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A THEORY OF INTEGRAL INVARIANTS. 15

A theory of integral invariants;

Br A. E. TAYLOR.

Integral invariants were first studied by Poincaré, who used them
in his development of celestial mechanics, and they have been studied
further by a number of authors, notably Goursat, Cartan, and De
Donder ('). Cartan introduced « complete » integral invariants,
which were subsequently shown to be a special kind of Poincaré
invariant in a manifold of one more dimension.

The purpose of this memoir is twofold. In the first place we pro-
pose to develop the theory of an integral invariant which is of a type
intermediate to those of Poincaré and Cartan; 1 have chosen to call
these invariants associated, because of their connection with an asso-
ciated differential system. Secondly, the associated integral inva-
riants are used to extend certain known results in the application of
the theory of integral invariants to the theory of differential equa-
tions. '

I wish to make special mention of theorem 3.2 and 5.3, which
were suggested to me by Prof. A. D. Michal. His criticism has
aided greatly in the completion of this work.

(1) For works on integral invariants see bibliography at the end of this paper.
More complete references may be found in the books of Cartan and De Donder
{1], [2]. (Numbers in parenthesis refer to the bibliography.)
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I.

1. PRreLIMINARY consipERATIONS. — We start with the fundamental
system of first order differential equations

!

d.n ar

=, Lt h UW==1,...,n),

where the & are continuous, with continuous partial derivatives of as
many orders as we shall require (in general only the first two); in a
certain region of n + 1 dimensional space. 'We further require that
they do not vanish simultaneously in this region. Then the system
admits a unique solution

1.2) =l o), ... o) = [t x,),

taking on the initial values z}= fi(t,; ,) where the /' are conti-
nuous, with continuous derivatives of (at least) the first two orders,
in a suitable region V,.,. In what follows we shall restrict ourselves
to manifolds lying entirely within V,, .

Consider a sub-space (E,) of p (p< n) dimensions, within V,,, but
not generated by a p-parameter family of integral curves. Let it be
given analytically by
4.3) Q L= it . ur),

Lt =1t (u', ..., um,

where the u’s range over a domain (e¢,) of u-space, and the matrix

oe 0w o
dut "7 du’ du
1.5
d.l" d.l'"i‘_
dur " dur dup

is of maximum rank.
Next we define a set of differentials

dax! .
6Gﬁ:mdu" [i=1,...,n),
(1.5)

at .
dqt :54_4_"‘1“‘ (¢=1,...,p (afreeindex)]
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the du', ..., dur being arbitrary, and construct the differential form
Aq

oy
gy 0y 2% 0, %

1.6) , <

( D Aty 12y oty 8y B Foy D=1 83l By T, LBy T,
[ =}

We are using the summation convention of tensor analysis; the a's
are summed from 1 ton. The functions A, ,, A,, .., are assumed
to be continuous functions of z', ..., z", t, with continuous partial
derivatives of (at least) the first two orders; we shall also suppose
that they are skew-symmetric, that is, two functions with different
indices will be distinct, but if the indices are the same except as to
order, then the functions are equal, or the negatives of one another,
according as the two permutations of the indices differ by an even or
odd number of inversions. It follows from this that any function
with two equal subscripts is identically zero.

It will be convenient to adopt a symbolism for the differential
forms which we shall consider (*). In doing so we follow Goursat
where possible.  'We write

n, = .\1‘“.1” .. .0,

g N ) ) S
W7 = Ax..x, o, 2,008 05 sPehg 2% L6, T,

o
e 17

.7 »
Qe —u, +2 Wi 851,
[ ==

thus giving a concise expression for (1.6). We see that Q, may be
regarded as a differential form analogous to w®, in the variables
z'y...,x2" t). We shall also have occasion to consider the « con-
tracted » form

» -t
(1. -8) (0)/17 Clg— szf...z,,,, K2y, ‘...1,,5.‘61 £, .6.,.,1 e 60-,‘,_| %511, . .';/nl/'z/‘-

By the derived form of a form « we mean

W, = Aa,...x,, IO 2 T L RS
.
(1'9’ P — ()Az,...z,, . df\z,,.,z,...a,. _ . dAz,...x,,_‘:,,;,’
e Ox3p 11 o.c* I o.r%r

(") Our nolations for » and »’ coincide essentially with those of Goursat,
{37, Ch. II1.
Journ. de Math., tome XVI. — Fasc. I, 1337, 3
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Q) is defined as the derived form of (2, regarded as a form in the

variables z', ..., 2", t. This involves the further expression

( (-)(,,a_). =ag,...a,_08,, '...z,,+,6, L., 0y L¥a-10g4g X% 1.0y T,
(1 1o) . a __dAa‘...n...a,. o dAa,,.,a,,w..a,, o dAz‘...n...a,,-,zl,.,
[ F®e0Bpa™ ) e Jt T Jda% ’
Then
P41
(1.11) sz;,::.,',,+2 03, 35l
p
Evidently .7, differs from (w!”,) only by terms involving the par-
tial derivatives of the A's with respect to ¢. In fact
- JA
(1. 12) (0),/,{,'),: 0),’?_,| + 2. %y —(-;;ruae- i %p 6,. VL ~'3'r-1 L2a, . .,;/‘ VIR

Corresponding to the differential forms w and Q we have the inte-
gral forms fw, fﬂ extended over the manifold (E,). Forexample,

if p=1, 2, we have, respectively
Asdu® - Agdt,

f Mo, 30 % Ba - Ay 8, 08,07 4 Aggd, %13, L.

2. Tue pervitions. — The manifold (E,) is cut but once by any
given integral curve. Thus it determines a p-parameter family of
integral curves of the set (1.2). The equations of this family may be
obtained by substituting (1.3)in(1.2)and solving for the 2% in terms
ofu',...,u:xi=2ai(u',...,ur)=a)(u). Thesearethe equations
of the manifold (E?) which is the « projection » of (F,) on the space
t=1t, by integral curves. If these values are then substituted back
in (1.2) we have

(2.1 o= f|t; zo(w)],
as the equation of the family which we are seeking.

Let us now consider a p-dimensional manifold (E,), derived from
(E,) in the following manner : let each point ot (E,) be carried over
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into the point on its integral curve for which t=1t(u)+ T where T
is a fixed number. The equations of this new manifold areseen to be

{ =T +t(w), z, ()],

2-2) | ¢t =t(u)+T.

If fﬂ is extended over this manifold, its value will not in general be

the same as when extended over (E,). It may be, however, thaf
these two integrals are equal, no matter what the value of T, for an
arbitrary original (E,). In this case we say that the integral is an
associated invariant of p* order of the system (1.1). We designate
itbyI :

(2.3) = f Q.

A particular case arises if we restrict (E,) to be a manifold
throughout which ¢is constant. Then our original (E,) may without
loss of generality be taken as (E)) and T—=t¢—¢,. Under these
circumstances we call the integral a Poincaré integral invariant, and
designate it by I,

2.4) l,,:fco.

Even more generally, however, we may consider manifolds defined
by (2.2), where T is not a constant, but an arbitrary uniform func-
tion of «', ...,u’. This amounts to making a deformation of (E,)

along the integral curves. If the integral [ Q, extended over an

arbitrary manifold of this kind, has the same value as when extended
over (E,) [and also over (E))], then it is called a complete integral
invariant of the system (1.1). For this invariant we use the nota-
tion I. ‘

The above definitions have been laid down on the supposition that
(E,) need not be closed. If the conditions of the definition are ful-
filled when and only when (E,) is closed, the invariants are said to be
relative, and we use the notations J,, J’, J¢ to distinguish them from
those defined above, which will be called absolute.

5. THe Nvariancy conpitions ok I, anp 1. — Consider the diffe-
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rential system

dc dz* __ dt
(8.1) ?::—E-"—:T:df
This will be called the system associated with (1.1). The necessary
and sufficient conditions for an associated integral invariant (absolute
or relative) of (1. 1) is that

— Q=0

the integral being extended over the domain defined by (2. 2).
Let us consider the geometrical significance of the associated
system. Its solution may be written

s = flt—To+ L5 2y, ..., 2,

38.2)
(&= T--Ty+ L,

where the /* are the same functions that occur in (1.2). If(&))isa
p-dimensional manifold imbedded in the (z + 1)-dimensional conti-
nuum of the variables x|, ...,z), ¢,, it determines a p-parameter
family of integral curves of the set (3.2), emanaling from (&)). If
(&)) is defined by

zy= wf,(a:', ey al),

ty =1t (a'y ...,al),

then the manifold (&)) is carried over into a manifold (&,) defined
by

(8.3) %“J:f'[“'—‘to+ln(a);J:o(ac)],
t = T T+ Ly(a).
If now we regard fﬂ as an integral formin the variablesz', ..., 2", ¢,

the necessary and sufficient condition that this be a Poincaré integral
invariant (absolute or relative) of the associated system (3.1) is

evidently that
d
-d—rfﬂzo,
where the integration is over (6,). The differentiation of the

integral is carried out by-the usual rules for differentiating under the
sign of integration. However, from the foregoing considerations,
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and a comparison of (2.2) and (3.3) we conclude that the conditions

di’ll‘ f Q—o, di Q=o,
(Ep)y TJ(s,)

are equivalent. Hence we have proved the fundamental theorem :

THEOREM 3.1. — An associated integral invariant of the system (1.1)
may be regarded as a Poincaré integral invariant of the associated
system (3.1) Conversely, a Poincaré integral invariant of (3.1) in
which the differential form does not devend explicitly on <~ may be
regarded as an assoctated invariant (') of (1.1).

Suppose that I,is an absolute Poincaré invariant of (1.1). The
necessary and sufficient conditions that this be so are well known (?).
They are

[ (dAa,...a,, _ dAlca,...az,, _ _ dAa,...a,,_,k ﬂ'—f— ‘)Au,...a,,
dx*t dx o du® N ae
(8.4) 9 (Asg,.. 0,85 I(Aa,. apub*
e e —— R =0
(¢, k=1, ...,n).
For some purposes it is more convenient to write them in the form
k dik
(8.5) X(Az,...a,,) -+ Al.a,.“a,,d?a, +.. +A°‘x—'°‘p—al’(').—z.';,: =0,
where
L of  of
=9 Y
(8.6) X(H=¢ 2% T o

From equations (3.5) and Theorem 3.1 we can deduce the condi-
tions for an absolute associated invariant I;. They are

X(A A ozt
( °‘l"'°‘”—‘0°‘v+f~-°‘p) + Akay.0.0, ‘E +...
3.7) : ok Jtk
( +A¢1-~-k-«-apm +.oo+ Aa,....o..a,,_,lc&%, =o
(¢, k=1,...,n;0=1,...,p)
together with (3.5).

(') Michal has investigated invariants of the system (8.1) : see (g).
(?) See (3), p. 219.
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The invariant I is characterized by the following theorem.

Theorem 5.2. — /f 1) = f Q, is a known invariant, then 1,— f w,
andl, = f [0, +(w,, &)s] (o arbitrary) are absolute Poincaré inva-
riants of order p and p — 1 respectively. Conversely, if 1,—= f w, and
I

p—1= [ ©,_, arc known invariants, se can construct an invariant | .
Proof : It is sufficient to consider ¢ =p, since any other value
P, y
gives coefficients which are the same except perhaps as to sign.
Denote the coefficients of [, 4-(w,, £),] by B,, ., .- Then

Ba‘... ,:Az,...a o+ /\a,.‘.a,,,kak-

@p— P

We must apply conditions (3.5) to these coefficients. Now, by
(3.5) and (3.7),

. .. U5/ OF OBk
‘\(Aa,,..a,,_,kik) -+ Aja,...zp‘.kgk d;“l + ..t A“l~~~°‘p—!ik‘£‘().llT£,,,, = ai"'ap—lk-d%’
. dzk 02k Jek
‘\(Aa....a,_.o) -+ Al‘a,...z’_,o()_;a' + o+ A“P““P' S0 ()—w;p_‘ =— Aa‘_“,"_‘k —()E-t—;

so that the B, ,  areindeed coefficients of an absolute integral inva-
riant oforderp— 1. Ontheother hand, if jwp__, is an invariant I,_,,

with coefficients B, ,, , and I, is known, then we may define

Ag,..a

2 ap = B:z‘...:! @, xp — Az‘...k.. GPEkv

g—10%g ¢4 e-17gt 1"

aud these coefficients will satisfy equations (3.7), thus enabling us to
construct an I},

From the equations written out in the foregoing proof it is easily
seen that if

3.8) A %!

gk 57 = 0

for arbitrary «,, ..., «,, then the invariant I,_, arising from I}, may
be split into two separate invariants.

Treorem 3.3. —If I, = f Q,is a known invariant, and if equations
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(3.8) are satisfied, then f w and f (w,, £), are both absolute

Poincaré invariants.
It is also worthy of note that from the invariant I,,:fw,, we

obtain the invariant [} | =fw,,8,,+, twhoseintegrand is an Q,,,, most

of the terms of which are zero. For the case p =1 see Theorem 8.1.

Before proceeding further with our investigations it will be conve-
nient to recall so me points in the theory of integral invariants as
developed by Goursat. In particular, we shall discuss invariants
attached to the trajectories of (1.1).

4. ATTACHED INTEGRAL INVARIANTS. — If an integral invariant of the
system (1.1) is also an integral invariant (of the same kind) of the
system
(4.1) j—ﬁi:l(ar’, RN D J AL C AN L )|

dt

where A(a', ..., ") is an arbitrary scalar function of such nature
that A& fulfills the conditions originally imposed on £, then the inte-
gral invariant is said to be attached to the trajectoriesof (1.1). Such
invariants were considered by Goursat (') only when the & do not
depend on ¢. They may be interpreted geometrically as follows.
For any fixed value of ¢ equations (1.1) and (4.1) define the same
direction field in the n-dimensional space of the #'s. But (interpre-
ting ¢ as the time) the change undergone by a manifold during a given
interval is not the same in the two cases. There is a re-allocation of
points of simultaneity on the trajectories. Thus the integral curves
in the space V., are altered. !

To obtain the conditions for attached absolute invariants we
replace £ by A%"in (3.4). Because A in arbitrary we easily infer
that

0Aq,....q,

(4.2) Aoyl =0, b

(*) See (3), p. 236.
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Similarly, from (3.7) we obtain the conditions

Ay, 0.2,

4.3) Aa,...o...a,, ,AE_A': 0, 9 ’ — 0.

These are, of course, conditions which must hold in addition to (3.5)
and (3.7). This enables us to state the theorem :

Tueorem 4.1. — In order that absolute associated invariant )= f Q,
be attached to the trajectories of (1.1), it is both necessary and suffi-
cient that the corresponding 1, — [ w, be attached, and that 1, , = f o'

be an attached absolute incariant.

From Theorem 3.3 and equations (4.2) we have the following
theorem, due (in a slightly restricted form) to Poincaré and
Goursat (').

Tueorem 4.2. — If1,= fw,, s a known incariant, and if the equa-
%

ttons
OAq,..a,
(4.4) - B -5t —o,
are satisfied in addition to (3,8), thenl1, , = [ (w,, &), is an attached

absolute invariant.

8. CoMPLETE INTEGRAL INVARIANTS. — We might deduce the conditions
for complete invariants by a direct analytical process (*).

But it is more elegant, as well as more instruclive, to proceed in a
different fashion. We shall give a new proof of the following theo-
rem of Geursat (*).

(!) See (3), p. 242.

(*) See for instance the method of parametrization used io my paper on non-
holonomic dynamical systems (12), p. 739-741. For this method of proof I am
indebted to Prof. W. F. Osgood, to whose notes I had access.

(*) (4), p. 108g-1091. Goursat's proof, for the case of absolute invariants,

may be summarized as follows. Given 1,= [ w,, we deduce I}, ;= [ ©,3d,.,¢.
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TueoreM 5.1. — A complete integral invariant of (.1) is a
Poincaré invariant attached to the trajectories of the associated
system (3.1).

Proof : The complete invariant fﬂ is characterized by the fact

that its value is unchanged when the domain of integration (E,) is
deformed in an arbitrary, continuous manner along the integral curves
defined by (1.2). Now the trajectories of (3.1) are the integral
curves (1.2) of the system (4.1). If we replace (5. 1) by the system

dx! dzn _ dt

(5.[) _—

o0 :-{-)z"—__ . dr [p=p(x, ..., 2% 8)],

where p is arbitrary, save as to restrictions of continuity, the trajec-
tories are unchanged, but the variation of < along them is altered.

Along a given trajectory, determined by x,, ..., a;, = and ¢ are
related by
¢ dt
— To= —_— t’t’.i’xu
(5.2) TR -f,ow; e Y b @, &)

QL52yy o vy )= P[f 1 (E520)y - ooy J(E5 Z0), 8]

Singling out a p-parameter family of trajectories, we see that
v =const. determines an (E,), and that as © changes, (E,) is defor-

med continously along the trajectories. However, since fﬂ is a

complete integral invariant, its value is unchanged. Therefore it
may be regarded as Poincaré invariant attached to the trajectories
of (3.1). This proof of the theorem is valid for both relative and
absolute invariants. ‘

To find the conditions for absolute complete invariants we write Q
as a differential form in the variables z', ..., 2", t, and ulilize (4. 2).
The result may be stated as follows.

Treorem 8.2 — In order that f Q, be an absolute complete invariant

(¢f.§8). Then by Theorem 8.1 and 4.2 we deduce an I, which is a Poincaré
invariant attached to the trajectories of (8.1). This turns out to be the I£ cor-
responding to I, (see Theorem 5.2 below).

Journ. de Math., tome XVI. — Fasc. I, 1937. [l
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of (1.1) it is both necessary and sufficient that it be an I, for which

5.3 Asyar o0+ Napae e, 2f=0 (e=1,...,p).

The invariant can be written
I;;=fl\a,...a,[6, Z% - Z0g,t]. . [0, 2% — % a%rL ).

From this theorem, Theorem 3.2, and the remark following
Theorem 3.3 we are able to infer the following interesting theorem.

Treorew 8.3. — If I'= f Q, is « known invariant, then we may

write
p
=1+ [ Flo,+ o Daldat,
[ =i

where I, corresponds to f w, and the last integral is an associated inva-

riant, the « Poincaré » portion of which is absent.

Since the &'s and A’s are independent of =, we can theorem 4.2 to
deduce an [;_, from 1.

Taeoren 8.4. — To each 1, = f Q, corresponds an absolute invariant

of order one less :
p—t

l;—c :f“"p?p—ii —+ (wp, E)/"”E(‘”'}:ln £)pout.
p=t
From (8.3) we notice that if I is attached to the trajectories
of (1.1), the coefficients A, _, ., all vanish, so that Q,= w,. In other
words, there is no distinction between an attached I} and the corres-
ponding I,. This could have been foresseen, from the nature of attached
invariants.

6. ReLaTive nvarIANTS. — In this paragraph we shall indicate briefly
the extension of the theory to relative associated integral invariants.
We make use of the generalized theorem of Stokes (') this theorem

(') See (5). o. 334.
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asserts that the integral f w,, extended over a closed p-dimensional
manifold (E,) in () space, is equal to the integral [w;,, extended
over the (p -+ 1) dimensional manifold bounded by (E,). Similarly,
the integral f Q, extended over a closed manifold in (z, t) space is

equal to the integral f Q,, taken over the manifold bounded by the

first one. This gives us a means of passing from relative (or absolute)
invariants to absolute invariants of order one higher. It is almost at
once evident that attached relative invariants go over into attached
absolute invariants. The basic theorems are as follows.

THEOREM 6.1. — Let J; = f Q, be a known relative invariant. Then

J,= f w,, is a relative invariant, and
1,— f DI + (0, E)pass

I, = f W)y Sprat,

are absolute invariants. Furthermore, if

dek
(6.1) Aa,...o0pk ?;"t‘ =o,

the above nvariant 1, breaks up into two distinct invariants.

This theorem is a consequence of theorems 5.2, 3.3, and the
appended remarks. Analogous to theorem 4.1 we have the result :

TreoreM 6.2. — In order that J, be a relative associated invariant
attached to the trajectories of (1.1), it is both necessary and sufficient that

the corresponding invariants J,— f w, and J,_, = f w'? be attached.

p—

Theorem 4.2 enables us, under certain circumstances, to proceed
from a relative Poincaré invariant, to an atlached absolute invariant
of the same order.

Tueorem 6.3. — If J,= f w, s a known invariant, and if the
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équations

get 0 .
(6.2) a,,ma". _0.7 =o, a‘. aaé.l..a,.lu =o,

ll':f("’}'v By

is an attached absolute tnvariant.

are satisfied, then

Theorem 8.2 gives us a means of characterizing complete relative
invariants, and this result, together with Theorem 8.4, leads to the
following result. '

Treorem 6.4. — To each invariant) , = [ ), corresponds an absolute

complete invariant of the same order :
14
Is = f B (), B +E(w‘,;’l. y E)paa Ol
T=1

Relative integral invariants of the first order are know to be of
especial interest when the différential system (1. 1) is of Hamiltonian
form, for such systems are characterized by the complete relative

invariant (*) fp,-gq"—H ot. It is a fact of considerable interest that with

any system (1.1) which admits a complete relative invariant of the
first order there is associated a Lagrangian function L and a canonical
system admitting the same invariant. We shall prove this result as a
consequence of our treatment of the relative associated invariant
without the use of Stokes’ theorem.

Taeorem 6.5. — In order that

fﬂ, EfA,&J,"-J,— A,dt,

be a relative associated invariant J; of (1.1) it is both necessary and

(1) See[1], p. 7 and [12], p. 74o0.
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sufficient that the différential equations

oL da*

.3 dﬂ._X(A)—&-Akd
) JL dg‘
bt =X (A,) + A 9’

form a completely integrable system.

Proof : In the equations (1.2) let the initial values be made to
depend on a parameter in such manner that

(Co) 'zi)zl':)(u)

defines a regular, closed curve C, in the (x,, ..., x;) space.

There is thus defined a tube of integral curves of the set (1.2).
Consider two simple, closed circuits (') C, C’ on this tube, where C
1s defined by

(6.4) = fi(t(u), x(w)) t=t(w),
and C' is obtained by replacing t(u«) by ¢(«)+ T, where T is
a constant. The necessary and sufficient condition thalf(]. be an

d dui at’
‘/c"-ﬁ[A,n +Aod—u|dll—0,

for arbitracry C, and C, the differentiation being along the integral
curves. It is readily seen that the condition takes the form

(8.5) L[("””*“‘a >';’“ (X(A )+Akd )g‘]dt.

Now this is merely a line integral overa closed curvein thelinearly
simply connected region V,.,. Its vanishing implies the existence of a
single-valued function defined by

invariant is that

(o, t) oy
(6.6) L(z, 1)__f (x(A)+A,,3 )dx' (x(AoHAk" ) d,

(') For this terminology see my paper (1.2), p. 737.
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and possessing derivatives which satisfy (6.3), which is therefore a
completely integrable system. Conversely, if the integrability condi-
tions for (6. 3) are satisfied, the integral (6.5) vanishes (*). This com-
pletes the proof.

From the integrability conditions for (6. 3) we can obtain the con-
ditions on the coefficients of Q,, and from these in turn, the conditions
for an attached invariant J;. These are found to be

(2 Myas, S9N oy
dzx o) — dt\dut JF)_*“'

0Ny OAN,, 0 (9N, AN _
dm o) T o .)7,."7)—“-

From the first set of equations, and Theorem 5.1 we conclude that
the conditions for a relative complete invariant are :

(6.8) (')’\i _ ‘)Ak> TR ATV

— —_ -+ - — 0.
dua* duat ) ot du!

(6.7)

TueoreM 6.6. — A necessary and sufficient condition that J{ = | Q,

be a complete invariant of (A.1) is that equations (6.3) admit the
solution

6.9) L= A5+ A,

Proof : That this function L satisfies (6.3) is an immediate conse-
quence of (6.8). Conversely, if we suppose that (6.9) is a solution
of (6,3), we obtain (6.8) at once.

This L is, up to an added constant, the function defined by the
integral (6.6) when (6.8) hold.

Let us now suppose that we know an invariant J{ of (1.1), and let
us regard the function L as a function of ', ..., z*, E', ..., 2, ¢, the
s and ¢ entering merely through the coefficients A,, A, ..., A,. We

observe that
JL _ L OAf 0N, OL
o5 =8 9a T 9w gz

But
dA; . 0A,  OA, IL
~;

—_ kL —_— =
dt = ox* + ot duat

(1) See [10], p. 142-150. This proof does not depend on Stokes’ theorem.
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because of (6.8). Thus, recalling that &'==£', we can write

d JL oL
(6.10) p /il
These equations are equivalent to (6.8). If we regard J{as givenand
seek to find the system (4. 1) for which it is invariant, the equations
take the Lagrangianform (6.10). As might be expected from the
analogy with dynamics, there is associated with (1.1) a Hamiltonian
system, with 2 nindependent variables, which admits the invariant J;.
To show this, we regard L as a function of ', ..., 2", t,and A, asa
functionof A,, ..., A, &', ..., 2", t:

Ay=L — Az,
From this standpoint the Hamiltonian system is

det 9N, . dA,_ 9A,

(8.11) rr vial S el =

and J¢ is the usual complete relative invariant of Cartan.

II.

7. DETERMINATION OF INTEGRAL INVARIANTS. — There are many funda-
mental interrelations existing betwen the integral invariants and
integrals of (1.1). These matters have been dealt with by Poincaré,
Goursat, and Cartan, by a variety of methods. We propose to
extend the known results to embrace the associated integral inva-
riants. It will then be found that these latter constitute a tool of
considerable value in adding to the body of existing theorems.

Our first concern is to show how the integral invariant may be
found when (1.1) is regarded as a known system. The system
(3. 1) admits n distinct integrals

7.1) Yz, .., 2ty =C (i=1, ..., n),
and a last integral of the form

T—1t+ Cn+1,
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If we take y', ..., ", t as our new variables, the system (5.1) is
reduced to the canonical form
A 4l
(7.2) . = _d_ .
] 0o 1

If 1 =fQ,, is an invariant, it is a Poincaré invariant of (3.1) and
if Q, is transformed into Q, (a form in y', ..., y", t) by the change
of variables, then fﬁ,, is an invariant of (7.2). In order that this

be so it is both necessary and sufficient (¢/. theorem 3.1 and equa-
tion 3.5) that the coefficients in 2, be independent of . We can
therefore assert that there will always exist invariants 1), 1,, I}, of the
system (4.1); indeed, if the solution of (1.1) is known, we can

obtain all such invariants, for from (4.2) we can obtain (7.1) ().

8. First orDER INTEGRAL INVARIANTS. — We have seen that when the
the integrals of (1. 1) are known, the integral invariants of thesystem
can be constructed. The reverse problem, that of passing from

(") If the Z's contain ¢ explicitly there may not be any attached invariants |,
orl,. Thus, for instance, consider the system
ds’ ds?

= —— —dt.
t e,l i

It does not admit a non-zero attached invariant 1, as may easily be verified.

There are no attached invariants I,, but there may be autached invariants I,
if the E’s are independent of ¢, for under these circumstances Lhere always exist
attached invariants 1, if p < n (See (3], p. 212-214, p. 236-237). To find all
the attached invariants I}, of (1.1) when the £'s do not contain ¢, we reduce to
canonical form

ds' ds—'  ds"
—_—=...= = — =dt
) o 1
where v
s(xty oo, ) =0C (=1, ...,n-—-1),
sn(xty o, wt) =1+ Cn

are integrals of (1.1). The attached invarianis |, of this system are characterized
by the fact that w, contains neither " nor 3,3, and an attached invariant 1}, is
obtained from an attached I, and an attached 1,_,.
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integral invariants to integrals, is of considerable interest. In this
paragraph we shall see what can be inferred from first order inva-
riants.

ToeorREM 8.1. — If I =fQ. is an invariants of (1 .1),
AxEk+ Ay=const,

‘. . . .
s an integral. If A,‘.%El—zo,AkE" and A, yield two distinct inte-

grals. If I, is attached to the trajectories of (1.1), A,=const. is an
integral independent of t.

Proof : Q,= A;8x'+ A,3t. By (3.5)and (3.7) we have
X (AxEt+ Ag) = o
and if A, ';—E: = o then
X(AE) =0, X(Aj)=o

separately. The last assertion of the theorem is a consequence of the
fact that A,&*=o for attached invariants.

We may regard integrals of (1.1) as absolute Poincaré invariants
of zero order; if the integrals are independent of ¢ they may be
regarded as attached invariants of zero order. With this convention
the foregoing theorem is merely a combination of theorems 3.2, 3.3
and 4.1 for the case p=1.

TueoREM 8.2, — If I = f Q, is an invariant such that

OA,  OA.
ozt~ 9z

then A dx'+ A,dt is an exact differential form du, and it yields an
integral u(x', ..., z", t) = const.

Proof : We know that A,=— A& from this and the hypo-

thesis it follows that
JdA; B JdA, _
Jat . da:i -
Journ. de Math., tome XV1. — Fasc. I, 1937. 5
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whence we infer that the line integral
u(zx, t):fA,d.ﬂ+ A,dt

defines a single-valued function. It provides an integral, for

X(u)=Afi+A;—=o0
Tueoren 8.3. — If J) = f Q, is known, the line integral

([0A;  dAq 0A, 0A, 0A, OAR\,,,
SGE ) e T~ T (G — G Jdi=coms

is an integral of (1.1). This integral vanishes identically if the J) is

aJ:, and it reduces to the integral A,k + A,= const. of theorem 8.1

if I, =1.

Proof : By theorem 6.4 we pass from J; to an invariant I{. It may
be verified that this latter invariant satisfies the conditions of
theorem 8.2, and yields the line integral as given. The last remarks
of the theorem require no comment in view of (3.5), (3.7) and
(6.8).

Treorem 8.4. — IfJ =fﬂ. is known, and if

. O0A;  O0A,
1 22t e
LI THEAR T

then A,= const. is an integralof (1.1).

The proof of this follows at once from (6.8).

In concluding this paragraph we shall make a few remarks about a
result due to Koenigs (‘). He showed that, given an invariant
I,= [ w,, the A’s and ¥'s being independent of z, the reduction of w,
to a canonical form results in the transformation of (1. 1) to Hamilto-
nian form. The exact details of this process depend on the « class »

of the form w,. The result may be used in an obvious manner to
reduce (3.1) to Hamiltonian form when an I} is known. When

() See [6], p. 875-878; also [3], p. 226.
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the I, is attached to the trajectories of (1. 1) the resulting Hamilto-
nian system is one for which H=o, and several integrals of the
system are determined. Regarding I} as an invariant attached to the
trajectories of (3. 1) we obtain the following theorem :

Taeorem 8.5. — I/ If :fQ. is an invariant of (1.1) the correspon-

ding reduction to Hamiltonian formof (3.1) is one for which H=o,
and it leads 2p + 1 or 2p integrals of (3.1), according as Q, is of
class 2p -+ 1 0or 2p in the variablesx', . . .,z" t. Theseintegrals, being
independent of ~, are also integrals of (1.1). In general there will be
nof them.

9. MurtipLIERS AND INTEGRALS. — In this paragraph we shall investi-
gate certain general relations between integral invariants, integrals,
and multipliers of (1.1). The results obtained are generalizations of
the work of Koenigs and De Donder. We begin by discussing
absolute Poincaré invariants of arbitrary order; the use of associated
invariants then gives us immediate extensions.

In working with an invariant I,_.(o <r<n) it is useful to adopt a
different notation for the coefficients A, _, . In any particular set of
indices there are r numbers, say a«,, ..., a, of theset1, 2, ..., n
which are missing. Let us define

(9. 1) B;,_”ar: (— )% ""a")At...u,—na,-H‘..a,—-t Ry 1...n
where
r r

(9.2) oy @) = D (i )= D DR

=1 =1
and o, < a,<...<«. If the indice «,, ..., «, are not in their
natural order we define

Be,...q,==xBg,...,

where §3,.. .03, is the set «,...a, in its natural order, and the plus or
minus sign is chosen according as an even or odd number of inver-
stons is required to bring «,, ..., «, to the form B,, ..., 8,. Lastly,

we define B, , =oif any two «'s coincide.
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We wish to re-write coditions (3.5) in terms of the B's. To do
this we write

9.3)  (— @l X(A )+ A 98
{ 1o, .&g—10+1...1n k2. . ;—1G&+1...0 oz e
() k
+A|...¢,—|ar+x.‘.n-|kﬁi —=o.

In each summation on £, k takes on the value of the place it fills, and

. oF%i . .
the values «,, ..., «. The coefficient Of?)_ﬁ 15 A, i aig. s 1D
which the indices &, «,, ..., a;_,a.,, ..., are missing. With a

little calculation, recalling the skew-symmetry of the A's and B's, we
find that this coefficient, after taking account af the factor (— ) >,
is — B, 4 ua...a-. Itisthen easy to see that conditions(9.3)take

-

the form
, . dE=.
(9.4) X¢( Ba‘,..a,) s Bu,ma,.“ - Z Bu‘.,.h—,*a.nuﬁrd—iﬁ =0
=1
where
R
(8.5) o=2 92
k=1

Let us now introduce a multiple differential operator

O Gy -y §r
(9.6) D(Q,, ey ¢y):. B“l“'a"'d(—;j“:ﬁqi_),
91 ..., - being arbitrary functions of x*, ..., z, t. We shall
demonstrate the following theorem :
Treorem 9.1. — In order that 1,_, be an invariant of (1.1) it is

both necessary and sufficient that

”»

9.7) XD(g,...9,) — ZD(%. 9 X(P) Gy -9y = —aD(gy, . 4)

=1

be an identityin g, . .. ¢,.
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Proof : Let
A 094 9r)

B G )

be the Jacobian determinant in (9.6), and denote its elements by

a%®s % — d?/'
Pe 0x%e

while the corresponding minor is written

Al — (@1 Pot Ppra- - @) |
Pq

T d(x™ .. xPei g, L 2%

Then

,
Aopa, = 2 (=Y *Tagy % Ay

p=1

for any ¢, with a similar relation for summation on p, and

dA
Now
X(Aa,...a,) =(— l)""’"A%iq“'“rX(a%t{i--ﬁr
and
. 9 9, 0 99, ] dg, Ok
a2y — kY ’ 9 ro_ 99,
X(apy ) =% o dz% © 3% 9z — 92 X(9p) 9ok J2%e
But.
— PHq A% Oy Q(P_I’_ — A _
(=1 PYTGXE T Dragon kg o (anyq)
P=t
and

0( Py Pps X(Pp) Ppa. o - Pr)

o{x*. .. 2%

X

" J .
DA s Nig) =
q=1

Therefore, finally

4 s d rtee Pr
(9.8) X(A,‘._.%):Z[d(% 3,(;%.(,59./”;&) 1 @) p
pP=t

(any p).

OE*

%y Kp—1hkUptq.. By %a—,]
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Let us now compute XD(¢g, ... ¢,), using (9.4).

XD(%- CPr)= Aa....a,x(Ba,...a,\' —+ Ba....a,x(Aa.A.‘zﬂ

r d a,
= Aa...‘ar ["‘ aBa....a,- + ZB::,.. X kO g &y _d%]

=1

g (P1e - Ppmt N(Pp) Ppta- - -Gr)
+Ba....¢,|:2§ d(.l‘“'...x"

OEk
- Aa,...z,,_,ka,,,,.,.arji—a"] s ’

- XD(¢y... 9 )=—0D(¢,...¢,) + ZD[Q,. e Ppa X(9p) Ppay - - - 9]

P=1

p=1

as was to be shown. Conversely, if (9.7) is an identity, (9.4)
follows at once, with the aid of (9.8) This proves the theorem.

CorovLary (‘). — If g,, ..., @, are integrals (distinct) of the system
(1.1), and I,_, is an invariant, then D(9¢,, ..., ¢,) is a multiplier of
the system.

This is clear as soon as we observe that the condition for a multi-
plier M is

X(M)+ocM=o.

The knowledge of p distinct integrals of (1.1) always enables us
to construct an invariant I,. For supposethatg,, ..., ¢,are distinct
integrals of (1.1); we then define the coefficients of I,

A, _O(Prs oy Pp) )

Then, since X(¢;)=o0,i=1,2, ..., p, equations (9.8) reduce to
precisely (3.5), thus proving the assertion.

Theorem 9.1 and its corollary have their analogues when we
consider an invariant I’ The coefficients of the form Q,_, may be

n—r*

(*) When r=o the single coefficient M in I, is a multiplier, as 1s well
known. For r=1 this theorem was demonstrated by Koenigs (8), p. 25-27. For
further remarks on this case see [3], p. 223-224.
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described by n—+ 1 indices, among which appear the index zero.
More precisely, we define

l)(a,. . O n—r Al'

Ca,.‘.aro =(— gm0l B — 1O L,

(9.9)

— (... 0 4 o)
Copvo = (— 1) Ot A e tp g1 gL .00

when «,, ..., «.,, are integers from 1 to nin natural order; for other
than natural order we use skew-symmetry to define the coefficients.
Then, if 9,, ..., 9., are arbitrary functions, we define the
operator

. 99, ... grad)
(9.10) D (?1--.?1'4-1): C1;~--¢r+:b—(‘;;:—m§73—,_)'
e+t
0(Ps- - Proy)
+2 Ca,...aa_,om+,... oy d(max_ ‘1. T :;1“”-‘)

o1

As a consequence of theorems 3.1 and 9. 1 we infer that this operator
satisfies an identity of the form 9.7, and that if ¢,, ..., ¢, are
distinct integrals of (1.1), D*(9,, ..., ¢,-,) is a multiplier of the
system. This is not all, however. For, knowing I_. we know the
following invariants

n—

v
]n—r:j ®p_py ln—:l'+1v:fm(,{‘:,!14 -+ ((‘)n-l')g)n—l“\

J— ’ * —— s Y
| P —'f‘l) n—ry 1 n—r i1 —fg n—re.

Corresponding to the r— 1 distinct combinations of ¢,, ..., 9.,
r at a time, the operator D gives us 7+ 1 multipliers. If »_, and
Q,_, are not identically zero, their coefficients may be used to define
new operators D’ and D*, operating on r — 1 and rfunctions, respec-

tively. It may be verified that these operators have the form

n

D@y .orn)= (—an"Baa--.ar-.k O(@r--Pr—1)

dxk dx™. .. 2%

k=1

\ {5 9Ca et 9Caan \ .. g
DY(9,...0-) = (-.nw( ;ﬁ,‘“"+ ‘j”“) (1. -¢r)

d(z*...z%)
k=1
l dBa,...ac_,kav+,...a, 0(% e fP,-)
B E 2 dx* 0(z%. .. % —1tz® ., %)

o= k=1
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In the most general case D’ and D* will lead to L and r + 1 new

rr o+

2
multipliers, respectively. The operator based on 1, ., ,, yields no
new multipliers, it gives the same one that we obtained from D*.
The quotients of these multipliers, taken by pairs, yield integrals
of(L.1), wich need not, however, all be functionally independent.
The situation may be summarized in a theorem :

Taeorem 9.2. — Let an invariant 1,
of(1.1) be given. Then :

and r+ 1 distinct integrals

’r

(r--21r+3)

1° If w, . and Q, ., do not vanish, multipliers

of (1.1) are determined. In the most favorable case this deter-

(r+unr+ 4
2

mines new integrals of the system, provided that the

total number of integrals thus obtained does not exceed n.

20 If Q, =0, and w,_, =o0, then we get 2r—+ 3 multipliers
and 2r+ 2 integrals.

3If Q,_, =w, =o0, we get 2r+ 2 multipliers and r—+1

integrals.

»

The case where r=o is of particular interest. The single coef-
ficient A,, , = (—1)"C, of w, is a multiplier, and so also is thesingle
coefficient

<0G, dG,
(ﬁ; -+ W ’

=

of Q,. The operator D*(¢) is defined

o v 9 Jdg
D (q})__Cg d_.z', -+ Co -dT)
and D*(¢) is a multiplier whenever 9 is an integral. The two multi-
pliers first given determine an integral, however :

a2C, - G,
d.l‘[ dl
o
p=——

and in general D*(p) will be a multiplier wich may be combined
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with one of the others to yield a second integral. Thus the know-
ledge of I is equivalent to knowing two distinct integrals, if n22.

A great many theorems may be proved, dealing with integrals and

integral invariants of associated type. Those stated above will at
least serve to indicate the possibilities.

W O -
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