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ON THE FUNDAMENTAL FORMULE OF THE GEOMETRY. 255

On the fundamental formule of the geometry
of tensor submanifolds ;

By P. DIENES.

General conventions.

I. The summation symbol X is suppressed if it applies Lo terms
with two identical suffixes.

L. The first letters of Latin and Greeh alphabets — as suffixes —
vary from 1 to N, the midletters, ¢, 7, £, ..., 05,2, 7, ..., 0, from
1 Lo m, the endletters p, r,s, ...5%, 2,53, ... fromm—1to N.

1L, Grech suffixes are used in initial mathematical axes and Latin
suffixes in general gecometrical axes.

IV. Structure tensors are denoted by floman capitals.

1. The idea of tensor geometry. — All possible groups (z', 2%, . . .,
2¥) = (x*)of N realnumbers, also called points, make up the N dimen-
sional mathematical point manifold Xy. When 2* only varies, the
other N — 1 variables z', ..., 2* ', 2*~', ..., x" being kept constant,
the points so obtained formes the z th parametric line of Xy. N diffe-
rent parametric lines pass through every point.

In the construction of every geometry, the directed interval
(@?, a* 4 Az?), i e. all the real numbers between z* and x* + Az*in
their natural order of magnitude, is made to correspond to our visual
notion of the direction at(x) of the line we called the z th paramelric
line. These N directions at I> are symbolised by the N contravariant
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base vectors ¢(I?), attached to P. This(mathematical) system of local
a

coordinate axes is completed by the N covariant (mathematical) base

a -
vectors e ( P) representing the coordinate hyperplanes.

A tensor at P is, by definition, a polynomial of any finite degree
(2

x
homogeneous both in #(P) and in 2 (P). Linear forms in ¢ or in ¢ are
2 x

also called contravariant and covariant zrciors respectively.

In a change of variables x> =a*(y', ..., "), the increments dz*

. . 7% ol
are transformed by dr*=A7 dy*” where AZ=—— . Hence

)z
edr* = ALdy* and thus
x &«

(1) v =N,
, % 7%
. ., I*
Putting AJ =, so that
BNE o JF PR S
\; A g ’):.5., ‘é .\a,__. ’):,4,

o

we have for the inverse transformation

(=) vz \NY .
Z x
We noticee that A% and A7 denote: diffrrent sets of functions. For
instance, A 7., is, in general, different from A% | or from A%7;.
Covariant vectors and tensors might be transformed independently
of contravariant tensors. For geometrical purposes, however (See
Schouten, 1929, p. 415) it is convenient to put

” e
(%) v = Az
%

-

2

N

from which it follows that
(%) r =A%

If we drop the condition that dz* = A% dy* is an exact differential,
but still suppose that the rank of the determinant of Ay is N, for-
mulae (1) — (4) determine a general change of hase replacing the ori-
ginal mathematical axes by an arbitrary system of independent axes
(base vectors) referred to as (general) grometrical axes (Schouten’s
nonholonomic parameters).
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A manifold of tensors becomes a geometrical manifold or space
if (a) we define local metric, i. e. length and angle, by means of a qua-
dratic form g,,dx*d2® with arbitrary coefficients g.g(2*) = gz.(a%),
(&) we dovetail the local geometrical tensor manifolds so constructed
by a definition of equivalence between tensors at neighbouring points.
Such a connexion replaces the congruence axioms. For further detail
see Schouten 1924 and Dienes 1924, 1926.

2. Tensor submanifolds. — Tensor submanifolds are usually defi-
ned in three steps. (I) A point submanifold X,, of X, is selected,
(I1') a pencil of tensors is assigned to the points of X, (1IT) metric and
connexion are assigned to the selected pencil. In this Art. we shall
discuss (1).

The points of X,, may be selected by N — m equations

(1) (. ....7% =0,

the Jacobian of ®” having the rank m. To obtain a parametric repre-
sentation of \,, we complete (1) by m arbitrary functions & such
that the Jacobian of the complete system ®* be different from zero and
we put

(2) =@ (g, ... 5,
Solving for 2> we have
(%) 2=, ..., u"),

and the points of X,, an characterized by theN — m conditions u” = o,
so that

(4 L2=Wru'. . ., 0" 0, ..., 0)="1a, ..., um),

form a system of parametric equations for X,,.

We put
- . 4 - . o OWZ
‘J) l;z-——-;)?z" = ——1)_,;1’ };‘,_., ’)a_‘, —W’

g

Journ. de Math., tome XL — Fase. 11, 1032, 33
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If (x*)is in X,, the necessary and sufficient conditions that also
(* 4 dx*) bein X, are

(5) Crdr*=du’ =o.

Since dz* is the prototype of contravariant vectors, ¢* is considered
as a vector of X, if and only if the N functions ¢* satisfy the N — m
conditions

(8) Civr=o.

The rank of the matrix (C}) being N — m, if ¢*, ..., ¢*are m inde-

m

pendant sets of solutions to (8), every other sct of solulions is of the
form ¢, »*+ ... + c,¢*. It follows from (6), that Bf form m indepen-
3 m

dent sets of solutions to (8), and thus cvery contravariant vector of
X is a form in the m independent contravariant vectors
(9) e=Be.

)3 %

2 2
The corresponding set of covariant veclorse = x;eis delermined by
the equations

(10) ol B',‘,:: Gy

and, from (6),, B? are solutions of (10) so that every covariant vector
of X, is a form in the m independent covariant vectors

2 2
{11) e —=Bhe.

Thus, the tensors o f X, are the forms homogencous in both systems o f base
2
vectors ¢ and e. We add that the veclors
)

(12) e—=0CZe, e=CJe,
/3 x

form a complementary base called the span (Spannung) of X,.. The
tensors of the span are the forms in e, ¢. The set of vectors (e, e; 2, :’)
is a new mathematical base for X, called the split base.

The definition of the tensors of X,, hinges on (1). Now, there are
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dynamical systems called nonholonomic in which the points i. e. the
independent variables, generalised coordinates, are subjected to nores-
triction, but the changes dz* of the independent variables are restricted
by linear relations, not necessarily exact. This means that in such a
case step (1) in the construction of the submanifold is cancelled, and

the gradients C] = :7);—’:- in(7) arc replaced by arbitrarily assigned func-

tions denoted again by C, This idea of a nonholonomic manifold has
been introduced by Vranceanu (1928), and further developed by
Schouten (1929a cf « Papers quoted » in fine), who denotes it by XY.

The admitted contravariant vectors (directions) of X7 will again
be determined by (8), i. e. any m independent sets of solution to (8),
denoted again by B, lead to a set of m contravariant base vectors (9).
For C we take a fixed set of independent solutions of

(13 (l;.l’?‘:&z.

and putting for amoment «%_;, = B, «_, = C3, the unique set of solu-
tions to the equations

’ 2.5 33
(Iv” //.,',,tg__az‘,,

will be denoted by

- =1 _ .. (ot =
() gy T B, s =

so that all the five equations (6) will be satisfied. In this case, (11)
and (12) determine the remaining hase vectors, and together with (g),
lead to the initial mathematical axes in X’%;. These mathematical axes
or base vectors, whose determination hinges on the originally given C,
may be replaced by arbitrary « geometrical » base vectors or axes

‘ ,' . . . e o
(e, 3 ¢, e)for which Latin suffixes will be used. By definition forms
ip
3 i g

in e, e, or in ¢, e are tensors in the (admitted) facet; forms in e, e or
by i 7

. ..
ine, e those in ils span.

r

The difference between holonomic and non holonomic submanifolds,
as manifested in the determination of the tensors of the submanifold,
is that, in the nonholonomic case, B, B, C3, C] are not necessarily
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gradients. The determination of thetensors of the submanifold amounts
tosplitting the hase of X, into twocomplementary sets, of dimensions
mand N — m respectively. In the holonomic case this process is applied
at the points of X, only, whereas for Xy it applies at every point of Xy.

The construction of a geometry for such tensor submanifold still
requires a definition of connexion and metricin X} (see Arts. 4and 11).
So far [see in particular Levi-Civita (1917) and Schouten (1918,
1924, 1929)] the connexion in X, orin Xy has been defined as the
projection of the connexion in Xy. In this paper we shall consider the
gencral case of an arbitrarily assigned connexion in X7. Moreover,
we shall establish all the fundamental formulae in general geometrical
axes, and shall show that the fundamental formulae of the geometry of
tensor submanifolds can all be obtained in a systematic way by the
method of resolution of tensors. In this way, we shall obtain, in par-
ticular, the extension to X7 of the equation of Gauss and Codazzi,
and that of Kiihne, established for the holonomic case by Schou-
ten (1924, p. 140) and Hlavaty (1926) respectively. Some other equa-
tions obtained by the same method seem to bhe new.

3. Change of base. Resolution of tensors. — In this paper we shall
consider the mathematical axes of X and X/” i. e. the initial mathe-

2 L oa
matical base vectors (e, e) and (g, ese, e) as fixed once for all. The
x 4 G

passagefrom these mathematical axes to general geometrical axes means
to replace e, ¢ and ¢ by N, m;, N —m arbitrary, but independent,
x ) 7

linear combinations of ¢, ¢ and e respectively
x A 7
(1) e =AZe, (;:Bfli, e:Cge;,.

the corresponding inverse transformation is obviously given by

(2) e=AZe, e=Bie, e=Che
x a I3 i 4 pP
where
g 22
(3) AZAZ=32,  AZAP=33

(4) BiBj=4%, BiB!=3di, C;CI=d, CiCi=¥,.
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By convention, the transformation of the covariant base is given
by

x { ,
(5) e=A%e e=Bie o=
— 2yl —277.% bl
c
e

@)

ge.
5"
HE

|
Q

4 i
(6) e:Aze, =1:

In a like manner we may pass from one system of geometrical axes

a L p
(e,e; e,e5¢, e)

“ i p

to another
I3 a
e=A%e, e=AZe,
- a a
(7) . v ol ” »
¢ =Bile, e—=Be, e=Cle, e=Cre
7 i ! V4 ’ 13 r

a’ V4
and then the other set is determined by either of the two equivalent

sets of equations

where either A2, B;, and C/, or AZ, B/, C#' can be arbitrarily given

(8) sAY=3g, BiBl=#, CLCI=4,
v i b ' v
(9) AZAY =04, B}Bg-' =, C/.Cr=adj,.

. t p
Now, any set of geometrical base vectors (e, e; e, e) forms a
tp

special kind of base for X, a split base. If, for a moment, we put

=i i a=p r
e —v¢, ¢ ——e¢, ¢ —e, e —e,
= i a=p P
we have
(10) e=Afe=B e+ Cre, ceey
a 74 i P
«a a 3 P
(r1) e=Afe=Bfe + Cge, ceey

Therefore, from (8) and (9), we have

(2) gB;-'B{,-_-a{, C3Ci=3;, BfCf=o, B,Cf=o,
, B? B+ C5Cp=df.

The last two equations in the first row result from thefact that 7 and p
never assume the same value.
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We also notice that the result of two consecutive changes of base

a ; . « L i i i ” W2
f': A,,,ea, ¢:':: B,,e; c; = ( ,,,»r; ; e=A\"¢, =B, = C/l’,e
t 4 4
and
, o /l" . /f’ [ll ” l/ ,’” ! "”
e—=A%e, = Bf,,e, e=Cle; e=\"¢, = B;, e, e=Cle
E=Baty L gy w’ v
1s a change of bhase
i , “” N i " ”»” .
e=A%e, v =RBir, e==Cle, e==A\"e, r=Bi"e. e:(/;‘, e.
a’ n i i »” / Y2
where
, y A= AL A, Bi-—= BLB;,. (_.//’ = ('//;f.(jl/,’«.
(13)

. A o DB e P O
P A= NTAY, i=BiB. CI=C00,

Finally, expressing e and e in the base ¢ and e, we get
¢ a

r “«
e=B¢e=Pe¢, e:(j;‘,e:C;‘;e
4 a a V2 “a “«

which, from e = AZ ¢, gives
(14) BrAZ=R2,  CoAs=Cs.
In this way we have established the following rules.

(A) Ifthereis a summation (dummy ) suffix in a product of two A's,
two B's or two C’s, the product is equal to the A, B or C of the
remaining suffixes.

(B) If there is a dummy suffix in a product of an A and a B or of
an A and a C, the product is equal to the B or the C of the remaining
suffixes.

(C) If there is dummy suffix in a product of a B and a C, the
product is zero.

(D) By + Ci= AZ, Af=2j, B}: 3} Cr=3g’.

In particular
s+ Ci=Al=3].

This mechanism of transformation factors is due to Schouten. We
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shall also follow his convention of writing one A, B or C only in pro-
ducts of A’s, B'sor C’s. For example

[/ i
B4 B B, = B/t

For tensor components we introduce the following notation. Every

n
vector ¢ = ¢"¢ or « = ", ¢ can be thrown into the form

o
[p— aB[ v _§- '”Cpl‘;.—._,l /\I/”
¢ = ¢v?b,e -+ ¢'Lpe= Vet vie,
i ” { -1
¢ .z ) 4
w—w,Be - n',,(,;;e E | VYRR LR

The two resolutes

- s ~ .
¢ == ptt |),:” o= gl (_‘{;q
and :
— Pa
wi= v, B, w,== (v, C;f,

are called the projections of «“ and w, on the facet and ils span respec-
tively. .

Tensors of the rank 3 have 2* resolutes, and so on. For example,
b

if v = ¢ er, we have

“
) o N ok L
v=v§f(Bj¢7+C{:e)(lllf,e-f-c;e)
VAN

k r k r
—_ RN ayi(h, . arpb a b
= /,Bu/.-f" -+ v l’"(’"f ¢ -+ v,,(,aB,.,ie - vy B[:C,.,e:e.

The first and last resolutes, viz.

Vi=eeBih, ..., oP=eiCEl
lie in the facet and its span respectively so that we might call them the
Sacet and span projections of «. The other two « cross resolutes » having
one suffix in the facet, the other in the span show, however, that pro-

jection on two complementary facets is not, in general, equivalent to
resolution.

4. Connexion and differentiation. — An essentially new idea in the
modern conception of geometry is the construction of a finite space by
dovetailing infinitesimal local geometries, This connexion is established
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by defining equivalence or parallelism between tensors attached to

neighbouring points. If Q(z*+ Ax*)is a point in the admitted facet
at P(x*) so that

0 A== B2 Aut
with arbitrary Au*, the quantities
(2) Aut— Bk Azx>

are the coordinates of the points in the facet, and we put

. 3 { .
(3) e(QiP)=e+ ljebu, e(Q'P)y=e— I},‘éAu“,
/ i !
4 e(QiP)=e+ e hut, e(Q|P)=¢—7PeAut.
r ” ”

If the point R(2*+ Az*) is outside the facet so that
(3) Az*=C2 Aw,
the quantities
(6) Aw =C5 Ar>

are its coordinates in the span near P, and we put

, i { . ]
(7) e(Ri[P)=c+siedut,  e(R[P)=¢— e hu
Vi {
(8) e(RIP)=¢+oleAw, e(R Pj=e—aleAu
r r r

where (P) has been suppressed. The four sets of connexion para-
meters [, 27,, 5,, 57, are arbitrarily assigned functions of z*. Equa-
tions (3), (4), (7), (8) determine the equivalence also for tensors of
any type and rank by the convention that the coefficients in the forms
of the €’s are not affected by the equivalence.

For example, if
i
yv=vyle and w=—we,
J
we have

4 ,
w(R||P)=wi(R)e —w,(R)s}e Au,
j

Y(QUIP)= ¢/(Q)e + v(Qljye Aut,
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thus, retaining linear terms only,

(o) 3w = w(R||P) — w(P) = (dw;— s,m, Aur)e,

9 ov = v(Q|P) — ¢(P)=(d¢'! -i-lj,..v/Au*)f,

where

(10) vl = ¢!(Q) — ¢/(P)=0v!Aut, =B 0,.
dw;=w;(R)—w;(P)=0d,w;jAu*, 03,=C¢0d,.

Therefore we define tensor differentiation by putting

Vil =0y ol l}kvf, VkV/z ()/‘V/ -—lj,y,,
VioP=04er -+ Mf/.' or, Vv, =0, — )‘leh Yps

11 s , .
(1) Vol = 0,¢! + 85,9/, \ A7 ::(),v;—s}, ¢4
Vior=20, 0P+ b o, Veor=0,0,— gl

For tensors of higher rank we extend R. Lagrange’s mixed diffe-
rentiation (R. Lagrange 1922, 1926), used also by Bortolotti (1930)
and Schouten and van Kampen (1930, D-symbolik) to the new types
of differentiation by putting for example

(12) Vivi= Dol + Lol — M v, Vovi=0,vi+ si ol — ol vi.

We shall also consider partially resolved tensors for which differen-
tiation will be defined by formulae like

(13) Vevt= 00l + NG o!BE— 0808, Vwi=0,0,+ s},v]— AZvLCE.
[Finally, we put
(19) V.=BiV,+ C. V..

A7, are the connexion parameters in Xy (geometrical axes).

In a change of base, the transformation of the connexion para-
meters is defined by the condition that tensor differential coefficients
(or tensors differentials) are transformed as tensors, i. e. by the condi-
tions

(15) V,A%=o, ViB{=o, V.Bf=o, VL.C’/’"= o, V,C’;,': 0.

Journ. de Math., tome X1, — Fasc. III, 1g32. 34
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These equations readily lead to the rules of transformation

AL =AU AL+ Ay 0-AY,

\
(16) =Bk Uy + B 0k'Bf, W= BI M+ Cr oG
( =Bl Cis),+BjI, B, o= C/' raf 4 C¥ d.Cl.

/II ‘s’

All these differentiations obey all the ordinary laws of tensor diffe-
rentiation in X,. In particular, contraction and any of the differentia-
tions are interchangeable, and

(17) Vi=o, V3i==0. Vill==0n

where Vindicates V., V, or V,.

In the usual theory, ., V. etc. are not tensors. We have intro-
duced the connexion parameters s and ¢ in order to make them
tensors.

The projected connexions are obtained by requiring that
(18) Se=,A¢, de= e, 'de = ,Ae, ‘60 = ,Ae.

i o i j - g
where A indicates that the following tensor is dealt with as a tensor
of Xy, irrespective of the submanifold. These equations when expli-

cited lead to the following specific values for the connexion para-
.meters [, 7., s, 5,

(19) 1=BiVB%,  h=CLV, (2. ., =B,V.B%L. /=CLV.(C3.

where o can be replaced by «. A bracketed suffix like (/).nftm' a diffe-
rentiation symbol indicates that this suffix is disconsidered in the dif-
ferentiation.

Proof of (19),. We see from e——B;’ e that the components of e

in (e, 1') are B}, j being fixed. Thus

(20) Ae=e(QjP)—e :V,,B,"j) dre=V, B”j, .da”’(Bfle + C{jrl)
i j « ! ’
Hence from da*= Bj dz*, the projection of the difference upon the

facet is equal to ‘
Ae =B, V,B% .dz*.e.
i {
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Ontheotherhand, by definition, 2 = I, dx*e. Therefore, if we require
7 t

that for every ¢ and for every displacement in the facet, i. e. for every
value of dz*, we should have (18),, we obtain for /;, the value given
by (19),.

. The argument is similar for the other equations. The special
values (19) of /, 7., s, 5 will be referred to as the connexion parameters
of the projected connexion, or, briefly, as the projected connexion
parameters, while the general arbitrarily assigned values will be called
intrinsic connexion parameters.

8. Fundamental tensors of the submanifold. — LEquations (4, 16)
show that connexion paramelers are not transformed as tensors. On
the other hand, the equation

3

\a’lm a/,rz Y - e )
. (,”fl',‘-' b 3-‘,—. xl/e’ 'l),.‘,

proves that in any change of bhase the expression

S
( ) "/1_; H r’;-/
K

77

transforms as a tensor. If, however, a suffix of I'%, is not a dummy
suffix, the change of base requires the replacement of I'}, by A7, say,
and our equality is destroyed. Similarly, if we try to change dummy
suffixes a3y into n’b’c’. On the other and, the equation

resulting from B%= A’B; and V, A= o, shows that the expression (2)
is unaltered by changing the dummy suffix « into a. The definition
of (1) requires a specified system of axes, the value of (2) is the same
in every system. We shall say that (1) is a relative tensor, and in this
paper relative tensors will be all defined in the mathematical frame,
while (2) will be called an absolute tensor. We shall see that torsion
and curvature are not absolute tensors.

Another distinction between tensors will be thefollowing. Itis known
that the Riemann-Christoffel tensor transforms as a tensor in a mathe-
matical change of variables only, while in a general change of base it
loses its tensor character. On the other hand, (1) and (2) transform
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as tensors in any change of base (axes). We shall say that (1) and (2)
are geometrical tensors, while the Riemann-Christoffel tensor is a Ricci
tensor only.

Finally, if a Ricci or geometrical tensor contains metric or con-
nexion (i. e. structure) parameters, il will be called a structure tensor.
For example (2) is an absolute geometrical structure tensor. The
projection factors, B/, say, transform as tensors, for

AZBL. B =B,
but they are not structure tensors. We wight call them formal

tensors.
Table 1 gives a list of important tensors.

Tasie 1,
D/, =B,V.B2, dj,= B30 B},— BB,
K/, =C4V,C2, .= C20,C4— Cr0, CL,

Fr, =C4V B3= CQVL-BQ}, Jh= Bj‘l)k(;ﬁ,
G, =BiV,C2=B,V,Cx. 4.=C29Bj,
i, = BLV, B, hi, = B3d,B; — Bjd,B],
i, =C,V,C*, i =C20,C4—Cr0,Cl,
Vo, =V BI=C4V, 8% . 4 =B3d,C
K/, =Bi,V,C*=BV,C%, Li, =C2d,Bj.

The tensors in the first column are absolute geometrical structure
tensors (« may be replaced by a, «, elc.), those in the second column
are relative geometrical formal tensors. F and G are Schouten’s — H
and — L, the alternated (') fis Schouten’s Z.

The set of equations

A} i —5 2 ) i n ___
l}/ - /jl; - Dj/;? =1 E/rln Sjs=—%js— "jn Trs— 74":'— I{"p

(3) ‘I?(Q iP)— f: ( l}"/;‘;’ + F./fl;,’l’) dx*, ff‘Q P) —e= (Gﬁ'l;‘: +7-’r'/;5) dz*,

REP) —e=(5 3 ey dr (RIP) —e=(Ki e +are\dr*
e(R[P) —e=(t,e +Tejdr,  e(R|P)—e=(Kie+aof,e)ds,

(*) Alternation is defined by va; =14 (va,—v1a). averaging (Mischung) by
Viaty =14 (Var+Tra). If there is a suffix between a and / which is not affected by
the process, we put it between two bars (Schouten, 1924).
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where the point Q (x*~+ dx*) lies in the facet (tangent plane) at P
(z*) and R (@* +'dx*) lies outside the facet so that dr*= Bida*,
'dor*= C}dx*, shows that D, E, H, I characterise the difference bel-
ween projected and intrinsic connexion (connexion tensors)while I, G,
J, K characterise the parts of the connexion in X, which is ignored
in the definition of the connexions (projected or intrinsic) in X¢ and
in its span (deviation tensors).

We notice that in the holonomic case no facet (split base) need he
specified at R. Equations (2, 5), however define a split base at R, a
natural though highly arbitrary continuation of that at P.

In Table II we give five fundamental tensors whose alternated
forms with respect to the low suffixes are the torsion tensors.

Tasee 11,

,,‘:: \,,, +~ A7) AY,
T , -+ Bz I)/;B' 2
l'/f = /.{,/,. + f,,. A VA
1" ’-'J -+ le),[’vz
'l" =50 + C*),CL,

s —%r%

These tensors are relative geometrical structure tensors. It is known
that the transform of an infinitesimal square, when we pass from
mathematical to geometrical axes, is not closed. The vector closing
the transformed square is determined in the usual way by the alter-
nated forms of the T tensors. The four torsions of the submanifold
correspond to squares in the facet, span and in both.

We also give the formulae

ViBi= Dj+Fy,  VCE= KR -GF,
(4) V.Bj= Mj-Ji.  V.Ci= UL KL,
Vkar:—D:,,—' o fie "‘(:2: |'.:r F{,,,
v;'B,a:"' ll‘ [\:[,ﬂ v;(:z_»-— IZ‘ J:u)
where

7“— B,‘Dj/,a ";l—(“a jl: e

Proof of (4), :
VB2 =57 VBl = B+ C})V4B!=B¢.B]V;B! + C2.C;V,B!,
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Proof of (4), : ‘ ' ,
VB, =B}, VB + C.V,;Bj,

whose first term is equal to
B/.B:VBj=— B,.B,V,B",

and whose second term is equal to C;,.CV, B!, = — .. B,V,(’.

The proof is similar for the other relations.

Combining V,= B*V,+ C;V, with formulae of (}) we obtain for-
mulae like

( 5) V/I S”—" l j’l ‘;!,' —- l’[}/’ -+ J/”. V/,(::{: l':’,/[’ -+ (}:’,’ 3 l;f/' o= l\;{/l'

and _ ‘ ,
B, ¥, BY== Dy, + 1.

CI‘VI,( /{— ]4,,,, * l, e
[/

(;{: V,/(’j' — j’l - 'lj’l'

B:z V,, (;;’ = (}:,,, —+ K;./,.

(6)

6. Curvature tensors. — Another group of fundamental tensors is
that of the curvature tensors ; they are relative geometrical structure
tensors. To simplify writing we put,

; i i B 5 o B (4
(1) m, =1 Bé+55,CL., uh. =15 Bl ol 1,

TasLe 111,
Cloal N) = 0u Ny o+ NG a NGy - ML Du NGNS
Cleq(m) = duamij ..+ My i oy = NE Dy NG
Clea(pt) =duprie) + WpaBline + N Or NS p7.
i) =0l + Lu Uy -+ BEIBE L = [0 85
Cials) =048y +Shyst,, +CRICosl, =kl
2Clye (L, $)= 0Ll — O+ sp 1 — Uy 15T
-+ Bla. 01 Bm ljlll (‘t ()‘C j/' "‘/7!‘31—' ),3’!”;1 ;/m
Cj,,.:-— Cis:
(’{/.l“) —‘()"ln/] == /r/[/’u 1 hii == l:;[I ')I Bg’ .’rm /l/l]-’r.ﬂ
Cﬂu(ﬂ) = l)uq,, -+ J‘luﬂ", P (’Ild‘ J’cl,,’ —- /‘iltl"rnv
2CL, (1, 0) = 0]y — Nioly+ ol 2 — 14,57,
-+ B:: aBE .M~ C?()kcz'grt""j;;taﬁt— é’ﬁz)'fmo

Crt/ _— rll.’t'
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The geometrical significance of the last eight tensors in Xg and
_ils span issimilar to that of the first in Xy. In Art. 10 we shall express
the 16 resolutes of C%_, in terms of the last eight and in the absolute
tensors D, E, F, G, H, I, J, K. The second and third tensors can be
expressed in terms of the last eight :

(2) C;'-cd(m}:B"“ k() + Celg Gl (5) + BECGChu (L. 5).
i4) Clol ) = BECE Oy 5 CiyCl,y(7) + BECE Clyy (1, 3.

Proof of (2). C.., (m) is the alternation with respect to ¢, 4 of
(1) l},/[ Bl L j/ l)dB —-l)jfl, L — J . 0,CL
~. (/,,,,Bdﬂ-s,,,,c' ;( t B :"‘C‘ \F D N2 (L0 B~ 57,C)
=B 0ul, — BECH 9L+ B,,o,B' it c' o,Bg i CLBY dis)y
ul()/ P Bd()l(“ 5 5 (;l /) C f ‘—1- B, I;nllm -_ le’mt "

‘I‘
- Bi'rallm ‘mt“"' Ce B m/ ’”:— Bgl ()/1\:'[;/.—' B;";Cfl()l \cz"lj

e ‘;;; Bd(’)!;\z.-f}‘— Ca,[’)‘[( ,_..S;',.

The group 3 + 13 is equal to

.\zB,’,d,B’f l=BF.oB;. I+ BLC2IBE. [, =
(3) Bz()/ AZ. [;m : C:.Bd.C?()gBm l . 3 5-13,

jm: -

Similarly, 7 + 15 is equal to A?B;9.C; .5

tl’

P 244 2 tRLE C M -
(")’ B el * l‘; ')/(4‘ f],'f‘ Cch.(J}dk‘;g.of}/,, PR 7 =1,

Thus after alternation, 1+ g and the first terms of (5) and (6) give
;ll (l)
\loreover, 8 416 is equal to
AZ C(l ')t “- j’l~
( 7) B{:C:[. BZ ()¢Cz.o i‘ ~ c‘l.(J’ ()1('3 Jl" PR 8= 16,
and 4+ 14 1s equal to _
(%) B:Cy.B;OBE. L, + C4y.C5 0B, .1, h+14

After alternation, 6 4 10 and the last two terms of (7) and (8) give
C#GCL.(5).
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The remaining terms are 2, 5, 11, 12, (5),, (6), (7),, (8),. We
have to exchange ¢, d and subtract the terms so obtained (and divide
by 2). This difference can be written in the form

BLCl Oudju— s lu',,,, s;':_l:'.m

-+ BL ’)le . jm'—' (‘t ’)l’(‘z' Sip j’:l";'x""’ ,-’,-’;"/,«_I;’,” ]
%y O “)s
. F ;
+(‘£'Bd[')"“.‘i¢"' 9, /I:""";ntlm /I’m!
1

’t ’)k(yx //;‘— Bk(),Bm /;,,, - ﬁ;’;:lj‘m‘—jf:l’}‘: ]a
{3), a: ),

where the bar indicates that the corresponding term has heen obtai-

ned by exchanging ¢, d and taking the negative sign. This proves (2).

A similar argument proves (3).

7. Resolution of T;,. — Since the torsion tensor of X, is the alter-
nated form of T5., we give the resolutes of the latter.

(1) B Tr. = ?ﬁrgy =0, =T} ().
(2) CABT;. =CE2BITS, =FEf = T4(0,
(3) C4BUT;. =CLBHTE, =¥y, - _ff,
(4) B‘C”B" —B,UB"I’;,,..G",,, it
(5) B CiTs, =BYCITE, =M, < T is),
(6) ColeTy,  =CiTy, =V, —This,
(7) CLB)CeTL=CiBECITS, =¥}, — j%,
(8) BiClcTs, =BLCHTS, =K, — 4,

Proof of (1). From

2 —=AZ +A70.A2 and  AL=A AF AT,

b
we obtain the first equality. Moreover
B g+ AFO,AS) =Bi*5 A7 — 1;”, RV
—_— B’l’ "IC-" B’ l)kBa——- PzdkB’ Il

which proves the second equality of (1) by remarkmg that, in the
definition of D);, the dummy suffix x may be replaced by 2. The
proof is similar for the other lines.
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If we denote the resolutes of T;,, ¢ . e., the lefthand sides of (1)—(8)
by T, TZ etc., and the second column by T, etc., we obtain the
following list of formulae for the resolutes of the torsion tensor Ty,

(9) TU/I( A) :TijIZD{j/':“"r{jI'l(l)s

(10) 2Tl (N y= 2Ty = Kl T2 (1) — ¥ — [l
(13) T (N ) =Tl = Floy+ Slpias

(12) 2Vl Ny =28}, =G+ gi,— H. — T (5),
(13 T =T,

(14) Tl ) =Ty = Moy + T (2),

(13) ll/rl—“i'f;kls

(16) T,’,,,:l",,,,—-— l‘xux /’lul

8. Incersion formulae for differentiation of scalars and vectors. —
If /'is a function of the mathematical variables 2%, we have

(s) 0. = A0\ }., S,
and, from 0,87 = (B% + C%y0,Bi = B%9,B; — 7%,
(2) D0 f = (l 0y I"‘ j"‘,,,,)l),j.
In a like manner,
(3) 0, f =0 CE. 0, [ =(C50,C) — k2,) 0. ],
(%) Dl f — 00 f = (DB} — D CE) Do f
=(B3B] - fi - CECl~ 23) D).

For every vector or tensor v, where we have suppressed the suffixes
to make the statement general, V,v = BV, ¢, V,e = C:V..¢, thus

\',Vl.v = VIB',‘:.V,.V -+ Bf’,l V,/ V,V,
V.o =V, CV.0 - CEV,V, 0.

Therefore, from (4, %),

‘5) ‘.lv“—(l},/.--l”“}vv - ;,,V,IV”V

(6) ViV.o =l ~Kiy) Ve - CHV, V0,

‘7) V;lv‘__ [ Sl ;('l":""- J(,:[ _— l':‘;,"—~ Gf,,.)v,,v . B‘i:c;lv;,/v“v.
Journ. de Math., tom: X1.— Fasc. 111, 1932, 35
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We have to caleulate V V..« only.
For vectors we have

(%) ViV vi=—"TL Vo' + Cloy(m)v/,
(9) VuVovr= =Ty Vior =+ Clg(p) o,
(10) V.V. v,-:-'l':’Ld, Vivj— Clog(m)viy
(11) V;,,V,{ .= - ud' Ve~ {f,.,,(p.) Ve

Proof of (8). From V.o = 0.¢ + n/, ¢/, we have
ViV =0,V ¢ — ‘,,{V/,Vi-'r— T

=yl - l),;m . m; 4),/" - \,dV/,V’~~— U RUES 4y, 1LY, V.

J 2 B - 4

From (1)
0, = \gd,,,\z;,.(v,,r - ’”/h )
1.t

The group 3 + 5 is symetric in ¢, d and thus cancels out in the
alternation. From 4 +4- 1.1, the coefficient of

Voo is — Aoy B AL =T,

Finally, in 2 4 6 + 1.2 the coefficient of ¢/ is C,_,(m), this proves (8).
The proof is similar for the other three cquations.

Substituting one of the expressions (8), (11) into one of the formu-
lae (5), (7) we obtain the corresponding inversion formula. For ins-
tance, substituting (8) into (5), written down for ¢ = ¢, and noticing
that

B Wl == B Wy — CIB VL = B, (0 5 Tl - CUFy = fl)

Ill
we obtain
‘l’.’,, v_lv;-"’i Z - ‘Tj‘:’] f;’l_”)VI,V"" ‘_:;'/.t(l)vi,

since the last two terms of (6,2) cancel out.
If we make use of the equations = B¢, = B}¢, we have

\ = V,,B,‘.B vi— BV, o,

where ‘ _ ‘
LAY AR A vV.B = -- By V.B - B, V.By
- )m / Rt
— B Dj,,, AL/

Thus we obtain
i ':;,’ v,lvf.v":— ‘Tf‘l.li—'/fllu) Bjtvb‘“'":’ l ‘;}LI(,) - :’If'll lym”’fllll ,]9/,
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which, in the case of projected connexion, D = o, H=o, reduees to
Schouten’s formula (67) (Schouten 1929).
Combining (9) and (6) and noticing that

Cotrl == BG4 o e Bl (R o W2y - GO, - Tl (3],
we obtain
“,” v‘_l,v,t_"'/ l,’,“( )= A:;” I‘./,"/ "'(lf,‘t(’a')b’.

Combining (8) and (0) we get

(13) CoVee [Tty o b0y N -G sy
and so on.
9. Inversion formulae for tensors. — As typical examples we give
the formulac
(1) V,,\".y'!—r STl Vv = Gl gt Sl - GOy v,
() LA PRSI ¥ A LR o/ (K ST o, B ) )

Proof of (1). From

\',.t"} - \7, Ty
we have
A\ A R RN VA W SR VOV SRS \,’f,,\'/,c;f -t ,\' oA

/
_— 1),/1),43’ =ty \,,, . /j—~ NG s g Sy t),,v"
1 .

JI
1t - [ g
d ’)"‘j - Nl \/,, P \,.q'fl'?},.-‘?“- m/vh"/
9
k
mj,,l) i —mby \b: b= mj,,mh

The groups 346, 5+10, 8 +11 arc symetric in ¢, & and thus
cancel out in the alternation. Moreover

Do == NG Dy NE (VL0 N2l s,

so that collecting terms we obtain (1).
The proof is similar for (2 ) and other analogous formulac.
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If we combine (1) and (2) with (8,5) and (8,6) we get
(3)  VuVevt=—[Th, (1) = 4, 15,64+ BiF Cloy (A) 68— Cig (1) v?,
(4)  SuVpeer=—~[Th,(l) “fllm 1Yy e+ B/'f Ca( ) e — Clhy(3) V5,
(5) V.V, "3! “‘[Tm;(o') : un I\ZX - Cft’l(lb:r:l(-\)"j" C}st(‘)": )
(6) V., Voer= [Tl (3)+ I, Vet - CHCL (ME—Cly(5) 05,

Combining (1) and (2) with (8,7) and noticing that
B Gl = BLCETr + CEBLCI T, = BY [ M2 = Th(s)) <+ CLO 0+ f1L),

CiBYET - BEC,BETE  + CEEBETE, == B"((J”‘—" k) + CLLEL + T8 (2]

n
we obtain
(7) VaVe = S Wty e Th () — g} Vo
— B CEChu( N )t — Cly (L 5) 0,
1., . . ot -
(8) Vo Vivi=— ;[rﬁt(")‘*“J/’f:" 'fk"-)—stklvlr
4+ B CECh ()b Gl 5)0!.

10. HResolution of the curvature tensor. — The inversion formulae
(9,3) —(9,8) lead to explicit relations between the resolutes of the
curvature tensor C7 () of Xy and the various curvature tensors
attached to Xy'. To obtain these relations we have to replace ¢; by B}
(and ¢ by m, say), ¢2 by C; (and p by ¢, say) and multiply by B,
or C..

Forexample, replacing¢ by B and i by m in (9,3 ) and multiplying
by B: we obtain

B Chea (N ) =Clpg( Ly | Thy (1) + [l 1B, Vi B - B,V Ve B
The last two terms can be expressed in the fundamental tensors,
by (8,6) and by noticing that the last term in

H:;VIVLB =10 it V/lr” V; I;
is equal Lo
VB, (B} - C})V,BE= B}, V/B] By V. Bl CI VB, .C} V. B
=— D, D — Gi ¥,

ne

Thus we obtain

(1) B CEu=Clpy+ Fiy Gl Ty Dy — Sy Wie = Dy + D} Doy
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which, in the case of projected connexion (D=0, E =0, H=0,
[=o0) reduces to

(2) BiSid Cloa(N) = Ciyy (1) + F,m('/;;

[n the holonomic case, C7,,(A) and C/,, reduce to the usual (hus
haleed) curvature tensors. Since — F and — G are Schouten’s H
and L, (2) reduces to Schouten’s generalisation of the Gauss equation.
Therefore, (1) and (2) are the generalised forms of the Gauss equation
for non holonomic tensor submanifolds; (1) for general intrinsic
connexion, (2) for the special case of projected connexion.

We give the complete list of relevant formulae for the resolution
Of (:ch(A) .

(3) Bt Choa= Clg (1) + | Tl (1) - [l IBLVLBY - BV, VB
(4)  CREBLECE = Cly () +[Thy (1) = [l ICEVLCP -~ CEV, V1 CE.
(3)  CEBYICE = [T (1) + flaos JCE VA B + CEV Vi BY.
(6) B,COBi4CE. = [Th,(l) + f4,IBLY,CE -+ B, V4V, CF,
(7) “{3 Cizl('bul:(écz(”) -+ [Tff,,, (7)+ ‘ffll]Bft V., B} + B, V.V, B
(%) ChreCly=Cly () ‘*":Tl[fvu(a') ml] AV CE -+ CEV V. .
(9) CLBICHCE /= [Tl (o) - ﬂ'fm CAV, B} = C4V, V. B
(10) B;t(‘lbftl[(‘/n ol — [ l/’,,(o') ml ]B:, V.Cr+ B V.V, C;‘
(11) Biain Cf Clleu= Clpy (1. 5) + ,%[ng("") + fhe— Th(h) — gt 1B, V1 B

+ BLV, V. B4,

(12) CrBLCECE, = Clyy (1.5 ) - 1) [T8,(s) 4+ fh— Th(r) — g ]CLV,C
+CLV,V,.C

(13) CLBA CACE = ST (s) -+ e — Thylh) — 2B )CLN L BY
+ C4 V., V. BY.

(14)  BLCIB{CICL, = [ Thels) + fhe— Th(3) — gh1BLVsC2
+ BLV,V,Co.

The terms containing derivatives of projection factors can be
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expressed in the fundamental tensors by ($.6) and by the formulae

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(2)
(23)
(24)
(5)
(26)
(27)
(28)
(29)
(30)

TR A A ITEE J1 TS SN VA (.,,,,
(.f:V[V/, ,,'.' V/l,,/ "4?/,' t-*- (- ml'
CovV By N f)’,’;, ‘Z:/’ ¥o bl
,,lV/V/,(‘;f’ .V/('rf,/,— . (:”ll’,,,/.
(A 9 L /E 1] VS l”’li;,,, .l’ Ko
CLVN LV, Nl W R
(VAP P”-W v/' B ,I/'I:"/;r/ : "/ '///'

u;,,v,v,(;;f-~v,l\;.,+ 19, W K2,
WLV VB Vi DRI, - Fl R
CLV NG G KL G
LN N D, I;’,, e

BV, VL NG BN, '.,",ﬁll,,,,.
EA A A7 A T [ A TP P

Cov NG Ny 0 K KL,

‘// v/ Vll,” Vﬂ"',//"/ o ”ml mh "' “r//t'
'” A\’ v/‘ JERN 9 s "///. v D/n/.

Substituting (3) — (11) we obtain the final forms of the resolutes
indicated by a bar,

(gl) ‘J‘.'/‘/‘l(\)-_:()},'l(/’ - Ij”'(l!,/,“ . T,’;,.'ll [’3,”‘ '/‘://'/, 'l"/',/ - "_‘/’l/hll - ')/"/' "E’IH]/ .

(3) Clypg(N)=:Clp ) - GG T, 'I',’;f,, L LV VR VIV 7Y
(33) CH(\)= ‘/u,' gt Ve Vi - S8, - Vi — D7 47,
(3%) ‘-;l’",l'/( V)= ‘ 'r /'“nml/' T Gl /’:ll.ll l\;,, i an/:;l, < Bl G vyt
(35) '5”( \)31-";}",/(»"‘) - j;/" l\’, i g]-;/‘ﬂ II'., e l)}m ll; WP | ", .
(’(’) “/ 9'1( \)"—“l ! - l‘:’.t« ;u e 1 ltl! lf’r/ /‘ll:; I ;'m - l{'lh'l;’ l:lx ll// (4
(37 ) ‘ l(\)”'* ’//';. '/:/I o ’r;"ll",';f/ o ’” r;m ) '_7;- [Z1mn “m lm('
(38) Jmt(~'\):3 K, ",mt T;Im l\;/] ~ K, ', e ";.« o~ Vg //1 -
(34y) ‘,',Cjk,(\}_,.:, /hl“ s)———l ,/, l”,(;,,,-[l'”’(s')—g{’,']lj,,,
- I //'l ‘I/k(,)l“/// /l,l - ”Jlll. - l)m "mt |m ml'
(Go) 2Ch Ny == Cl 1. 5) = GRIL, — WEFL, — [ Th(s) — g FL,,
NS TV, = F I/ i l/11."“' DA PR L e
(o) 2Ch Ny =¥l 1, — VI | TRy — 2 |V,
— /% —r//“J”,f/ Foei—n - DRV — WY,
(42) 2 CL(N) == G, — K2 Doy < | Thi(s) — 221G,

“"//t_ T7.07.]K; "‘Grhz l\m/. —ELR,, —

t/( l’l c’l[/.

ry
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From Cj, =—Cj},,, the remaining four resolutes are given hy
the negative values of (39) — (42).

Equation (31) is the extension of Schouten’s form of Gauss’equation,
(32) that of Hlavaty’s and Schouten’s form (Illavaty 1926, Schouten
and van Kampen 1930) of the Kithne-Ricci equation, (33) and (34)
are the cxtension of Schouten’s form of Codazzi’s equations, to non
holonomic tensor submanifolds with independent (intrinsic) fourfold
connexion, in general geometrical axes. The other relations seem to
be new.

In the case of projected connexion, . v. when D =0, E="0, H=0,
| =0, the formulac bhecome quite simple even for nonholonomic
submanifolds. This simplicity is due to the introduction of fourfold
connexion with the corresponding fundamental tensors.

A1. Besolution of metric tensors. — From ¢ = ¢'BY4-'0"C2, the

Va4
squared length of ¢ is resolved into four parts :

(') Sulh ¥ V"""’ ;-l/l; '”‘,’ v’ V/ e ;,l/l; l; ( V["l - ;’/ll/l rt[)b‘,/;‘,,+ )’ll’l(l/l[ V” V'

If v is in the admitted facet, i. e. if ¢"=o, we put

() = el
where
() =) B;‘I'

In this way, the length of ¢ measured in the facet by g;; will be equal
to its original length in X,
In a like manner, if we put

(1) Kpr— Kah Cﬂ' .
the lengtln of a vector ¢ in the span (¢=0), measured in the span

by g Will be equal to its original length in \,.
We also put

‘ 5) gi/:: Suly B, Ch

e

and notice that g,,= g, follows from the symmetry of g.,. Thus we
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can write (1) in the form

— - - A A :

® s 129 1
The angle (v, w) between ¢* and #* is defined by putting
(7) [¢]|w]cos(v, w) = guvew’.

Since the components ¢ of ¢ and ¢ are B} and CZ respectively, we
3 4
have

(8) I(I:”;:,cos(n,e =guBfCl=g,.
'’

iy

Therefore, gi,= o if (@) ¢ or e has a zero length, () ¢ and ¢ are
I3 r {

orthogonal. If the latter is true for every / and p, we obtain from (6)
the pythagorian relation

(9) =]l s o,

Similar considerations lead to the corresponding formulae for cova-
riant vectors with arbitrary g**. We obtain, however, more signifi-
cant relations if we suppose as usual that g are determined by the
equations

(,0) ':’.ﬂ/;;’rm‘ P 6{’.
We also put
(11) KI=Bfgr,  gr=B Clg . grr==Cll g,

All these metric parameters are absolute gcometrical structure
tensors. To keep, however, to general usage, we do not denote them
by capitals.

‘We give a list of fundamental tensors derived from a gives g,

TasLe 1V.

Qute="V,Lui, QI =V, g4,

Qljk == ng,,-, “r‘il = V,.g,,-, r_)'/:/ == Vké"i, ‘V;j == V,g‘f,
P = ng:r, Virg = va,-g‘,’lr, P ;“r = V‘,g‘", v;'r = lgl Ty
Opre=Vrg)r, U,rs =Vagpr, Oy =V, g, Uy =V, g,
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In the resolution of metric tensors we restrict ourselves to Q..,
since, from (10),

(12) Za: Q%G+ 5" aa= 0.

The relations hetween the resolutes of Q.. and the metric tensors
of the submanifold are given by the following formulae, where, again,
resolutes are indicated by a bar,

(13) T:’U/-' :(21/'# = 25mj D:"k— "’l,‘!'r/fjl::fl.h

(%) Q,,.,; =VPir — Zur D — 230 ¥l — 5Bl — mi G,
(1) Q=i —= 28,0 B8 k= 250 G4

(6) O =Wiri-— 24, S — ').g,lfj.l;’,.,,,

(r7) Otre = Vire — gl — 2, 3% — 2,0, — 20K,
(18) Opre=Upre— 22, V) —~ 22, K0t

The remaining two resolutes are obtained from Q.= Q..
II’I‘O()f uf(l3). From
Qi=Vr =Vl B;‘j” o ab+ B?‘}’ \ '
= ( [,",; v‘ B? + ])’? Vl B? )é’u/; + l)’fljt/"" (-_)Il/n‘»

(8,4) readily leads to (13). The proof is similar in the other cases.

We notice Lhat, for an orthogonal span, P and V vanish, bat not
the other four tensors. In the special case of projected connexion and
orthogonal space, formulae (13) — (18) become

(19) Qijr=Qijry

(20) Oirk =— 224 ¥ — £0u Gy,
(21) Qprs= 01,

(22) ‘—5,7,« = Wi/'.n

(23) Qx‘m =— gl :’:—‘ gmi KRS,
(24) Qpri=C prs.

Journ. de Math., tome XI. — Fasc. 111, 1g32. 36
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