflerential form du, and ityields an
integral u(æ', . . ., a:”, t) = const.

Proof : We know that Ao=—AkE"; from this and the hypo—
thesis it follows that

dA,- _ dA., _
dt - d£“;

_
Journ. de Math., tome XVI. — Fasc. I, 1937. 5
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whence we infer that the line integral

u(æ, t)=fA,df—+—A,,dt

defines a single-valùed function. lt provides an integral, for
X(tt): À,£‘+ Ac: 0

Tnt-:onu 8.3. —— IfJ: =!9. is known, the line integral
'

.
aA, dA,. ,. aA. «M.,

J.
dA., aA. . _j:(ä;* _-d—Œî)E +—d—t‘

— Œ}dl + <bîk
—

-d—t>gkdl—COHSL

is an integral of (| . 1). This integral vanishes identical[y [ft/ce J: is

aJÏ , and it reduce: to the integral A,. E"‘+ A.,: const. of theorem 8. [

lfJî: l:.
Proof: By theorem 6.4 we pass from J: to an invariant If. It may

be verified that this latter invariant satisfies the conditions of
theorem 8.2, and yields the line integral as given. The last remarks
of the theorem require no comment in view of (5.5), (5.7) and
(6.8).

Tascam 8.4. — lfJ‘; =ffl. is known, and if
—zà_A‘+â_A_°_o‘ dl dt—

then A…: const. is an integral of(l . 1).

The proof of thisfollows at once from (6. 8).
In concludingthis paragraph we shall make a few remarks about a

result due to Koenigs (‘ ). He showed that, given an invariant
I. =fw., the A': and E': being independent of t, the reduction of w.
to a canonical form results in the transformationof (1 . 1) to Hamilto—
nian form. The exact details of this process depend on the « class »

of the form to.. The result may be used in an obvious manner to
reduce (5.1) to Hamiltonian form when an [: is known. When 

(‘) See [6], p. 875-878; also [3], p. 226.
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the l. is attached to the trajectories of(1.1) the resulting Hamilto—
nian system is one for which H=o, and several integrals of the
system are determined. Regarding If as an invariant attached to the
trajectories of (5. ]) we obtain the following theorem :

Tascam 8. 5. — Ij lî=ffl. is an invariant of(l . I) the correspon-

ding redaction to Hamiltonz‘an form of (5 . 1) is one for which H = 0,
and it leads 2p + 1 or 21) integrals 0/(5.1), according as Q. is of
class 2p + 1 or 2p in the variables æ' , . . . , x”, t. These integrals,being
independentof 't, are also integralsof ('1 . 1). In general there will be
n of them.

9. MULTIPLIERS AND INTEGRALS. — In this paragraph we shall investi-
gate certain general relations between integral invariants, integrals,
and multipliers of (1 . 1). The results obtained are generalizations of
the work of Koenigs and De Dender. We begin by discussing
absolute Poincaré invariants of arbitrary order; the use of associated
invariants then gives us immediate extensions.

In working with an invariant l,…(oêr< n) it is useful to adopt a
dill‘erent notation for the coefficients A,£___,fl_f. In any particular set of
indices there are r numbers, say cc,, ..., a. of the set I, 2, ..., n
which are missing. Let us define  l9- 1) B:,...a,= (“‘ !)…" ""“')A1...a,—1a,+i…ar—ta,+ |...n

where
. + 1(9.2) (a,, ...,cx,)=2(a,—l)=2d,— r(r2

)

l=1 l=l
and a. <a,<. . .<<x,… If the indice ex., ..., ou,. are not in their
natural order we define

Ba,- . -a,='—Ë Bp, . . .pp

where @. . . . B,. is the set a, . . .a,. in its natural order, and the plus or
m1nus sign is chosen according as an even or cdd number of inver-
s10ns is required to bring or., . . ., on,. to the form B,, . . ., Q,… Lastly,
we define B,,fl__q,f E 0 if any two rx’s coincide.
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We wish to re-write coditions (5.5) in terms of the B’s. To do
this we write

9 3 _ («..-.arlix A . \ dEk( . ) l l)
{

( l...“,—1G.+|_,,nl+. “---ai—IŒ.+t...n dx! +...
0 k

+Al...Œr—lar+l….n—lk_d,E.n :.L

ln each summation on k, lc takes on the value of the place it fills, and
. d£“: . .the values ex,, ..., on,… The coeffic1ent of:}? is A,,_,._mk+,mn, …

which the indices Ir, a., . . ., a;_.a,+., . . ., «, are missing. With a
little calculation, recalling the skew—symmetry of the A’s and B’s, we
find that this coefficient, after taking account af the factor(—— 1)‘°‘“"”°‘"',
is — B…___…_|,…jH___, . lt is then easy to see that conditions(9.3) take,.  the form

.

'
ara.(9.6) X ( Ba‘__.a,l 1” Ba,…,a,.° _ z Ba,….a‘_,ka.fl.…ar
014

= 0
t:!

where

_ "« 03(9-5) ° —2. &?k=l

Let us now introduce a multiple differential operator

dt , ..., ,.(9.6) D((P1, . . ., (?,):— Bal.uarÜîÏ—rî,

:p,, ..., <p, being arbitrary functions of x‘, ..., a:“, t. We shall
demonstratethe following theorem :

TBEOREM 9.1. — In order that I,,_,. be an invariant of (1.1) it is
both necessary and sufficient that

,.

«9.7) XD(q>.. . . <p,» — 2D(ç.. . .ç.-.X(ç,)ç,-,. . . (p,): _aD…. . . <w-)

l=t

be an identity in <p. . . . ça,…
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Proof: Let

A _ d(qa,. .. <p.)a""“"_ d(æ°‘l. . .æ“f)

be the Jacobian determinant in (9.6), and denote its elements by

au....ar= d‘?”"" dæ°‘q

while the correspondingminor is written

Aa,…a,_ d(‘?1- ' ' ‘Pfl—t‘Pp+1- - - ?r)
_Pq d(æ°‘* . . . æ°‘w-tæ°‘vH . . . x°‘*

Then
__Ë (_)p+qau:...

.et,
Aa,q…

p=l

for any q, with a similar relation for summation on 1), and 
   

        ËÎ£.‘JZ:=<— r>P+vA°;.--"
Now

d
X(Aa,…a,l=(— ll”*”"A°,‘,ÿ"“"X(aËb—nïr

an
.

() dcp. d d<p. (? d__ç, agir. . _ L_ / _ / _ _ ;X(a°‘q«)—E
dac" dx°‘v dt dæ°‘v— d—w°‘v

X(ÇP") dxk dæ°‘q

But}
l+ « ,.dac?” _E(_I)I qu'q 'aT—Aa,…a,_,…kaqflar (anyq)

,,_
and

"
+ .. d d(<P--- —X(CP) H....,-)

}:‘(_… qA%"' “"a…cav
' >= 1

Ü(;Âa.…ÏË
' (? (ann)-

Therefore, finally
"

«) ...f,_X' »… dk(9.8) X(Aa,...a.)=2[
(‘P1

Ë/(;ÆlÎ/IÆÏ/)
1 ‘? )

_Aa""“P—'ka'+""ard—î“_rîlp=1



38 A. E. rnnon.
Let us now compute XD(q>. . . . <p,), using (9.4).

XD(91- - -<Pr): Ac....a,X(Ba,…arl+ Ba....a,x(Aa.…arl

°‘.‘: Aa,…a, [" aBa,...ar + 2 B:... a.»-.ka…,…a.

%]l=l d(.r°‘i. . .æ°‘f

Ô !:
__

Aa,...aP_,ka,,,,…ard__ÎÊ—l€)

. XD(qa,. . .ç,)=—aD(cp,. . .q>,.) +2D[ç,. . . Ÿfl—1X(QP)(PP+1' . . .p,]
:=:

+
Bal-”G,.[E {d(‘P1n

. . çp—1—\(QP)(PP+1. . -CP,—l

p=1.

as was to be shown. Conversely, if (9.7) is an identity, (9.4)
follows at once, with the aid of (9. 8) This proves the theorem.

Conou.mv ('). — If o., . . ., cp,. are integrals (distinct) of the system
(! . 1), and I,._,. is an invariant, then D(cp., . . ., ?,,) is a multiplier of
the system.

This is clear'as soon as we observe that the condition for a multi-
plier M is

X(M) + «M = 0.

The knowledge ofp distinct integrals of (! . I) always enables us
to construct an invariant I,,. For suppose that (p., . . . , q>,, are distinct
integrals of (1. |); we then define the coefficients of l,,

A“ _ d(‘Pu ---a<Ppl
_""°"— d(æ°‘*, ..., .z—“p)

Then, since X(ç,-)=o, i=1,2, ..., p, equations (9.8) reduce to
precisely (5. 5), thus proving the assertion.

Theorem 9.1 and its corollary have their analogues when we
consider an invariant l,”,_,. The coefficients of the form Q,… may be 

(‘) When r=o the single coefficient M in l,, is a multiplier, as is well
known. For r=1 this theoremwas demonstrated by Koenigs (8), p. 25-27. For
further remarks on this case see [3], p. 223-224.
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described by n+ 1 indices, among which appear the index zero.
More precisely, we define

(9 9) Ca....aro : ( _ I)(a""a')+”_rA1...a,—ia,+i...a,—1a,+1...n,
Ca,...a,.,…= (_ l)(a,…a,.+‘)A1...a,—1a.+1...œ,+,—iar+.+i...no

when or., . . . , «,..., are integers from 1 to nin natural order; for other
than natural order we use skew-symmetry to define the coefficients.
Then, if kp., . . ., :p… are arbitrary functions, we define the
operator

. d( . . .
,

……
)(9"°) D “PW-?””: Ca—<ÛÎ_Ï—îr‘+l

d(°P1- - - <Pf—+—1l+2 Ca....a«-,oaa+,…a.-.…d'=l

As a consequence of theorems 5. 1 and 9. 1 we infer that this operator
satisfies an identity of the form 9.7, and that if <p., ..., cp… are
distinct integrals of (1.1), D*(ç,, . . ., cp…) is a multiplier of the
system. This is not all, however. For, knowing I,,_,_ we know the
following invariants

_ __ —°) ' ‘

In—r—f
(”n—r,

ln—Jr‘+1r—fw%l_;_q+ (mn-r‘7Ein—rr"

_ I * ___ ‘ /
ln-—r‘+| —fw Il—I‘7 ‘

n—r+—1—\/‘SZ
n-—r-

Corresponding to the r+ 1 distinct combinations of cp,, . . ., ap,…,
r at a time, the operator D gives us r+ 1 multipliers. If w',,_,. and
Q',,_, are not identically zero, their coefficients may be used to define
new operators D’ and D‘“, operating on r— 1 and rfunctions, respec—
tively. It may be verified that these operators have the form

Il

D’t<P.-…@…>= (_,y.+rzôBa.…a._,k
d(<P1---<Pr_1)  dac" d(æ°‘i. . .æ°‘"—*i’

k=1

w ,.
"

àCa,…a,k dCa,...aroi d(qo ,.)
D ““"-”P”: ("“” (. T +T _—a(æaî…îaa

=1 ,

_
" ”

dBa....aa_,kao+.…ar Ô(C{J. ' ' - CFP)
_| 2 2 dæ" d(æ°‘t. . . x“”—*tæ°‘°fl. . .æ°‘f) .

d‘=l k=l
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ru*+1In the most general case D’ and D“ will lead to
)

and r+1 new:

multipliers, respectively. The operator based on l,,_…,, yields no
new multipliers, it gives the same one that we obtained from D*.
The quotients of these multipliers, taken by pairs, yield integrals
of(l. !), wich need not, however, all be functionally independent.
The situation may be summarized in a theorem :

Tusonm 9.2. — Let an invariant l,”,ÿ

ofÿl . !) be given. Then :

and r+ 1 distinct integrals,.

*—+-—zn_r+3l,
. . (I . .

1° lf (o,,_r and Q,,_,_ do not vamsh, multipliers
of (1.1) are determined. In the most favorable case this deter-(l‘+ll(l‘+[;l

2
mines new integrals of the system, provided that the

total number of integrals thus obtained does not exceed n.
2° If D' ;é 0, and œ',,_ E 0, then we get àr+ 3 multipliersn—r r

and zr+ 2 integrals.
3" If QÇ,_, aw'n_,Eo, we get 2r+2 multipliers and r+1

integrals.

The case where r: 0 is of particular interest. The single coef—

ficient A,,___,, = (— 1)"C0 of to,. is a multiplier, and so also is the single
coefficient

"« ac, ac.
07, + T)?’

(21

of 0',,. The operator D*(<p) is defined

. _ ô<p d<pD ((P)—Cl
0—1},

+ Co 37,

and D*(cp) is a multiplier whenever :p is an integral. The two multi-
pliers first given determine an integral, however :

dC, + dCo
d.l‘1 dl

__ l
a — —Co »

and in general D*(p.) will be a multiplier wich may be combined
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with one of the others to yield a second integral. Thus the know-
ledge of 1; is equivalent to knowing two distinct integrals, if nè2.

A great many theorems may be proved, dealing With integrals and
integral invariants of associated type. Those stated above Will at
least serve to indicate the possibilities.
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