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On the fundamental formulae of the geometry 
of tensor s ah manifolds ; 

ΠΥ P. MENES 

General conventions. 

f. The summation symbol Σ is suppressed if it applies to terms 
with two identical suffixes. 

II. The first letters of Latin and Greek alphabets — as suffixes — 
vary from ι to N, the midletters, i, /, ..., o; κ, λ, . .., ο, from 
ι to /72, the endletlers ρ, r, y, c, s, ... from /?2-{- ι to M. 

III. Greek suffixes are used in initial mathematical axes and Latin 
suffixes in general geometrical axes. 

IV. Structure tensors are denoted by Koman capitals. 

I. The idea of tensor geometry. — All possible groups (x\ χ'1, . .., 
,rx) == (x7·) of Ν real numbers, also called points, make up the Ν dimen-
sional mathematical point manifold X

v
 When x3· only varies, the 

other Ν — ι variables xx, ..., xri~x, χ°· ~χ, ..., x* being kept constant, 
the points so obtained formes the α th parametric line of \

v
 Ν diffe-

rent parametric lines pass through every point. 
In the construction of every geometry, the directed interval 

< + ^ h i-e. all the real numbers betweenand arj -f-AarJin 
their natural order of magnitude, is made to correspond to our visual 
notion of the direction at( ■< ) of the line we called the α lb parametric 
line. These Ν directions at Ρ are symbolised by the Ν contra variant 
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base vectors ^(P), attached to P. This (mathematical) system of local 

coordinate axes is completed hy the Ν covariant( mathematical) base 

vectors e(P) representing the coordinate hyperplanes. 
A tensor at Ρ is, by definition, a polynomial of any finite degree 

homogeneous both in c(P) and in c(P). Linear forms in e or in e arc 

also called contravariant and covariant vectors respectively. 
In a change of variables x* = x% (y ', .... yy), the increments dx'J 

are transformed by dx* = A J dy%' where A£=-^— · Hence 
edof = c\%dy%' and thus 

(if t' — Yy'f. 

Putting \* = so that 

AJA^oÇ, Λ*Ά>=4 

we have for the inverse transformation 

(y.) A 

We notice Lliat V* and Λ J denote different sets of functions. For 
instance, A^vl is, in general, different from A* I or from A*.~;\ 

Covariant vectors and tensors might be transformed independently 
of contravariant tensors. For geometrical purposes, however (See 
Schouten, 1929, p. 4':>) 11 is convenient to put 

( ?>) — A *V. 

from which it follows that 

( ?>) — A *V. 

if we drop the condition that<£r* = A*.dy2' is an exact differential, 
but still suppose that the rank of the determinant of A*'is N, for-
mulae (1) — (4)'determine a general change of hase replacing the ori-
ginal mathematical axes by an arbitrary system of independent axes 
(base vectors) referred to as (general) geometrical axes ( Schouten's 
nonholonomic parameters). 
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A manifold of tensors becomes a geometrical manifold or space 
if (a) we define local metric, i, e, length and angle, by means of a qua-
dratic form g

X
fidxxdaP with arbitrary coefficients g«p(®*)=g>«(ar*), 

(by we dovetail the local geometrical tensor manifolds so constructed 
by a definition of equivalence between tensors at neighbouringpoints. 
Such a connexion replaces the congruence axioms. For further detail 
see Schouten 1924 and Dienes 1924, 1926. 

2. Tensor sub manifold%. — Tensor su bmani folds are usually defi-
ned in three steps, (I) A point submanifold X

m
 of X, is selected, 

(II ) a pencil of tensors is assigned to the points of X
m

, (III) metric and 
connexion are assigned to the selected pencil. In this Art, we shall 
discuss (1). 

The points of X
m
 may be selected by Ν — m equations 

( i ) φΡ(.Γ\ .... a?)z=.(y. 

theJacobian of Φ" having the rank m, To obtain a parametric repre-
sentation of \„, we complete (1) by m arbitrary functions Φ* such 
that the Jacobian of the complete system Φ* be different from zero and 
we put 

(Ά) nx .zr*;, 

Solving for x% we have 

(?f) .JCXZ= ψχ( It1. U% ). 

and the points of X,„ an characterized by the X — m conditions u? = o, 
so that 

(!%) Xxz=.lVxiUi. . O. Ο) ΞΞ 'iPiu1. 

form a system of parametric equations for X
m

. 
XVe put 

' ' ' u=-d&' 

and notice that 
B*C%=o, KCZ=o9 

(6) I BiB?-v-C3C|=:^. 

J our η. de Math., tome XI. — Pasc. Ill, 19Î2. 33 
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If (χΛ) is in X
m9

 the necessary and sufficient conditions that also 
(x* dxa) be in X,

;|
 are 

(r) Cxdx%=z clun — o. 

Since dxx is the prototype of contrava riant vectors, c* is considered 
as a vector of X„, if and only if the Ν functions v% satisfy the Ν — m 
conditions 

(8) C2r* = o. 

The rank of the matrix (CJ) being Ν — m, if ca, ..., <aare m inde-

pendant sets of solutions to (8), every other set of solutions is of the 
form c, p* -f- ... -f- cmv*. It follows from (6)., that B" form m indepen-

dent sets of solutions to (8), and thus every contra variant vector of 
X

m
 is a form in the m independent contravariant vectors 

(9) e = B?e. 

The corresponding set of covariant vectors e = x£eis determined by 
the equations 

(lO) .r'
x

bp=:Ô(i. 

and, from (6),, are solutions of (ίο) so that every covariant vector 
of X,„ is a form in the m independent covariant vectors 

(u) e = b'ie. 

Thus, the tensors οf X,„ are the forms homogeneous in both systems οf base 

vectors e and e. We add that the vectors 

(i'i) e — e — C*e, 

form a complementary base called the span (Spannung) of X
m

. The 

tensors of the span are the forms in e, e. The set of vectors (c, e ; e, e) 

is a new mathematical base for Xx, called the split base, 
The definition of the tensors of X

m
 hinges on (r). Now, there are 
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dynamical system» called nonholonomic in which the points i. e. the 
independent variables, generalised coordinates, are subjected to no res-
triction, but the changes ώνχ of the independent variables are restricted 
by linear relations, not necessarily exact. This means that in such a 
case step (1) in the construction of the submanifold is cancelled, and 

the gradients CI = in ( 7) arc replaced by arbitrarily assigned func-
tions denoted again by C*. This idea of a nonholonomic manifold has 
been introduced by Vranceanu (1928), and further developed by 
Schouten (1929a cf « Papers quoted » in fine), w ho denotes it by X,. 

The admitted contravariant vectors (directions) of XJ will again 
be determined by (8), i. e. any m independent sets of solution to (8), 
denoted again by B*, lead to a set olm contravariant base vectors (9). 
For CJ we take a fixed set of independent solutions of 

( 1 3 ) 

and puttingfor a moment = Β>, = CJ, the unique set of solu-
tions to the equations 

( 1 4 ) 

will he denoted by 

(t',f ./>=' \V
7

. C>1·. 

so that all the five equations (0) will be satisfied. In this case, (11) 
and (12) determine the remaining base vectors, and together with (9), 
lead to the initial mathematical axes in \%. These mathematical axes 
or base vectors, whose determination hinges on the originally given C£, 
may be replaced by arbitrary <* geometrical ν base vectors or axes 

(e, e; ey e)for which Latin suffixes will he used. By definition forms 

in c, e, or in e, e are tensors in the (admitted) facet; forms in e, e or 

in c, e those in its span. 

The difference between holonomic and non holonomic submanifolds, 
as manifested in the determination of the tensors of the submanifold, 
is that, in the nonholonomic case, By, B£, Q, C\ are not necessarily 
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gradients* The determination of the tensors of the suhmanifold amounts 
to splitting the base of X

x
 into two complementary sets, of dimensions 

/ηand Ν — m respectively. In the holonomiccase this process is applied 
at the points of X,„ only, whereas for X

x
 it applies at every point of Xx. 

The construction of a geometry for such tensor suhmanifold still 
requires a definition of connexion and metric in Xx (see Arts. 4 and 11). 
So far [see in particular Levi-Cività (1917) and Schouten (1918, 
1924, 1929)] the connexion in X

m
 or in X

x
 has been defined as the 

projection of the connexion in X
x

. In this paper we shall consider the 
general case of an arbitrarily assigned connexion in X™. Moreover, 
wc shall establish all the fundamental formulae in general geometrical 
axes, and shall show that the fundamental formulae of the geometry of 
tensor submanifolds can all be obtained in a systematic way by the 
method of resolution of tensors. In this way, we shall obtain, in par-
ticular, the extension to Xj of the equation of Gauss and Codazzi, 
and that of Kiihne, established for the holonomic case by Schou-
ten (1924, p. i4<>) ai*d Hlavaty(i926) respectively. Some other equa-
tions obtained by the same method seem to be new. 

5. Change 0/base. Resolution of tensors. — In this paper we shall 
consider the mathematical axes of Xx and Xx i. e. the initial mathe-

matical base vectors (e, e^j and e \ e, e^ as fixed once for all. The 

passage from these mathematical axes to general geometrical axes means 
to replace e, e and e hy N, m, Ν — m arbitrary, but independent, 

linear combinations of e, e and e respectively 

(1) e = \*e, e = biee = C*e. 

the corresponding inverse transformation is obviously given by 

(1) e = \*e, e = biee = C*e. 

where 

(î) AJAJ=3J, ASA!=4 

(4) B;.B}=3}, BiB?=3Ç, C?C?=3?, CSCf=<Sj. 
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By convention, the transformation of the covariant base is given 
by 
(5) e — Χχβ, e = B{e, e = CÇe. 

(5) e — Χχβ, e = B{e, e = CÇe. 

In a like manner we may pass from one system of geometrical axes 

[e,e; e,e;e,e) 

to another 

1« a' 

1 « a ' 

where either A*, B}, and c;. or A"', BJ', CJ' can be arbitrarily giyen 
and then the other set is determined by either of the two equivalent 
sets of equations 

(8; Bi'hj=o'j, a;.w;=o»
n 

(9) \ζκ=%, B'i'Y/j—tf·, c^C;;=Ô;. 

Now, any set of geometrical base vectors e\ e, e^j forms a 

special kind of base for X
x

, a split base. If, fora moment, we put 

e =z ρ, e —e, e —ρ, e — p, 

we have 

(10) e — X%e = Btae+-CPlei 

(10) e — X%e = Btae+-CPlei 

Therefore, from (8 ) and (9), we have 

ί BfBi==a{, C;Ci = «J, B?C£=o, BaC£=0, 
K ' \ BfBi+C*Cl=dZ. 

The last two equations in the first row result from the fact that i and ρ 
never assume the same value. 
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Wc also notice that the result of two consecutive changes of base 

e = k"-e, e B/V, e — e ~ Vf,*, * — Β''/*, e — Cs'e 

and 

e = k"-e, e B/V, e — e ~ Vf,*, * — Β''/*, e — Cs'e 

is a change of base 

e = A *e, * = Bj„/?, ίτ — CV'..^, — A'JV. — Bj" e. r — C^V. 

where 
('J> » Ai=A«TAi, !5C=BfBÇ, «>,~=C>;C£, 

('J> » Ai=A«TAi, !5C=BfBÇ, «>,~=C>;C£, 

Finally, expressing e and c in the base e and ei we get 

e = h?e = B;V, e = C"e = C"pe 

which, from e= A®,e, gives 

04) «f A£= Bf. C%\%= Cp. 

In this way we have established the following rules. 

(A) If there is a summation (dummy) suffix in a productof two A1/, 
two B'i or two Cs, the product is equal to the A, Β or C of the 
remaining suffixes. 

(B) If there is a dummy suffix in a product of an A and a Β or of 
an A and a C, the product is equal to the Β or the C of the remaining 
suffixes. 

(C) If there is dummy suffix in a product of a Β and a C, the 
product is zero. 

(D; B£-C£=A£, A »>=*)· C£=3f. 

In particular 
Bt+CZ=At=*t-

This mechanism of transformation factors is due to Schouten. We 
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shall also follow his convention of writing" one A, Β or C only in pro-
ducts of A'*, B'jor C'i. For example 

ft? w, m = 

For tensor components we introduce the following notation. Every 

vector c = \f'e or «r = sv„e can be thrown into the form 

c==. raB'„rjr"Cvi'e, 

c==. raB'„rjr"Cvi'e, 

The two résolûtes 
7' — ν" I »^, r>— e"C/;, 

and 
wf = e« , tr,, = ( v„ , 

are called the projections of t" and w„ on the facet and its span respec-
tively. 

Tensors of the rank 3 have 'iA résolûtes, and so on. For example, 

if e = i'ler, we have 

v
 — "+■ J (lîje -+- C';.e^ 

_ e(> Y>'a(f.e<? -4- v'fCffi'i.e e -h v%B%C?.ee. 

The first and last résolûtes, viz. 

= ...1 

lie in the facet and its span respectively so that we might call them the 
facet and span projections of r. The other two « cross résolûtes » having 
one suffix in the facet, the other in the span show, however, that pro-
jection on two complementary facets is not, in general, equivalent to 
resolution. 

4. Connexion and differentiation. — An essentially new idea in the 
modern conception of geometry is the construction of a finite space by 
dovetailing infinitesimal local geometries. This connexion is established 
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by defining equivalence or parallelism between tensors attached to 
neighbouring points. If is a point in the admitted facet 
at Ρ (a?*) so that 

(ι) Δλ?λ= Β^Δμ* 

with arbitrary Δ#*, the quantities 

(2) Δ//*=Β|Δχα 

are the coordinates of the points in the facet, and we put 

(3) e(Q j P) = e -h /Le lu*, e(Q ί*) — e—l'jkeAufi, 

(.'#) i(Q;;.P) = eH-l&elu*, e(Q||P ) = £ -

If the point Ria^-f-Aa?*) is outside the facet so that 

( 5 ) Δα?* = Cf Au*, 

the quantities 

(6) Au*= O^Ax* 

are its coordinates in the span near P, and we put 

(7) *(K!iP) = e -h s'j
t
e Au*. e(\\\V ) — e — s'

JS
e Au* 

(8) e{1A'\ P)~e-*raf.,e Au*, e(t{[ V)=e — Au* 

where (P) has been suppressed. The four sets of connexion para-
meters llj,., Kp

r/;9
 Sp, *f

rt
 arc arbitrarily assigned functions of x%. Equa-

tions (3), (4), (7), (8) determine the equivalence also for tensors of 
any type and rank by the convention that the coefficients in the forms 
of the e1s are not affected by the equivalence. 

For example, if 
l 

ν — v'e and w — Wie. 
we have 

w( R || P) = W/(R) e — wt{ R ) s^e Au*, 
i 

e(QjjP) = e'(Q)e-f- i>t(Q)l'jkeAit*
% 
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thus, retaining linear terms only, 

^ ) op == ^(QHP) — p(P) = (dv' ■+■ lj/{ef Xuk)e, 

^ ) op == ^(QHP) — p(P) = (dv' ■+■ lj/{ef Xuk)e, 

where 
^ ) op == ^(QHP) — p(P) = (dv' ■+■ lj/{ef Xuk)e, 

^ ) op == ^(QHP) — p(P) = (dv' ■+■ lj/{ef Xuk)e, 

Therefore we define tensor differentiation by putting 

^ ) op == ^(QHP) — p(P) = (dv' ■+■ lj/{ef Xuk)e, 

^kVp=àkvr-+-V;.nvr, Vkv
r

z=zdkv
r
—\Pkvp, 11 

V,<pf = d,pl -h s)
s
 pi, V

t
Vj — d

s
Vj — s), vh 

V,pp= 0,pp+ ?Psvr, à,p
r
— <3P.svp. 

For tensors of higher rank we extend R. Lagrange's mixed diffe-
rentiation (R. Lagrange 1922, 1926), used also by Bortolotti (1930) 
and Schouten and van Kampen (1930, D-symbolik) to the new types 
of differentiation by putting for example 

(r>.) Vkf>f
r
=âkvj.+ Î'j

k
çJ-}P

h
,/
p

, σΡ,ν'ρ. 

We shall also consider partially resolved tensors for which differen-
tiation will be defined by formulae like 

(i?>) Vkp?= <)iy
r

-Y- \?
jc

p';.B£— 'i.f!kpa

p, S'jsv{—\iyaCJ. 

Finally, we put 

(I-Î) V,= B*^+C<V,. 

Xf
JC

 are the connexion parameters in XN (geometrical axes). 
In a change of base, the transformation of the connexion para-

meters is defined by the condition that tensor differential coefficients 
(or tensors differentials) are transformed as tensors, i. e. by the condi-
tions 

(i5) V/,A£=o, VkBi:=o, V.B^o, V*CX=o, o. 

Journ. de Math., tome XI. — Fasc. Ill, ig32. 34 
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These equations readily lead to the rules of transformation 

ι -η;,=Α2^Λ&,+Λ2'^Α;;, 
( % cWj, + Β'} à,% <,=Of,ρ,+ο; a,c;-. 

( % cWj, + Β'} à,% <,=Of,ρ,+ο; a,c;-. 

All these differentiations obey all the ordinary laws of tensor diffe-
rentiation in X,. In particular, contraction and any of the differentia-
tions are interchangeable, and 

(l-) VÎ" = «>, V"3y~<». 

where Y indicates Y
c
, V/; or V,. 

in the usual theory, Yy, etc. are not tensors. We have intro-
duced the connexion parameters s and a in order to make them 
tensors. 

The projected connexions are obtained by requiring that 

( 18 ) de = tie, de = /Δβ, 'de = ΛΔ^, 'de = «Δ*». 

where Δ indicates that the following tensor is dealt with as a tensor 
of Χ,, irrespective of the submanifold. These equations when expli-
cited lead to the following specific values for the connexion para-
meters /, λ,σ, 

(KJJ /),,.= Βί V,Β*. , <==(£▼,<:». 

where α can be replaced by «. A bracketed suffix like (j) after a diffe-
rentiation symbol indicates that this suffix is disconsidered in the dif-
ferentiation. 

Proof of (19)1. We see from e — W.e that the components of e 

in (e, e^j are Βbeing fixed. Thus 

(20) A^ = e(Qi|P) — e — V,.Ma: .dxce— V,Ma: ,ί//·7Β^+·€^Λ. 

Hence from daf= B£ the projection of the difference upon the 
facet is equal to 

Ae = V/. . </#*. p. 
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On the other hand, by definition ,oe = l'jk dxte. Therefore, if we require 

that for every ι and for every displacement in the facet, i. e. for every 
value of dd', we should have (18),, we obtain for/j

/f
the value given 

by('9)>· 
The argument is similar for the other equations. The special 

values (19) of /, λ, s, τ will be referred to as the connexion parameters 
of the projected connexion, or, briefly, as the projected connexion 
parameters, while the general arbitrarily assigned values will be called 
intrinsic connexion parameters. 

ό. Fundamental tensors of the submanifold. — liquations ^4, 16) 
show that connexion parameters are not transformed as tensors. On 
the other band, the equation 

/Λ ' ♦ Λ yjn-A rft'> — -v as///.-' *■ '-{γ 

proves that in any change of base the expression 

(1) /Λ ' ♦ Λ yjn-A rft'> — -v as///.-' *■ '-{γ 

transforms as a tensor. If, however, a suffix of Γγ, is not a dummy 
suffix, the change of base requires the replacement of Π|τ by Λ^,, say, 
and our equality is destroyed. Similarly, if we try to change dummy 
suffixes αβγ into a'b'd. On the other and, the equation 

(3) /Λ ' ♦ Λ yjn-A rft'> — -v as///.-' *■ '-{γ 

resulting from B*= Λ* By and V
k
 Λ* — o, shows that the expression (2) 

is unaltered by changing the dummy suffix α into a. The definition 
of ( 1) requires a specified system of axes, the value of (2) is the same 
in every system. We shall say that (1) is a relative tensor, and in this 
paper relative tensors will be all defined in the mathematical frame, 
while (2) will be called an absolute tensor. We shall see that torsion 
and curvature are not absolute tensors. 

Another distinction between tensors will be the following. It is known 
that the Riemann-Christoffel tensor transforms as a tensor in a mathe-
matical change of variables only, while in a general change of base it 
loses its tensor character. On the other hand, (1) and (2) transform 
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as tensors in any change of base (axes). We shall say that(i) and (2) 
are geometrical tensors, while the Riemann-Christoffel tensor is a Ricci 
tensor only. 

Finally, if a Ricci or geometrical tensor contains metric or con-
nexion (i. e. structure) parameters, il will be called a structure tensor. 
For example (2) is an absolute geometrical structure tensor. The 
projection factors, By, say, transform as tensors, for 

A£B¿.B?= IK, 

but they are not struclure tensors. We wight call them formal 
tensors. 

Table I gives a list of important tensors. 

TABLE I. 

π;,=Bi 4=b)^b; , 
. vj;.h==c*<)kc<i- Cidto;, 

Vju =CSV1Bjf=:CSTAB»y.. fJA = B*d*C£, 
II;,, = BiV,Bjf, 4 = Β^,Βί-

II;,, = BiV,Bjf, 4 = Β^,Βί-
II;,, = BiV,Bjf, 4 = Β^,Βί-
jj, = C£V,bj= csvji»,. yj, = bj^cs, 
k;, = H!

xr,C*= BiV,C* , = Q d„Bi. 

The tensors in the first column are absolute geometrical structure 
tensors (2 may be replaced by a, a', etc.), those in the second column 
are relative geometrical formal tensors. F and G are Schouten's —H 
and — L, the alternated (')/is Schoulcn's Z. 

The set of equations 

λ£/;= λ£/.— e£,;, ="4-it),, *';.,=Vrt- ι*, 

<?( R |j Ρ) — * = (7'e -f- Jj, ί R |j Ρ ) — e = (K'tre -h aprte\ dx*, 

<?( R |j Ρ) — * = (7'e -f- Jj, ί R |j Ρ ) — e = (K'tre -h aprte\ dx*, 

(J) Alternation is defined by νίΛλΐ = | (ναι,~νι,α)* averaging (Mischung) by 
ν(α/Λ = Tj, {vab+vba). If there is a suffix between a and b which is not affected by 
the process, we put it between two bars (Schouten, *9^4). 
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where the point -dx%) lies in the facet (tangent plane) at Ρ 
{xx) and R {x% -\-'dx%) lies outside the facet so that dx%=\I*da/', 
'dx*=i C?dx*, shows that D, Ε, H, I characterise the difference bet-
ween projected and intrinsic connexion (connexion tensors) while F, G, 
J, Κ characterise the parts of the connexion in X* which is ignored 
in the definition of the connexions (projected or intrinsic) in Xy and 
in its span {deviation tensors). 

We notice that in the holonomic case no facet (split base) need be 
specified at R. Equations (2, 5), however define a split base at R, a 
natural though highly arbitrary continuation of that at P. 

In Table II we give five fundamental tensors whose alternated 
forms with respect to the low suffixes are the torsion tensors. 

TABLE II. 

Τ &=/& C£, 

Τ &=/& C£, 
Τ &=/& C£, 

ΤHJfhB'x. 
Τ &=/& C£, 

These tensors are relative geometrical structure tensors. It is known 
that the transform of an infinitesimal square, when we pass from 
mathematical to geometrical axes, is not closed. The vector closing 
the transformed square is determined in the usual way by the alter-
nated forms of the Τ tensors. The four torsions of the submanifold 
correspond to squares in the facet, span and in both. 

We also give the formulae 

ivkh]= + XiCf= Iν/. —G?/., 
V,B;= HJ+JJ,, V,C-= I« +K%, 

ivkh]= + XiCf= Iν/. —G?/., 
ivkh]= + XiCf= Iν/. —G?/., 

where 
Fyt=CjF% 

Proof of (4)ι : 

VtBf = ̂ V4Bi= ( BJ-t- C2,T<BJ=Cî.CjViBÎ, 
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Proof of (4)5 : 
Vi B'=Cil v*B/„ 

whose first term is equal to 

B£.B}r*Bi=-Bi.B£T,Bj, 

and whose second term is equal to Cn.C^,(Wh = — Cfa. 

The proof is similar for the other relations. 
Combining Τ

Λ
== B*V/f-b C/,V, with formulae of (4) Ave obtain for-

mulae like 

( 5) V b lYj— \)j(j -t- Ijlj-h tt/Λ -+- Jy/,ΐ Τ— \'J'
rh

 -Γ- (β% 4- Ι",, U"it, 

and 
/ b'

a
 Τ I, By = \}'jh -f I \'j,

t
. 

\ C£V/,C" = E£,, — Kb-. 
\ C£V/,C" = E£,, — Kb-. 

\ C£V/,C" = E£,, — Kb-. 

β. Curvature tensors. — Another group of fundamental tensors is 
that of the curvature tensors ; they are relative geometrical structure 
tensors. To simplify writing we put, 

(I) = + ,<= 'tiM-

TABLE 111. 
CU(\) = <hd\",n , 4- \"eKdY\h,cS 4- YfAr 

rtjcdi.™) = <>[dni[j\
C
,4- m'

kul
rYi\j

ycS
 4- \f

r

d/ Y
x
.m)

r

. 

^J'rcd( ) ^'\dV"\r\c\ ~r~ \*"q\dirfr\c\ ^fr \J-rrm 

c'jM =<MU + β^β2'.A/l'y,· 
CjJfi(s) =d:tS'M 4-C fA.O^s),. -r-kWjn, 

Cy/.·, (/, s) — d
t
 v

jU
 - <)

k
j
Jt

 -t- s'
ml

 i"/,
;
 — i'

m
 ,
;
*y

t
 ' 

4- BPWZ.l'j,,,- Cf âkC£ Jj,,-r fut*), — tiV'jm, 
C'jt!;— Uj

kt
, 

C>;u( λ) = d ôKr'M '.'iu'Ui + K'h + /Un*™ 
C>;u( λ) = d ôKr'M '.'iu'Ui + K'h + /Un*™ 

2θ;,
;ί
0; σ)=ά

ι
'//;^— dkV"rt + ï'iMk— >·?/.*& 

C>;u( λ) = d ôKr'M '.'iu'Ui + K'h + /Un*™ 
C'jt!;— Ujkt, 
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The geometrical significance of the last eight tensors in X"and 
its span is similar to that of the first in X*. In Art. 10 we shall express 
the 16 résolûtes of in terms of the last eight and in the absolute 
tensors D, E, F, G, H, I, J, K. The second and third tensors can be 
expressed in terms of the last eight : 

(?) Cjcd<m) — BcdCjf<i(h C^
d

Cj
u

(j!) -h B(
c

Ce
d]

Cj/
U

( /. χ). 
= Βίί%./<λ>- c&CMf)-+- BfeCi,a;Aia, 9). 

Proof of (2). C'jcJ (m) is the alternation with respect to c, d of 

(4) = Βίί%./<λ>- c&CMf)-+- BfeCi,a;Aia, 9). 

- (f^% + I?,- Xl'liVcVj,.BÎH- ) 
= KCW),^ B'adtBU'ju^r Oad&U^ C< Βk

d
â

k
*Jt 

- <Ζ,4,ή.-τ BilOlO,..s'/,-C^),C-e.s;j,-r 

- C;BÎ4,,«7,- Β^λλ?./},. 

- Wj'hK-s),-C&<A\?..«;
V

 · 

The group 3 -h 13 is equal to 

\*Β^Β*./)4.= B£.d/Bx./j-A.-f- BiQd/BÎ./;ft = 
(5) B&. B? d, A? ./j„ - Oc tt'Jt.C* dk B?. l)M, ... 

Similarly, 7 -t- i5 is equal to A*Wdd
e
Q„.jjt — 

(«) B&.BÎd,QBj.C?€fcCS.<$„ ... 7 15. 

Thus, after alternation, ι -f- 9 and the first terms of (5) and (6)give 
(l) 

Moreover, 8 -f- ιβ is equal to 

A* Ci, i). Ci. = 

(~) Bp Od. Bf
;
 0

t
 Ci. -r- . Cf <Ά . 5y

r
, ... 8 -i- 16, 

and 4 + <4 equal to 
A*t£dfB£./)*= 

(8 J BpC£. Β*ΰ(Βχ .l'jm -4- C*^.Ca^Ba./yA, ... J -τ- 14 

After alternation, 6 -f-10 and the last two terms of (7) and (8) give 
<yjdC,js). 
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The remaining terms are 2, 5, 11, 12, (5)„ (6)„ <7),, (β),. We 
have to exchange c, d and subtract the terms so obtained (and divide 
by 2). This difference can be written in the form 

+ i%ym, 

+ i%ym, 

+ i%ym, 

+ i%ym, 

where the bar indicates that the corresponding term has been obtai-
ned by exchanging c, d and taking the negative sign. This proves (1). 
A similar argument proves (3). 

7. Resolution ofl^ — Since the torsion tensor of \
x is the alter-

nated form of T£., we give the résolûtes of the latter. 

(r> K7Jt =Β^Ι^ 

<») C£Wtc =CS?B]T|
7 =Ef

t
^Tf

t
0.h 

(}) CS^Tfc =C£B£r^ =ν%+ί'μ, 
(4) ^<?BîTfc

r
=0ÎC?lçi|r=GÎs-«Îi. 

(5) B»C;T^ =B$CJI|7 =11), -iyo, 
(«) CJifTt =0^1^ =1;, -T'iv), 
(7) c;B)c;Tt=c;Bfcjr?, =j;, -yj., 
(»> BiCifTfc =BiCgT?

r
 = K, - K,-

Proof of (1). From 

Tt= Κ -f- A|d
e
AS and Afc= A?ctAS, 

we obtain the first equality. Moreover 

At - Af d,A$ j = BjfoA t - B£d,AS 

= />, 

which proves the second equality of (1) by remarking that, in the 
definition of Dj

t
, the dummy suffix α may be replaced by a. The 

proof is similar for the other lines. 
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If vvc denote the résolûtes of T"
r
, i .e., the lefthand sides of (1)—(8) 

by Tp
rk

 etc., and the second column by Yl
jk etc., we obtain the 

following list of formulae for the résolûtes of the torsion tensor Tj',
/r

j 

( *) ) -4" T|y7.| f 
ί.ο; ·ΛΤ^/.,ί Λ ) = T£/,(/.) — Ihr—jhri 
( *) ) -4" T|y7.| f 

( J » > «τ;
ΓΑι

 ίΛ> = ^ ÎU, --=Ο^4-λ4-Η^-Τ^(Ο, 
Ο-»; I |/.r| —- F/'A.î 
( ' 4 ) T{;,

t
ί Λ ; = ff

r
„ = if„, - TU, te·;, 

ί ,;o T(',
r

, = — tu,, 
06; TU, ï U) — Ksi b\, »y 

8. Inversion formulae for differentiation of scalars and vectors. — 
If /'is a function of the mathematical variables a?*, we have 

( * ) <) j (I = Λ a <l'j A*.. à,J, 

and, from d/B?= ( Bj* 4- C£y,Bî = Bgd/Bî —/?/, 

ί; <),<h f ( /I/B* -/*,,)^/. 

In a like manner, 

(0 </·, <h- / — titc*. <)%j=(<34,eg - *5,,)<**/, 

( i ) Ί, 'Λ/ - <h <)J = ( 4 B? - cfc C? ; <hf 
( *) ) -4" T|y7.| f 

For every vector or tensor v, where we have suppressed the suffixes 
to make the statement general, V,

:
v = B* V

c
e, V,ç = C*V,.e, thus 

T/T> = V/Bf.V,* -h Β 
T/T> = V/Bf.V,* -h Β 

Therefore, from (/i. f), 

'5) l" --(IF/./!-5- l'T/./j)^>-v Y'liV*/e, 
(6; — (lfm -r-Kf,et) — CïfX.iïsS, 

T/T> = V/Bf.V,* -h Β 

Journ. de Math., tome XI,— Fasc. III, 193«, 35 
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We have to calculate V [f$r
x only. 

For vectors we have 

( * ) Vv/ V,- — T'U X,M -+- Cm ) ?/, 
(9) X

d
X

t

.Vl'—~ V(
cd

, X,,Vf>-~r Οί,.
ά
(μ)ν. 

( i Ο ) Vj,/ X
r

 Vj — — T^, Xh — c;v</ ( m ) vh 

( 11 ) ^,1 X.- <v— - Vu Vi' ~ CiW/ ( Ρ ) *V 

Proof of (8). From V,y = ô,V -f- n/
fl
xJ, we have 

xdx,.v'—ôdx.v— \';.dXt,v!-^ w'
t
„
ti

s, ν" 

(),,nt'JC.I·'' ~ m'j,.i),ti-i \'ids,y - nïj{lO, vi^ in'ltldninJ'l.vi. 

From (1) 
Λ Ô, X ' - ///)/, »-/j. 

The group 35 is symétrie in c, d and thus cancels out in the 
alternation. From 44-m, the coefficient of 

X,y is - Aj^,-1- -

Finally, in 2 + G -h 1.2 the coefficient of vj is Ci
/rd(m)1 this proves (8 ). 

The proof is similar for the other three equations. 
Substituting one of the expressions (8), (11) into one of the formu-

lae (5), (7) we obtain the corresponding inversion formula. For ins-
tance, substituting (8) into (5), written down for v — c, and noticing 
that 

iiîïrïd-^Ku'Kd- <ί h£/T£,/= KJ;„(\>z- van cjtn,~/',,)· 

we obtain 

<!'>■) V / V* X— - ( V[
u

, - f';
u

. ) X,, V* - - C'
m

 ( / ) vi. 

since the last two terms of (,6,2) cancel out. 
If wc make use of the equations BJy, ̂  — BJV, we have 

Χ,,χ=ζΧ,,Κ
α
.Ι>ήνΐ- WaX,,v% 

where 
BJ Κ = - Hi V/, BJ=- V„, BJ - CI B> Γ, B; 

=-Bf 
Thus we obtain 

iXtX^'=-(TfUi-τ-/%Ί)Ηϊχ,,<-«+1C'juU) -τ%, 
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which, in ihe case of projected connexion, D — ο, Η = ο, reduces to 
Schouten's formula (O7) ( Scliouten 1929). 

Combining (9) and (6) and noticing that 

i'ftl'Vh ■ (hrU'Vr I»/* / L///„ //// , . f'tji I/' Ί7' /-,[ 

we obtain 

hi) Vj, vi' — ] I ,'
rf

, (<7 ) /< |^| | V/, v>' — h'
r%t

 (ζ) ν'. 

Combining (8) and (G) we get 

< l~>) TyV, — - \V^
r

(<7) l-U ·-
 {']*1(*)ν' 

and so on. 

9. Inversion formulât' for tensors. — As typical examples we give 
the formulae 

iij Κ,,Χ.-ν'·-— τ ί-,/,Γ/,ί·? - Ct
v
/( \jej-- (yjrl(m)v'ï, 

( >.) ΓΑ. -Τ\)v''r-Cr
n;d

<v.)v"p. 

Proof of (ί). From 

Γ,«·5 ./Λ«·7 - \£.r* ///.,< 
we have 

ν,,ν...·; .ΊΛ.η - yjA··'-} Μ-Α>·>] ->«5·Α··< 
-..ι) i'j - \..·$■ \ι.,κ,ή .ι,m'j,.Λ·'!- >hκ' 

-■Wj χ,ική- ■ -- ν^ν,,^ 

- - mfahyi — m)d\ab,.vhk— tnfarn^vj. 

The groups 3 4- G, 5+ 10, 8-{-11 arc symétrie in c, d and thus 
cancel out in the alternation. Moreover 

'C/'A. ~ Vi'VVVT,,.·?· ·- KbVy -m'j
h

r",), 

so that collecting tenus we obtain ( 1 ). 
The proof is similar for (2 j and other analogous formulae. 
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If we combine (1) and (2) with (8,5) and (8,6) we get 

Ci, X,Xt rj=- [TfH)(/j -rfm]X,,,''j-Y Bj/Cfc^A)*)- C, 
c4) XjXKK=-l^m{l)^Au^<^CU(\)4-Cfua)i^. 
( 5 ) r, v,: «7=- [τ®,, (») -s- /f„, 1 v» .·; ctfctA Λ ι ή - Ct„(*W, 
(0, r ,v.<= f Ό», -

Combining (ι ) and ( ·<) with (8,7) and noticing that 

IWTÎ„= BfecfT^+ C*I«C?1^=B1[IIS- τΐ,(*)\ -r -τ/Λ). 
c?BFR;rf,:r Β»(;-;Β?Τ^+ <;£BFR«,=^ B«„<G;Î- *») -T-c® [KFC+T&U;]. 

Λνβ obtain 

( 7 ) — ~~ ~L I JUL*) !>VFJ 

- BiCfCfc
rf
fA)p}-C')

kl
(Ls)e% 

( 8 ; T
:<
 V,

;
 *?= - I [1% Ί*) N-YL - T& (/.) — £

K
 ] V, P? 

- B£ Cf Cked IΛ ) *7 - - C>f/.*)<. 

10. Hesolution of the curvature tensor. — The inversion formulae 
(9,3) — (9,8) lead to explicit relations between the résolûtes of the 
curvature tensor C®.rf(A) of \x and the various curvature tensors 
attached to X™. To obtain these relations we have to replace e" by B" 
(and ï by m, say), ** by Ca

r
 (and ρ by 7, say) and multiply by B^ 

otC
"' 

For example, replacing ν by Β and i by m in (9,3) and multiplying 
bv B' >ve obtain 

■/ a 

K'ijfr'AcAi f=c·μι(ί)^ |Tf
w

 Ii)~ Jta, ] κ χ,, Β; Κ VjX
t
 Κή. 

The last ΙΛΥΟ terms can be expressed in the fundamental tensors, 
by (ί>,6) and by noticing that the last term in 

ΒΊ V, X
t
 Υή = lYjM, - Χ, Y,',,. X

t
 li'j 

is equal to 

Γ,ΒΊ,.Ι hi-.- CÎ,T^= IFCTFBI.BF^BJ+QV/BI.CI V*HJ 

= -»i./OS-Gir"> 
I hus we obtain 

(·) B®CTA=C>/-I- FJ
|T

<'/„-+· TG„DJ„-Τ-IIJ, -+- 0}
LW

, + 0;,,,, !>»?,*, 
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which, in the case of projected connexion (D = <>, E = o, H = o, 
I = o) reduces to 

< '·) K%1 C&A Λ ) = C}„( /) + FJY.OJ,,. 

in the holonomic case, C"cl/(\) and C';, reduce to the usual (but 
halved) curvature tensors. Since—F and — Ο arc Schouten's Η 
and L, (2) reduces to Schouten's generalisation of the Gauss equation. 
Therefore, (i)and (V) are the generalised forms of the Gauss equation 
for non holonomic tensor submanifolds ; (1) for general intrinsic 
connexion, (2) for the special case of projected connexion. 

We give the complete list of relevant formulae for the resolution 
of ( -L., ( A ) 

<3> ^nj&Cîra—Cl/htil) + |.Tf
Wl

(/j JBiV/,Β" ο W
a

X:iX
t

H"-. 
14 ) eg* HtfcL,/=c?«a > + i;TfWl(/>/*mjcgx>c*+ cgx^cg. 
(5) c grtfâct,,^ f?*m<r> +)\u>\cgXi,w,^cgx

{l
x

K
 K'j. 

(f>, ,,c? + Κ χ?*».ν, 
< ; ) K'*jC«fCU=C'jttU) +1: Τ»,, <*> + '-in ]Bi V,. BJf - Bi Χ»X. »'}■ 
<*) Cf,l'CU= Ct„<*) + TTWI'FI *F«.ICSV/,C;<- CEV,X,: Cf. 

(9) cge}c#cz«=z rr*„(*> - *f«,ics - C{T;,T<Bjf. 
tir.) Bic*s'C£.rf= Λ,,ίν) v,,c;;- κ x«x,. CJ. 

ί") B&C*C6*= Cj
kl

(b » + Ipfcf·) +./1- T?
s
f/o - ^AIBITAB; 

+ Bj?. 

F.2) C& BJCF C^= CFITT (/., F) + I - *FC]CS V*C; 

-+- Cf( V,, V χ. Cf. 

(13) cjbjjccj^ ;[it(»>+A - τ*, α, -

+ CSftTt,BJ?, 

(■4) KC^ïC'lCU^ ^[Ti(i)+yl-Tf
4
(>.)-

A
^]Bit

i>
C« 

B‘aV[tVk]Cnr. 

The terms containing derivatives of projection factors can be 
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expressed in the fundamental tensors by (».(>) and bv the formulae 

(i5, KV
t
V
t
H?r, -, i>n K, >- FU ('4" 

(16) WW.?·.· ν,ι.. b& v<:„ «3ι··',;,„ 
(■;) ·-;*,!··«* · · r>fc Ff,, - · F}* κ?,, 
(,s, it;,r,?*(;;;- T,o;.A-■ !·%.('.;, : Î;;2I»;„/· 
(10) KXtXMr- ν,"}. ιι;;ΐΐ;„, η, κ;„. 
<■>«> <:&,*,· '?, If, ^ 

(«) ο;;ν,τ,ιψ-r.xjrj, »%»;„, = .17, i;;,. 
(»«) κkj» -t- κ^ιι^. 
<*3) Mi?,?*»?:· , ir/tH;,,,- ν%κμ· 
<■>«> <:&,*,· '?, If, ^ 

(si) Γ.ί;νΛ/Κϊ τ,ι··;
Λ
 ι > · ι-^ι;;,, 

(»6) Η'„τ,ν,<:?· ν,c.;„. · !·%>·, (;;ίΐι;„,. 
(»7) ΐ'-ί,ΤΛ,Η'; ι;·, -. 117«·^-·^»;«. 
<*8) '^ΓΛ,ίΐ- vj;-, .. ι/, ι·:;;,. κ^ι·>„. 
(«ο) ny *7·'?, Ο;*· 
(3«) "ί,*7τ,ι:·;, . τ*κ- ι», <.■ κ;;; ο. 

Substituting 05)— ( ι \ ) we obtain the final forms of the résolûtes 
indicated by a bar, 

(''>1 > Cjiii(\i -C/jUi/1 ■ v'j{Uh/,l/Ul ■ f"}ιί./ι■ 

<»·«, C4
u

(.\)~<:?
t
,th , τ^,,κ^- β

Μ
^ . vu.,· ■ v:u%*, 

(Α?,, <β,<\,τ : IWfy': Τ1Ϊ/ '% JL· *% "■
 V

"j*-M '% 'Ο. / · 
<■>«> <:&,*,· '?, If, ^ 
..η,, *,n η^ιι;,, /.»/, iij,..„ iijr.ii',,.,· 

(36) · κ;«,.ι?;,,,, -rç,, ι,'ν Kf„ - if,.·/, - ·7. »',/,· 
(3V i% ν -, .17, 1%, - ιι;·;.3';„,· 
<:«) Cf./'Λ)=-s kf?, -Tf„, κ;.,, - /■".o;,„ kf -17,, k-,,. 
<3O/ 2 0;*, ' \ ) ̂  "· C%, il,») v% k;„ - JJ, ο;,,. [ Tg u,-^] !>;·,„ 

--I7ï/- ''7*0)1";·,- , »;·/,*-' 

' I") ■<<%,( t,=») - - Κ',Κ,.τ\r%<*> -#SWU 
Ut - T& o. ) | If, - - If„* +■ EU 1;;, - n, F-?* · 

(ί·ι «0?*,( * ) = Ί* - ·'/, Ff, - ITÎJ(S, - iïi\V>j,„ 
-uj.-nAiwj,,-vu,-*·!,*··.· i>r*·»'»/- "ί;'·'ίο.' 

(.',·,, \,G;ÎII;,„- k?;où- 1'ΓΚ(*)-ïiïVK,,, 
-r l.7i/- T7/.o.)Jkf,-e o;

Ali
- k;„

a
- i:?,k;,- i»g^.. 
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From CJ^= — ^ie remaining four résolûtes are given by 

the negative values of (09) — (Jy*)-
liquation ('»1) is the extension of Schouten's form of Gauss'equation, 

(.'5a) that of lllavaty's and Schouten's form (illavaty 19.7.6, Scliouten 
and van Kampen IQ'^O) of the Kiihnc-Kicci equation, (T>) and (3/j) 
arc the extension of Schouten's form of Codazzi's equations, to non 
holonomic tensor subrnanifolds with independent (intrinsic) fourfold 
connexion, in general geometrical axes. The other relations seem to 
he new. 

in the case of projected connexion, i. e. when D = ο, Ε ='o, Η = ο, 
I = ο, the formulae become quite simple even for nonholonorriic 
suhmanifolds. This simplicity is due to the introduction of fourfold 
connexion with the corresponding fundamental tensors. 

11. Hcsohitron of mairie tensors. — From e" = v' \\" -j- v1'C", the 
squared length of V is resolved into four parts : 

( 1 ) AV, va Vh — fiub W}j V'~V' r- Atab Κ &r η'Ί> &j v''"+* ffuhCJ* Wl·'. 

If \f' is in the admitted facet, i. e. if ^'= o, we put 

(y.) \ V * — Zijv'vi. 

where 

( 1 3 ) 

In this way, the length of ν measured in the facet by g,j will be equal 
to its original length in \x. 

In a like manner, if we put 

( 4 ) A7'r — %ah 

the length of a vector v*' in the span (<?= o), measured in the span 

by gpr
 will lie equal to its original length in \x. 

We also put 

(*) %·Ί, — A'/z/.HfCf,. 

and notice that gP,— g,,, follow s from the symmetry of g„h. Thus we 
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can write (ι) in the form 

(β) gab Va V1' = vi-h 2 gipV1 VP 4- gpr VP Vr. 

The angle (e, w) between p" and v^L is defined by putting 

(7) | e||*p|coe(e, w)=g
ah

vawh. 

Since the components p« of e and e are B" and C" respectively, we 
have ' " 

(8) Ι «Il e\ cosf c\ = guhW}CJj,-

Therefore, £V=o if (a) e or e has a zero length, (b) e and e are 

orthogonal. If the latter is true for every i and ρ, we obtain from (6) 
the pythagorian relation 

(9) L»Î
S
 = |R|'+PP. ■ 

Similar considerations lead to the corresponding formulae for cova-
riant vectors with arbitrary g"h. We obtain, however, more signifi-
cant relations if we suppose as usual that g"h arc determined by the 
equations 

fio) nf'
r

. 

We also put 

(m) g*'~ wJbg"
r
% g

Jr
~K

c
ig

al
''· gpr---o;ibg"''. 

All these metric parameters are absolute geometrical structure 
tensors. To keep, however, to general usage, we do not denote them 
by capitals. 

We give a list of fundamental tensors derived from a gives g
nh

. 

TABLE IV. 

Qubc — ^r.gai,, Qf = Vcg"'', 
qm=Vkg,h W,Q',{ = Xlg·/, y/O-v.gV, 

Ρ Irk ^ kglr· V Ir.t z=z ^ agir ·, Ρ 'k kg*r ·, ^ '$ =z^sgir't 
Qprk—— ^ kgpr- '=Ζ ^ a gpr ι Q'ff = X J; gPr, sg^"*' 
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In the resolution of metric tensors we restrict ourselves to Q«^, 
since, from (10), 

(18) #un (}feb -I- Α'"'' Κ]ααί = <>. 

The relations between the résolûtes of Q
afjc

 and the metric tensors 
of the submanifold are given by the following formulae, where, again, 
résolûtes are indicated by a bar, 

( l'A ) <hjk = Ql/t — 8 A'm'j W"k — *Z<f.jVhy 
G ί ) *}lrA = Ρ irk — A'""' Γ)/Λ· — Z'/r ̂ îk ~ Z'fi Wrf. ~ Ζ mi G^, 

( ) G f,
r

i; — Ο ρ,·]; 2 AV/ : /· ('"ι/ k 8 Ζ m 'r f>, k ι 

( ) <Λ·/λ — w
/7
, — <>.χ,

η
 j 11 — * g

q
.J\

s
, 

( r7 ) (Λ>.< = ν'"·< — AW "λ' — AVJ % — Av'rf — Ζ mi K« 
i) <

k
V*~ T— ΊΖ,, Α'/,.* — 2 AV,-K/".»· 

The remaining two résolûtes are obtained from Q/,rt,.= 
Proof of 03). From 

G//'/·—· ^kZH— V/;( tiff ) ' gab -+" B/y 

= i By v, Bf -4- v»f τ, bJ j Ar«/' + Bf/r rw 

readily leads to (i3). The proof is similar in the other cases. 

We notice lliat, for an orthogonal span, Ρ and V vanish, but not 
the other four tensors. In the special case of projected connexion and 
orthogonal space, formulae 03) — (18) become 

(19) Qj/k= h>//7, 
( 20 ) G irk = — Z'/r F?/. — Ζ mi &

r
k y 

(21) G prf;— Ο prl;·: 
( 22 ) G//.« — if n 

( 2-3 ) — ΖIs Ο ml Κχΐι 

( 24 ) Q pr.< G' . 
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