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ON CERTAIN SYSTENMS OF CURVES IN RIEMANNIAN SPACE. 283

On certarn systems of curces in Riemannian space;

By Caamess H. ROWE.

Trinity College. Dublin,

L. Iysovvenox, — Let V be a Riemannian space of N dimenstons,
the metrie of which is given by

st — R i dlded

m an arbitvary svstem of coordinates 2. By asystent of curvesin V ( we
shall mean a set of ™~ curves which can be delined by ditferential
equations of the form

o2 LSl A
—“::l"( ..t*"') RN
o2 L

wherve s is the length of the are of the curve, and which satisties the
coudition thal a unigue curve of the set joins any two sufficiently
close points.

1f we form a curvilinear triangle with three curves of a given syvstem
and allow it to shrink to a point, the excess over = of the sum of its
angles will in general be an infinitesimal of the same vrder as its peri-
meter. Certain special systems, however (for example, the geodesics
of V), have the property that the excess is always an infinitesimal of

't Throughout this paper. we shall assume that any functions which are
mtrodueed (explicitiv or implicitly) have a safticient degree of regularity o
ensure the validity of onr reasoning from the point of view of the theory of
functions.

.
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284 CHARLES H. ROWE.

al least the same order as the avea (). Weshallsay that such a svstem
of curves has the triungle propery. The main problem of the present
paper is that of determining the sxstems of curves in V that have this
property. )

ln a previous paper ("), | discussed this question in the case where
N =2, and showed that a system of x* curves on a surface has the
triangle property if, and only if, it is arelocity system (). 1t will be
shown in what follows that every velovity svstem in V| has the trian-
gle property, but that it is only when N = 2 thal a system possessing
the triangle property is necessarily a velocity svstem. The result at
which we shall arrive is the following :

In onder that a svstem of curves in N should hace the triangle property.
1t s necessary and suffictent that it showld be possible to represent it by
diflerential equations of the form

l{i‘l“‘ ~
ofx

where s i the length o f the are o f the curve . and where the coe ficients U,
are functions af position wirch are vestrected ondy by the conditions of
mmpmiibilfp- that wure wnplicd by the fuct that the tndependent rartuble
s the are.

We shall see in pavagraph 2 that such systems arve identical with
velocity svstems for N =2, but that they form a wider class when
N > 2. Systems of this hind in V| de not appear to have been studied ()
or named, and we may refer to them as guadratic systems. U is clear
that a guadratic system is a svstem of paths of a speeial type, bat we
shall postpone until paragraph 1 the consideration of the position of
quadratic systems among svstems of paths.

) It is not necessary here to give auy precise meaning o the wavea v of the
triangle. stnce we may replace 1 In any intinilesimal of the ame order as the
square of the perimeter,

5y On certain doubly infinite s1steins of curves one a surface {(Badl. Lme-
rican Math, Soc.. L 36, Igl.\::(n p- ﬁg:l-:ui:b.

{*) For the definition of & yelocity svstem, see paragraph 2 below

v\ particalar svstem of this kivd is considered by 4. L. Syage in connectivn
with non-holonemic geometey ¢ Madh. Lunaden. 0 0 pgeX, po =33-701).
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2. (QUADRATIC SYSTENS AND VELOWITY svstens, — The equations of the
general quadratic system are

f -

N ~ ~
Tt =T

[ HEs

where v is the are of the curve, and where we use the abbreviation

ol
[ B— ~
‘n‘lx
I we write
S T
(L] [J:A__*j\&\‘" If’t‘

the equations 2. 1) may be given the alternative form

N o

N N .

LR N BN Tiiz== T
v o ik N LI

where </<¢ is the svmbul of intrinste differentiation along the curve
with respect to the are, that .

ore d Vg
R L TV O
s S bk

where 77 1s any vector defined at every point of the curve. Itis thus
clear that T, 1= a teusor.

Since &i“\ﬁx is the i first) curvature veector of the curve, we may
slate the definition of a quadratic svstem by saving that the compo-
neats of the curvature vector of any curve of the system are egual to
homogeneous quadratic functions of the components of the unit tan-
gent vector, the cocfticients in these quadratics being functions of
Jrosition,

The restrictions that are implied by the fact that the independent
variable is the arc may be simply cxpressed in terms of the T s, Swee
the vectors 2./ <5 and & ave pevpendicular, « 2. 3) implies that

.

w here

and henee that

R P e O
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The conditions ( 2. ) are necessary and suflicieut for the compatibihty
of the equations (2. ) or(2.3).

On account of these conditions and the sy mmetry of T, in the first
two indices, a quadratic system depends on %Nw@\’"-——m‘) arbitrary
[unctions of position. '

A\ velocity system in Vg is delined as follows (M. If /7 1s a vector
defined at every point of V. a curve of the corresponding veloeity
svstem has the property that its curvatare vector at any point is the
component normal to the curve (*) of the vector /7 at the point. I we
express this property analy tically , we obtain the differential equations
of the velocity svstem in Lthe form

0.4

[N = fi— & (.x‘"l'..l.

N N
nx

It s clear therefore that velocity systems are quadratic syvstems:
for (2.3 may be written in the form (2.3) with

. ST LI i .
.6y T S Y 0 BN o

where ¢} is a Kronecker delta, or equivalently .
e LI . N .
RN Vi —vxale s fiv— oo f.
: Tl . .
A quadratic systeni is not in general a velocity system. — X velocity
syvstem depends on N arbitrary functions of position, whereas a qua-
. 1 - " . )
dratic sy stem depends on 5 N N — 1)z and of these two numbers the
latter is the greater, except when N =2, in which case they are vqual.
The class of quadratic syvslems is thus a wider one than that of velo-

city systems, except when N = 2.

When N = o, every quadratic svsten s a veloctty system. — In order

Uy o Liwka, Vete on veloeity svstems in curced space of N dimensions
vBedi. bmerican Math, Noeo L 2T, wwol pom=Tow

21 We can express 7 unigquely as the sum of a vector norwal o the curve and
avector langential o the curve. We call the former the component of £ normal

to the enrve.
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to identify the quadratic system (2,31 with a veloeity system, we
have to find a vector /f; to satisfy (2.-): and, when N =, these
equations reduce in virtue of (2. 3) to the two equations

2T = :N‘.ri - :‘.‘:_f'!‘ v, = .‘-‘é:_fe I

which can be solved for /, and /..

We may obtain conditions that a quadratic sy stem should reduce
to a velocity system in the case where N 7> o If there exists a vee-
tor f; which satislies (2.0), it 1s given by

PN PN — If_: *'1\;‘,?""

and if we substitute these values in (2. 7% we obtain the equations

[T iIN— Ve U = oe Ty — g T,

FeS L RN

which are necessary conditions that the quadratic svstem should be a
velocity system. They ave also sufficient conditions. hecanse they
express Lthe fact that it is possible to satisfy (2.7 by giving to f; the
values (2.3), When N =2 the equations (2.9} are consequences
of y2, 1Y

a3, Ixpveen svstens or conves, — Our discussion of the problem of
determining the sastems of curves that have the triangle property
involves the notion of the taduction of a sxystem of curves on a surlace
by a given system in V(1 and we shall now explain what we mean by
this.

Let (') be a given systew of curves in V, and let X be any surface
cor Vo) contained in V. We can determine on X a system (W) of x®
curves by the condition that the geodesic curvature vector of any
curve Iy should coineide with the component in X (') of the curvature

U1 I we ave given a vector al a potal of a Vy contained in Vx. we can express
the vector uniquely as the sum of a vecter langentialto Yy and a vector normal
to V. We call the former the componenl of the vector in Vy. and the latter i
component normal to V. There will be no rish of confusing « components » in
this sense. which are vectors, with covariant or countravariant components.
which ave numbers,
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vector of the curve I that touches it at the point under consideration::
or by the equivalent coundition that, whencver a curve 'y and a
curve I touch, the ditference of their curvature vectors at the point
of contact should be normal to X, \We shall say that the system (Fu)
is tnduced (MY on X by the svstem (M),

We shall need later the result that a quadratic svstem (OQ) induces
a quadratie {or velocttv) system on any surface . Let the system of
coordinales &' be chosen so that a given surface X is represented by
the equations " =& = ... =" = o, and let us adopt the conven-
tion that Greek indices take the values 1 and 2 onlv. Let 7, he the
covariant components of any vector at a point of X. Il we regard the
component in I of this vector as a vector of the two-dimensional
space X, its covarianl components in the coordinate syvstem (', )
are the two numbers 7. 1F we apply this to the case wheve 7, is the
curvature vector ol a curve Q which touchex X, so that

1= — Vo, 28,

we see that the covariant componeutsinthe coordinate system (', 0y
ol the geodesic curvature vector of the curve Qv of the induced svstem,
whose unit tangent vector is 0%, are the two numbers

I

The induced system Q) is thus quadratic. bis equations ave

et [ T \) .
—_— DR N B S e L R
st (.\ Pyt SRy

t1 The idea of an tnduced svstem of vurves inhich may he extended at once
1o the case where the sarface s replaced by a Vv is stmilar to the dea of an
induced afline connection +Jee ). AL Seworves, Per Ricer-Ralkal vgud, p. 138,
I the sestem v 1) consists of the paths of an aftine connection. the induced sys-
tem consists of the paths of the induced afline counection. W e may remark that.
Wl s a veloeily system, it indueces a s elocity svstem inaony Vi e vector
assoctated with the induced syvstewm being the component i Vg of the vector
a~sociated with « U b particalar, the extremals i vy of an integeal I wels i
which @ is a function of positten, wnduce 0 any Vy the extremals of the same
integral in Vy.

P23 10 elear of course that in general 287 T - Tygd
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£, Proor oF THE FACT THAT A SYSTEM WIHICH BAS TIE TRIANGLE PROTVERTY 1S
XECESSARILY orapratic. — For the purpose of establishing this vesult,
we shall tiest show that a svsteme (I which has the triangle properiy
induces a quadratic (or velocitvy system on any surface Z. lu order to
do this, it will suftice to prove that any three curves of the induced
svstem (I'v) that pass through an avbitrary point O of X have their
centres of geodesic curvature (') at O collinear; lov, in two dimen-
sions, the definition of a velocity svstem is equivalent to the statement
that the x' curves of the system thal pass through a point have their
centres ol geodesic curvature theve collinear.

Suppose then that we are given three curves of (I'y) through a
point O of X2 and let I, Iy, Uy be the three curves of (') that touch
them there. ' S is any surface containing Uy, 'y, .. S and X touch
at Oz and 1t follows from the detinition of induction that the centres
of geodesic curvature at O of I',. U, I'; on S coincide with the centres
ol geodesic curvature at O of the three given curves on X, Suppose
now that N is the locus ol a vaviable curve of ( ') which moves so that
it constantly meets I} and 'y, and so that, when it comes to pass
through O. it coincides with I',. We may regard the three curves I,
., I', as the limiting positions of the sides of a variable triangle (with
two lixed sides) traced on 8, which shrinks to the point O3 and,
since (1N has the triangle property. the ratio of the excess to the peri-
meter of this Irtangle tends to zero. Hence, in virtue of a theorem
which is proved in the paper mentioned in pavagraph I, the centres
of geadesie curvature at O of the three cueves Uy, Iy, 'y on § arve
collinear. The centres of geodesic curvature of the three given curves
of (I'v). heing the same three points, ave therefore collinear; and 1t
thus follows that the svstem (I'v) 1s @ quadratie system.

We have now to prove that a svstenms () in N oheeh induces « qua-
dratic svstent on every surfuce s a quadratie system. W e shall suppose
that (1) is defined by the differential equations

N
PR

by
LA

11y We are not in reality introdncing elements external to Vi when we replace
the constderation of geodesie curvatuee vectors by thal of cenlres of geodesic
curvature, We do 3o merely to avoid verbal complication in our statements.
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in which the functions 3 satis{y identically the condition of compa-
tibility

Caand N "

where 3,= g, 3". On account of the identity g;;.v'x'=1, there will be
no loss of generality in assuminyg that the lanctions 7', and therclore
also the functions 3;, are homogeneous of degree 2 in the variables 2.
We have to prove that they ave homogenceous quadratic polynomials
in these variables.

Let X be any surface in V, delined by the equations &'=."c 1, v},
and let O be any point on it, whose coordinates are @', or u and v. II
we write

s o e

fmm o

BT e &
the curvature vector v, of a curve of (I wlich touches X at O s

wiven by

Y= ;ti (YRR ;J." AN

Now, the covariant components in the coovdinate-svstem (u, ) of
the geodesic curvature veetor of the curve of ( Uy Ythat passes through O
in the same divection are A'r; and w'r,. Since (I'v) is by hyvpothesis a
quadratic system. these must be equal to homogenecus quadraties in
the contravaviant components of the unit langent vector, that is, in «
and . We shall write ;") instead of 3,(.27..07), which will cause no
confusion since we shall not change the point O, We thus see. on
account of the homogeneity of 3, that each of the functions

(1. R e AN kT = T

15 a polynomial of at most the secoud degree in the vaviable 6. when «'
aud " have arbitrary tixed values. From (. 1) we have

A - S BRI AN DU O

and this shows that the second of the two functions ( §.2) 18 linear
in 5. We may therefore equate 1o zero itssecond and thivd derivatives:
and if we replace 0 by zero alter differentiation and write 2 for 27 we
thus have

Frp =l e aiely

TRV A NN TR

o
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where a partial differentiation with respect o a variable v is denoted
by an index j following a comma. Since the numbers ' are arbitrary,
these imply

Ny

(1.9 Vi (BTY =0 Yiaa (W =u ')

The first of the identities (}.3) leads to
EER IR N

and this shows, on comparisoen with the second, that
Lot ET) ==

It follows that the functions 3; are homogeneous quadratic polyno-
mials in the variables 2", and thercfore that the system (1) is a qua-
dratic systen.

We have thus proved that « svstem of curves en N which has the
triangle property o necessarily a quadratic system ().

#. PROOF OF THE FACT THAT EVERY QUADBATIC SYSTEM HAS TIE TRIANGLE
rrorerty. — Consider first the case of a quadratic (or velocity ) system
for N =2. I we denote by f the vector associated with the system
in the manner already explained, and by K the intrinsic curvatuve
of the surface, then, as was shown in the paper veferred to in para-
graph 1, the excess IS of any triangle bounded by three curves of the
svstem is given by the formula

G B (k= divE)as,

') We use Schonlen’s nolation (Per Rieci-Kalkil . wgryo po adn. The ssm-
bol formed by enclosing in parentheses p of the indives of a term represents
the avithmetic mean of the p! terms corresponding to the p! dillerent arvange-
ments ol these indices.

(2} The result, which we have obtained incidentally, that quadratic systems
ave charseterized by the property of inducing a velocity system on any surlace
tihes the following form in a Euclidean space I; of three dimeusions : Quadratic
svstems in 2, are characterized by the property that the polar lines (or axes
of the vsculating civeles) of the curves of the svstem that touch « plane at a
point meet the plane in collinear points.

Ll

Journ., de Math., tome XIL. — Fasc. 111, [TINRN 37
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where the surface integral is taken over the interior of the triangle,
and where div £, the divergence of the vector £, is delined as follows,
Il /> (z =1, 2) arve the contravariant components of f in any system
ol coordinales .¢# on the surface, then

. b - .
divf— »'—';(ff‘\‘ 2) =¥, fn
o el o

where g is the determinant of the fundamental (uadratic form. and
where ¥, /7 is the covaviant derivative of /7 with respect to 7 (')
The formula (3. 1) proves that every quadratic system on a surface
has the triangle property, and shows also that, as a triangle helonging
to the syslem reduces to a point. we have

. K .
|MM-\-~ sz - - iy £

where A is the area of the triangle. Thus, for a given svslem,
lia (/) depends ounly on the position of the point te which the
triangle reduces.

Consider now a quadratic system QY in V. I Xis any surfuce.
we shall denote by fv the vector that is associated with the velocity
svstem (Quv) that (Q) induces on X, and by div fv the divergence
of fu vegarded as a vector of the two-dimensional space X Also. we
shall denote by Ky the intrinsic curvature of X.

Allow a triangle formed with three curves of the svstem () to
shrinh to a point Q so that the curves that form its sides tend to

(7)) Fhe forovala <3000 may be obtained casily in vur present notation. We
lind from Bonnels Tormula that the excess of anv carvilinear triangle on the

~urlace 1x [/ els - " l b= where = s the zeadesic curvature of a side (Jee
Dampovx, Lecons sur la theorie des surfaces, U3 poat, Nowab 1y 15 the umit
é'. FINReY - (See
ol Me Cosxen, dpplications of the absolute differential calealus, 193
p- 1700 s0 that, it the curve helongs to the veloeity svstem.

vector along the positive normal 1o a curvel ry == — 83y

wols =— n:.‘_ﬁ- s == J* et - Jredrty :

e formula follows al vace on substitating this valoe tor % in the line integral
and transforming inte a surface integral.
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coincide with three curves Q. Q,, Q. of () through O. The
tangents at 1) to these three curves are neceszarily coplanar. and
determine an elementary plane p. Let X be a surface passing
through the three curves that form the triangle. Let it vary with
the triangle and. as the triangle tends to veduce to the point O, let
it tend to coineide with a surface X' through O which is regular
in the neighborhood of O, The surface X' necessarily conlains the
curves Q0 Qu O, and touches p at O I\ is the avea of the
portion of X hounded by the triangle, we have

. »

H_‘; = -::, f [ SR 1S S RTAN
where the surface integral is extended over this portion of X, H we
unpose sufticiently vestrictive conditions on the way i which the
triangle and the surface X tend to thew limiting forms. we may nfer
frour g 5.2 that
tim Ry dis B
\

This show s that every guadratie system has the triangle properiy.

We way show further that, for a given system. lim EfA) depends
only on the ultimate positton and oricntation of the triangle, that is,
on Lhe point O and the elementacy plane p. Let & be the surface
gencrated by the curves of { Q) that toueh pat O (). S aund X7 hoth
coulain the three curves Q,, Q,. Q, through O. and they thervefore
have contact of the second order. By this we mean that the curves
i which the two surfaces are ent by a general V', through O have

("' In the case of an arbitrary svstewm of curves, the curves that pass through
a puint Er in the ! divections of 3 hinvar pencil generate a surtace which in
general has a singulacity at the potat O for it is not o general pessible to tind
a representation == o {w. vy ol the sucface such that the functions wi{u. v
have determinate second partial devivativesat U, lu order that ¥ should always
be an ordinary point it is sufticient {but not necessary) that the svstem should
be guadeatie : we shall see in paragraph 6 that, if the svstem is quadratic, 1t is
possible o chovose the coondinates in Vy so that the sueface is represeated by
Bmcar equations,
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contact of the second order (") or, analytically, that 1t is possible to
vepresent the surfaces in the forms W=z \u. v, 0 =L vy so
that the liest and second partial derivatives of 2% arve vespeetwvely
equal to those of 27 at O ().

Now, for any surface N vepresented by the equations @'= a1, v),
the values of K and div £, at a point depend only on the values of the
functions &y, ) and their lirst and second partial devivatives at this
point. Hence we have at O

hy —dinfy = ko — div £,
so that

I 1\— = h.— dn f.

\We have thus completed the proof of the following theorem :

In onler that a svstenm of curves in N should heve the property: that
the ratio of the cveess to the area of a triangle formed weth three canves
of the svstem tends 1o a It as the wiangle shrinks to a point, 1t i
necessary and suffictent that the svstem shouwld be quadratie.  1f the
svstene 15 quadratie, thes fonit depends ondy on the imiting position of
the treangle and on the lineting orientation o f tts surfuce.

In this statement. we interpret the area of the triangle to mean the
area bounded by the tmangle on any surface contamning its sides
which satislies. as the triangle contracts. the conditions of vegularity
that we imposed above on the surface X.

V) Nee Al Mo Cosxewe, The contact ef carves in Ricmannion spave.
t Proc, London Math, Seco v 0380 10X po de-de-

i 7y In order 1o prove that the surfaces hay e contact of the second veder, we man

choose the coovdinate svstem = 20 that = ==o at O, and 2o thal one of the
surfaces s i il o=t = o0 We may vepresent the other surtace in the
form

F T Y S S S Rt SIS, T N T SN

where vur convention aboul Greeh imdices 1= observed. It s clear vhat, i the
suclaces have i common move than two carves through OV in distinet directions,
we must have ok, == o,
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6. CALCULATION OF THE INTRINSIC CURVATURE OF TRE sURFack 80 — We
shall now consider the problem of caleulating limy EfA Y i terms of
the coellivients T;{in the equations y 2. 3) of the quadratic svstem (4,
when we ave given the point O to which the triangle reduces and the
orientation of the clementary plane pat O, For tlas purpose, it i
convenient fivst to caleulate the imtrinste curvature K, at O of the
surface N generated by the curves of L () that touch p at O,

IFor stmplicity we shall assume that the fundamental guadrvatic
torm of V| is positive-definite.  The modilications that are necessary
when this is not so cau easiiy be made.  Also. we way shghtly
stuplily our notation by writing K, £, divf wsteadof K, £, div £,

We shall suppose temporarily that our svstem of coordinates & is°
a special oune detined as follons.  Let N fixed mutually perpendicular
directions be chosen at O, and let the N numbers ¥ be the cosines of
the angles between these divections and the direction of the tangent
al O to any curve of Q). Then the coordinates of a point 1* an ths
sl wheve v 1s the length of the are OPof
the curve. It is known that the coordinate system thus defined s an
admissible one @ 1t 1s  fact a system of normal coordinates ' for
the system ol paths (O,

At O we have

curve are detined by &

. N
LR R

and thevetore the value off a ssmbol at €V is not alteved il an wdey is
raised or lovered.  Any curve of (Q) through O is vepresented by
cquations of the form & =75 where the numbers ¥ ave constanis,
and  therefore satisties the equations Fafiv*=o. Hence the
coeflicients 17 n the equations 2. v all vanish at O We thus have
M

. V“‘.__,__“[‘__ . <
r. Vv = '\ll’:‘_—_“j&;‘

v Nee 0 Vppes and T4 Frowas. The seometry uff paths « Urans, Lerican
Metde. Soc o 00 19230 po MArdaXa I may be remarked that the coendinate
si<tem that we have de~cribed is an admissible one ouly i the sustew of carves
i3 suadeatic. This follows from a eorem due o b Bouglas + tasals of
Wathematirs v B0 X, Pp- W,
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.

The suvlace S
linear equations: and we shall further choose our system of coordi-
nates so that 8 is the swrlace

is represented i tlns system of evordinates by

N

AN S e S e TN

Let R, be the carvature tensor of \ . that is.

o o . [ . y , .
Ro oo — A ] — — 0 k. — YV R&E kT — hy.r. Vs
T o ! dpse ) bag e N Frdon Y !

Il we denote by K the curvature of V| at €} corvesponding to the
arientation ol X or of p. we have

h==h. ..
Stmilarly. il R, is the curvalure tensor of the two-dimensional
space 87 in the system of coordinates &' %, we have
h =R ...
In addition to vur couvention about Greek wdices. we shall intro-

duce the further convention that a capital Roman index tahes the
values 3. 3, ... N. Then. at any pomt ot &',

-
y N . i ‘
Bosesoo BRseg :—-!"_ Fras. 0 v"_‘“‘ii‘z .
3 P I $ 3ot
and hence at O
Y Rho- R T Tan—Top T

\We can nterpret this formula geometrically.  Haolding 1* tixed
for the woment, we see that -~ T, & is the projection «*) in
the wf-diwvection ol the curvatuve vector of one of the curves of ¢ ()
through O that generate 3. Heunce T, T, — T ¥ (not summed
with respect to Pyis the praduet of the two extreme values that this
projection takes as we vary the curve. I for brevity. we speak of
the projection of the curvature vector of a curve in a given direction
as the curvature of the curve i that direction. we may express (6.2}

1

11 We tollow the notation of Fisexuart. Ricnianniun cevmetry, iqat. p. 2o,
$3) That s, the scalar product of the enrvature vector and the anit vector

whose components are Sp.
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in the folloning geometrical form. which has no reference to any
particular coordinate-system :  To caleulate K'— K. 1ake N—2
directions at () perpendicular to each other and normal te 3. and,
corresponding Lo each of these directions. lind the product of the
extreme values of the curvature at 0 i this direction of a curve
of (U on S0 and add the results.

\We can now express this result analvtically in any coordinate-
svstem. Supposiug that our svstem of coordinates .t is unrestricted.
we may specify  the orientation of p by means of any twe
perpendicular unit veetors (') at O, 2 and 2. which lie i p.
et S PP =3_3.....N) be N —=2 unit vectors () al O which ave
perpendicular to each other and normal to p or 3. The curvature
in the direction of I, of a curve of y Q) through O on N is

— Toaafoos? ol smmliin] oos? — 2l sm% 5

and il we calculate the product of the extreme values ol this as §
vartes. and use the result that we have stated. we hind that

VB30 [N NS MY R TS0 U EO BRI DR R A I S
or
Vo by R R T T LA AR s
where
Ly T

We can derive from this a formula wlich mvolves only the two
vectors 7, 2., Assuming lor the moment that (6,11 holds at O, we

+11 The tormuelae that we shall obtain may be wodifed eazily i QL is prefecred
to specity p by means of lwo arbittary vectors which lie i p.

i1y For these vecturs. and for the tno vectors that lie i po we shall ageee
that the lowner index identilies the vector and the upper index the component.
Since we shall not need 1o lover the mdew 70 it will not be necessary o nse a
potation such as Iy .

t*3 This s of course nothing but the form tahen in cur particular case by
Ricetr's formula tor the carvature of a Vi in Vy  Formole fondamientali nella
teoria wenerale delle varseni o della lore carcatura, Bead. Lineed (3 L
tgor, po 3350020 bat 1t seemed as staple o derive it directly as to adap
Ricers formula.
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may write
M= al— &l —

in (6.3), which thus leads to
O W — R =T T AV AT o Tan 2 2L - T 2z e
The form of this equation shows that it is true when the coordinate-
svstem is unrestricted.

When the quadratic system Q) reduces to a veloeity system we
obtain. on using (2.6), the simpler formula

.y -3

-

G N — =fr

where ) is the vector associated with the svstem.  This agrees with
a result obtained by Lipka ("),

11 13 observed that the second wmember of this formula s the
square of the magnitude of the component of £, normal to 8, a shaple
way of obtaiming the formula by geometrical reasoning suggests itsell.
According to the detinition of a velocity syvstem, the curvature vector
of a curve of the system on 8 through O 1s the sum of f; and a vector
tangential to the curve and therefore to . The curvaturve in the
direction of 3, of any of these curves is thus equal to the projection of
f; in this divection, so that the preduct of the extreme values of this
curvature reduces to the square of this projection.  Heunce K'— N is
equal to the sum of the squares of the projections of f; in the N — =
divections I, and therefore to the square of the magnitude of the
component of f; normal to 8,

We see incidentally that, for a velocrty svatem, the point O 15 an
umbilic on the surface 3. hecause all of the curves of the system
through ¥ that lic on 3" have the same curvature in any direction
normal to 3. Similar reasoming shows that the \ | generated by the
curves of o veloetty svstem that pass through a potnt O tnthe x* ' diree-
tons of a lincar vector-space has an umbilie at O,

7. Carccnanoyx of im(EfA Y. — In order to complete the caleun-

Vo Lavkal Tragectory surfaces, ete s Proe. Limerican dead. of Arts and

Netenees, 130 S, poae-TT L
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lation of lim EJA), we have to find the value of div f', but we shall
not try to do this du‘ectl\' In view of the way in which the corres-
pundmur limit for a O‘eodeatc triangle can be expre:sed by means of
the curvature tensor of V. 1l 1s lmturall to consider the result of
treating the curvature tensor of the system of paths (Q) in the same
wav. If we do this. we shall find that it is more convenient to use
instead a somewhat different tensor, whose relation to the curvature
tensor of the paths we shall examine later.
We wrile

(s 1 f:.*‘zi":t‘_‘rihrié%
where ¥, indicates the operation of covariant differentiation with
vespect te . and

Uvasre == Casig — Lt

Dy 15 a tensor, which is shew-svmmetric in its first two indices, and
also in its last two.  Hence, with the notation of paragraph 6, the
quantity 1 defined by

LT W= il”'s,g;;l”‘"l‘; H N‘__: D0 AMF AT

is an invariant, which depends only on the point O and the orien-
tation of p.  In order therefore to ‘llculdte[ we may suppose that
vur coordinate-system is of the special tvpe that we introduced
in paragraph 6, and that the positive directions of the @'-curve and
the &*-curve at O are re~pecln ely the directions of the two given
vectors 2% and 2, so that 2} =<' 2l =2.. Then we have, w ith the
help of | -.4".

vmds L= = T T — T = Vo Ty — T = 3T, Ty VT b

We can now express I in terms of divf, and K'— K.

As we have seen n pamwmph 3. the covariant components in the
svstem of coordinates @', &* of the geodesic curvature vector of a
curve of the system (Qg) induced by (Q) on 3’ are — lp\‘.,;a‘ Ty
and therefore the numbers T, 5w are th‘e components of the tensor
of the surface X' that defines the induced svstem (Qg) in the
same way as the tensor T, of V, defines the system (Q). If £, are

g
Journ. de Math.. tome X, — Fase, 11, 1933, 38
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the covariant components of the vector f', we have, as in paragraph 2.

o Tas— - e -
(7)) 3 — _: i A';.?,’ o 4‘-2;,;_’ 3 ) — i‘g\I B

Let V. Ty.; denote the covariant devivative, formed with reference tv
the metric of 3, of this tensor, so that at any point of &

vy
TP S50

vy
e

Py v
. |

2 — Vsas
] > :-J He

A W\S-_-g = \-‘_\.'m‘g:@ — T “3

and at O,

Vo Toes= VaTsn— Teoa Tase - FaraTave = Tior Taaee

Substituting these values in (7.3) and simplifsing by means of ¢2.).
we lind that

L= T, Ty = T T = e Taee = T T,

Lif -

or, by (G2,

=T T - T, — R —

¥

L)~

tm.a)

Now, from ( ~. 3 we have

TaTyi= sty Tafom aa Vafi) — o5 Va i

AN
awd from this woe find, using (6. 1), that at O
vq Toe— TL_“I‘I‘M: _l"“-x fl v ‘—.' f.‘ t= I:! \-F.w"':' V= . din .

Thus (7.5) becomes

1 1 N N
sl —divf — i — W
o R

and hence

nm'{:h'_uhf:h_gm S N

This enables us to calenlate lim E/\ ) inany system of coordinates,
since Lis given by (7.2). K'— K by (6.4 and K by

AR = Ry A A%
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It we use the tensor A, defined by

L !
Noie== - Bpije — 5 D
-q 3

we thus have the hnal result

(Bl e Sl _\ el | \f!i.‘i' — ';f,'f‘;‘li;'l",,f,,'l";;.. y A AL

It will he found that this may also be written in the form

N
2

2 l““ T = —\i:ii,(‘ =0 'Jr 1 hir ™7 ‘] L | iren l.{r; lmn Ars ) A"“ l"‘k‘
1

We may express the tensor \,;; in terms of the curvature tensor
of the system of paths (Q), the curvature tensor of V. and cerlain
sums of products of the coefticients T;[. Uf we regard the system (Q)
as a particular sy stem of paths, the corresponding curvature tensor ( ')
B, is defined by
o

:ir_» H’_)__ o e l~r rh N M l‘.’l
ik e ik dk g ik ey [F

and we have the formula (*)

“f'.-’j!. = H'.'ijr. - N T — N i'j" LY Ir'jh —1 i IR

\We thus lind that

O oz B — Bagey — Ry — 2T T — "r,fj‘"'rrkﬂ - 'll‘i,_}"'m‘ru'“ T i) -

8. \ CHARACTERISTIC PROPERTY OF YELOCITY SYSTEMS IN V. — Consider
the form taken by (7.6) for a quadratic system in a space of three
dimensions V. 1fwe suppose that g;; =} at O, we may specify the
ovientation of p by means of the direction cosines /' of the normal to p
at O with rveference to the directions of the coordinate curves at O,
Since we have /' = A* etc., the formula(7.6) expresseslim (EfA)as
a homogeneons quartic in the direction cosines . \We may contrast
this with the corresponding formula in the case where the quadratic

') VerteN and TuoMas, foe. et p. 33).
(7)) Nee Scnovres. fer Bicei-Kalkil, po 86, or Kisexuart. Now-Ricmennian
reomelry. 7o p. o
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system reduces to the geodesics of V;.  Inthis case lim(EfA) is equal
to a homogeneous quadratic in these direction cosines ('), the quartic
reduring to a quadratic in virtue of the identity

l‘,'l.b:_‘_ l’i}?f (I‘:}ﬂ:l.

The problem thus suggests itself of determining the quadratie sys-
tems in V; for which im(EfA) is a homogeneous quadratic in the
direction cosines of the normal to p: or, more generally, of deter-
mining the quadratic systems in V' tor which the formula ( 7.6) reduces
to one of the type

L. 1) lim IT == Fagse A 47

We shall indicate briefly how this problem may be discussed.
Referring to (6.3), we see that a quadratic system has the property
in question only if » ‘
Vo BRI o Ty U1

reduces to something ot the form

in virtue of the equations
2l =1, 2othri =, sk R = o

It 1s naturval te expect, and it may be proved without difficulty,

that this can happen only if a relation of the form
Taa R 2 = (o BV (2 1 25 = O 2 (i 100
holds identicallv. If we eynate coetficientsin this, and use (2. ), we
tind that @, = — b;, and that
T.= ;‘,ﬁ[’ LT A by— 22y by,

which shows that the svstem must be a velocity system.
To show that a formula of the type (8.1) holds for any velocity
svstem, we may substitute the values (2.7) in our formula for

() See Levi-Civita., The absolute differential calculus. 1g2z. po 203,
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lim (E/A).  We find that

(8.2} lim IT = L R A Ak — Vel 4+ SV e — fu i
A

and this may readily be expressed in the form (8.1) ().

\We thus see that a formula of the type (8.1) is characterisiic of

elocity systems.,

In the same way it is clear that velocity systems are the only quadratic
systems for which W is equal to an expression of the same form as the
second member of (8.1).  This result forms a complement to the
result of Lipka that we mentioned in paragraph 6.

9. SESTEMS IN WHICH THE EXCESS OF EVERY TRIANGLE 18 zeno. — It will be
of interest to compare the vesults that we have obtained with the follow-
ing theorem which is due to Douglas : 1 a system of curves in V,
has the property that the excess of every triangle formed by curves of
the svstem 1is zero, then, if N > 2,V must be conformal to a Eucli-
dean space L, in such a way that the curves of the system correspond
to the straight lines of L, (*). We shall show how our results may
be used in order to give an alternative proof of this theorem.

If the system (1") has the property in question, itis clearly a quadra-
tic system for which im (E/A) is alwavs zero.  In virtue of what has
heen said in paragraph 8, it is thus a velocity system.

We shall use again the coordinate-system of paragraph 6 with an
arbitrary point O as origin. The surface generated by the curves of
(") that touch an elementary plane at O is then represented by homo-
geneous linear equations. As Douglas shows, such a surface contains

(') Where
AFmie= B — 2 (0 2w o+ S i Fe — Ve frd.
It is perhaps easier 1o establish the formula (8.2) directly : it can be shown
without difficulty that
div® =V, /7 e (o fu fo— Vo o
and this. combined with (6.6), leads at once to (8. 2).

(%) J. DougLas, Criterion for the conformal equivalence of a Riemann space
to a Euclidean space ( Trans. American Math. Soe.. . 2T, 1g23, p. 299-306).
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wholly any curve of (1" that touches it : and this implies that along
any curve of (I"Ywe have

LI <
(. =N T — s
; X :

If /:1s the veetor associated with the velocity svstem (. we thus
have

i T v .
! ht—“ il —- i fi— i) — :‘“i Efh— .

ljl;" = i
Hence
. (N ] o ln;; X
,\--VH;.‘—‘\—— T At e >
“ ' N v Frrd -~

and, i r=7,
A

S i e o
-t : bort e

where there is no summation with respect to j.  These equations show
that /i is a gradient provided that N > 2, so that we may write
Sfi=9asldx’.  Thesystem (1) is consequently a natural system. and
consists of the extremals of the integral f eely.

Consider a second Riemanmian space V in which the element of
leagth ofs" 1s given by

T N NS A

and cousider the correspondence between V| and \ | in wlich corres-
ponding points have the same coovdinates. This correspondence is
conformal, and therefore the system (") in V| that cerresponds to
(I in Vy has the property of forming triangles with zero excess.
Now the curves of {(I'") are the geodesics of V|, since they are the

extremals of f dv': and therefore every geodesic triangle in \| has

£ We may wse instend the fact that 1t iz possible to tind a coordinale-sy stem
in which the curves (T are represented by linear equations.  In such a coor-
dinate svstem equations of the form fg. vy arve satistied.
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zero excess. llence Vy is a Euclidean space, and its straight lines
correspond conformally to the curves of (I')in V.

When N > 3, it is possible to give a different proof of this theorem,
based on the statement at the end of paragraph 6 and on the theorem
of Schouten {*}Ythat, for N >3, a V| must be conformal to a Euclidean
space if it is possible to find inita VM _,, all of whose points are um-
bilics, passing through an arbitrary peint normal to an arbitrary
direction.

10, Quabkatic sYSTEMS axp svsteMs oF ratws. — We have still to
consider the relation of uadratic systems lo systems of paths in V.

In our Riemannian space V,, let us consider an arbitrvary afline
(symnetric Y connection which is independent of the metric of V,and
is distinet from the Levi-Civita parallelism which is associated with
the metric.  l.et this affine connection be defined by the formulae

[ROINR] Ay -TH b deri=au 'l — r,’ 3
L FA &y

for the parallel displacement of an arbitary vector 2/, the coefficients
1'% being functions of position.  The equations of the paths (or auto-
parallels) of (10.1) ave formed by expressing thal a vector which is
langent Lo a path remains so when it is given a displacement along the
path in accordance with {10.1).  Taking this tangent vector to be the
unil tangent vector, we have the differential equations of the paths in
the form

FTENE el et , o .

A ’lM A5 s =7 ol

[ TLIRLN

where v is the are of the curve, and § is a factor of proportionalily.
\We may wrile these in the cquivalent form

. A C e e
NI — sl et =N
05 -
where
I
=T = . .
l.iA e ']IA 4

A Seworves. d eber die kon forme Abbildun ., ete, (Math. Zeitselwifi,
UL v po 86
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The fact that 2x'/2s and @' are perpendicular vectors shows that
(e i) I PN

In order that (10.2) should have the same form as(2.1) when § is
replaced by the value (10.5), this value must reduce to the form ¢,
in virtue of the fact that &' is a unit vector, the numbers ¢; being func-
tions of position.  \Ve must therefore have identically

T.fm? P e = LY RGN

and hence

'(ll‘w':“h ‘rLf’ii = A '._m LN

Iy

If this condition is satisfied, the paths are represented by the equa-
tions (2.1) if

N - Aoy N
U= Tia— 5199 = 9ky..

The cxistence of numbers ¢, which satisfy (10.3) & thus necessary
and sufficient in order that the paths o f (vo 1) should form a guadratie
system.  1If such numbers exist, then

(1o, 6 (N =TT

and hence, on substituting these values for ¢; 1n (10,3,

(o, IV =T = o s T = T e

The equations (10.7) are thus necessary conditions that the paths
should form a quadratic system. They are also sufficient : for thex
express the fact that it is possible to satisfy {10.3) by giving the values
(10.06) to the numbers ¢;.

We may look at the relation of quadratic svstems to systems of
paths in a slightly different way. By choosing asuitable pavameter
along each path ( the afline parameter), we may write the equations
of the paths of (10.1) in the form

a2 dael e
de2 T IR T

1

{10, ¥)

»~

(') See the first foot-note in paragraph 4.
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New the paths are unaltered if we effect a projective change of the
aftine connection, that is, if we veplace U in (10.1) by I}, where

the numbers %, being arbitrary functions of position. The corres-
L3 b u L
ponding equations of the paths are then

“ o et et
[RRLNY R _— b, = — 0,
of1 5 ot it

where ¢ is a difevent parameter: and these represent the same curves
as (ro2d org1o.3) Now, if we can cheose the numbers ¥, so that
the equations (10.9) admit the ficst integral

el da
IOy, Lo} Dy —— — = eonsi.,
ot ot

we may replace ¢ by » in these equations, and the system is therefore
quadratic. 1t will be seen couversely that we can do this whenever
the paths form a quadratic svstem. Heuce, in order that the paths of
(1. ) should form a quadratic svstem, it & necessary and sufficient
that @t should be possible to effect a prjective change of the affine
connection so that the corresponding equations of the paths admit the
Sirst integral (ro10). Eisenhart gives conditions that this should be
possible ( '), which will be found to be equivalent to (10.3).

lncidentally we have the following theorem, which gives a geone-
trical interpretation of the existence of a homogeneous quadratic first
integral :

1. in a geometry of paths, it is possible to write the cquations of the
paths in the form (10.9) so that these equations admit a homogeneous
quadratic first integral, then it s possible to introduce a Riemannian
metric with reference to which the svstem of paths has the triangle pro-
perty, and conversely,

It may be of interest to remark that celoeity systems in \  are iden-
tical with the systems of paths that arése when the a ffine connection that

(Y Noa-Riemannion geometrv, gz, p. ¥,

“
Journ. de Math., tome X1 — Fasc. 1. wydi. 3G
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we are tmpesing on N reduees to one of Wenls ivpe. 1 the altine
connection i to. 1 s of Wexl's tyvpe, there exists a vector (); such tha

. L I N
U= j;@.w”;-“«»~@‘;,,'@.— N L AR

S

so that the corresponding equations of the pathsave

& . .
BT B e T —
- | .

and we see that et and cro i) ave equivalent it Q =2 /7.
1. M. Thomas bas given conditions that an atlive geometry whose
paths admit the quadvatie st wtegral (1o, 10) should have the same
paths as a Wevl geometey . If an wdex following a comma indi-
cates covariant diffeventiation with reference to the ailine conuection.
so that, for any tensor P
P = J”i LRl R IR A PN

these conditions are

R AN s RN R PO
‘“\—n}'\’ T T L S L R ML LW TR0

It follows from what we have said that these conditions must he
equivalent to the conditions (2.9) that a quadratic svstem should
reduce to a velocity system. That this is so may be verified at once
on remarking that

' Senovres, Iher Rioce-Aaldad, p. -5,

1 oML Taomas. First antecrals in the ceometry of paths { Proc. Nt
Arweed, of Newewees, LI vgat, poovans

e e



