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QUADRATIC FUNCTIONS OR FORMS. 319

Quadratic Functions or Forms, Sums of Whose Palues
Give ALl Positive Integers

By L. E. DICKSON

(Chicago).

1. Weshall obtain several new types of generalizations of theorems
on polygonal numbers due to Fermat, Cauchy, and Réalis. We
shall also give a complete solution of the following new problem :
I'ind every positive binary quadratic form B(.x, y) such that every
positive integer is a sum of s values of B. The only important cases are
found to be s = 2 and s = 3. For s = 2, we are led to just six qualer-
nary quadratic forms. That each of them actually represents every
positive integer p will be proved by descent from p to smallerintegers.
IFermat stated that this was the method used by him to prove that
every pis a sum of four squares. Our proof of this fact and for the
remaining five forms involves only ideas familiar to Fermat and justi-
fies our belief that Fermat actually possessed the kind of proof he
claimed.

2. The Possible Forms B. — Since 1 shall be a sum of values of B,
1 must be represented by B. Hence B is'equivalent toxr*+ goy—+hy*.
The replacement of 2 by x4 Ly adds 24 to g. By choice of £, the
new gis o or 1. Write :

(0 ./“—:2(1';”"*‘ guyi+hyE), g=oori,

i=1

When 524, f represents every positive integer p, since p is a sum of
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four squares 7, and we may assign the value o Lo the remaining .r;
and to each y;. Hence the only interesting cases are s =2 and s = 3.
First, let g=o. Since B and f are positive forms, 2> 0. When
§=2, /r >3, f=3 requires y, =y, =0, while x] 4 .z = 3 is impos-
sible ininlegers. Whens=3,/4> 7, /= 7requires y, =y, =y, =0,
while &} + 13+ i =7 is impossible.
Second, let g=1. Write \ =2.r+y,d=4/ — 1. Then

s
(u) ' I“:jj'::Z(Xf—%—//)";’). d>o0.

1=
By hypothesis, f represents all positive integers. Hence I represents
all multiples of 4. When s=12, d >12, F=12 gives y, =y, =0,
while N*+ Xi=12 is impossfhlc. When s=3, d >28, I'=28
gives y,=y,=y,=o0, while X\ 4+ \Z2+ \?=128is impos*i'l')le

Whether g =0 or g=1, the only posslble forms f have h=1, 2,
or 3 1f.s=2, and /1_.1, ey gifs=3.

In the derivalion of I7 we had X;=y; (mod2). Let us now remove
this condition and allow the X\; and y; Lo take arbitrary integral
values. Then if IV represents a multiple 4n of 4, the corresponding /
represents n. We first prove this when s = 2. Then

N+ Nj—gt— =

-~

) {mod{)

and every square 1s =o or 1. If X, and X, are both even (odd),
then y, and y, are both even (odd). But if one of \, and X, is even
and the other is odd, the same is true of y, and y,. If in the latter
case, \, and y, are not both cven, we may permute N\, and \,, or
permute y, and y., ov permute hoth pairs, and obtain a new repre-
sentation of 4n by F in which now \, and y, arec both cven, and
hence \, and y, are both odd. In all cases we have X;=y; (mod 2)
for i=1, 2. Then \;,= 2a; ~+yifor i=r1 and 2 dcfine integers .z,
which w 1th ¥i give a representation of n by £.

A similar proof applies if s=3. If X,, X,, X, are all even (odd),
then y,, y., y, are all even (odd). If two of X,, X,, X; are even (odd)
and one is odd (even), the same is truc of y |, y., ;.

Hence if ¢ =1 it remains only to prove that the form I in (2) repre-
sents all multiples of 4.
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3. Method of Descent (V) for Quaternary Quadratic Forms. — The
method secms to he limited to forms of Lagrange’s type

O ozt - 324 b3+ abn®,
Levma 1. — Forintegers satisfying
(3) - art b = py (¢ #0),
there swill exist a representation of mp by () with
(4 2= rasy S, v=y—rs {(modp),

prosided there exists a representation of mq /)y Q with (4) holding
modgq instead of modp.

Consider the equation
(5) mp=(pN 4 raw + 135072+ a(pY + tw-—r3 2+ b3 4 abu?,
whose expansion simnplifies by means of (3) to

(6) mp == prN\? A= a2 Y = aapr X 4+ a2 pt N s
A 2t Yo = aaprY s + pop( 32+ an?).

In (6) interchange p with ¢, \-with 3, and replace ¥ by —a,
why — Y; we get
(7) mey == gt st ag?at - aagrsY + gl 3\
! A 2ot Y - vaqrw X & py (X2 1 Y?),
Multiplying (7) by p [y, we get (6). This proves Lemma 1.
The lincar functions in (5) remain unaltered if we veplace 7, ¢, \,
Y by r+Rp, t+Tp, \ —Rao — Tz ¥ —Tu 4 Rz, respectively.
We choose integers R and T so thal

(8) rig

\\e shall limit our Iurllncr discussion to the case n=1, I)>o
3y (8), e+ r*+b<p*if p*>2b, and then g <p in (‘3). Hence

(') We would not expect to prove Lhat every positive integer p is a sum of four
squares by descent (i. e. by induction from all integers < p to p) without knowing
some relations between the squares lcading to a fairly definite equalion.

Journ. de Math., tome VII. — Fasc. II1, 1928. 4
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when p2>2b, (5) follows from a like equation with p replaced by the
smaller number ¢. This proves:

THEOREM 1. — For each_positice integer p such that p*<2b and for all
sets of solutions t, r of the congruence
(9) Parrtb=o . (modp).
suppose that there exist integral solutions X, Y, z, & of
(10 mp=(pN 1w+ 15024 (pY 40— rzy+ hzt4 ha?,
Then for every positive integer p such thatp*™>2b and for any chosen
set of solutions of congruence (), there exist integral solutions of (10).

Lewma 2. — If p is an odd prime, () has solutions.

Al l I » .
For t=o0, 1, ..., ;(p—1), the values of # are incongruent

modulo p. If no one of themn were congruent to any of the g(/)_+ 1)

incongruent values of —* — 4, there would exist p—+1 integers
incongruent modulo p.

Lemua 3. — If p is an odd prime not (ll'«‘z';lz'ng b, there exist solu-
tionsof
(11) ‘ w-vib=0  (modp”).

The proof is by induction from n = />1to n=4+1. Lel
2= rt- b= phy. u=1- prr, gz phy.

Then _

w4 vt b= prkL (mod ptt), L=q¢g+atx+ary.

Since b is not divisible by p, ¢ and r are not both divisible by p. Hence
we can choose integers x and y so that [, is divisible by p.

Tueorem 2. — If P is any odd integer relaticely prime to b, there
exist solutions of ?+ 1+ b=o0 (mod P).

Write P = IIp}, where the p; are distinct primes. By Lemma 3,
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there exist integers «;, ¢; such that
np+ei+b=o {mod p} )
It is known that we can choose integers ¢, r so thal
=1, o=y (mollp',’-): L =u,, =, (mml/rfy'):
Then 124 r2— b is divisible by p™, p= ... and hence by their pro-
duct P.

Turorem 3. — Every positive integer'pis a sum of four squares.

Here m=1, /; =1, and p*<2b gives p=1; then (10) has the solu-

tions \ =1,Y =s=w=o0. By Tlmoremal and 2, every odd integer
is a sum of four squares. Since

(1) 2@+ )= (w4 )+ — )

the double of any sum of four squares is a sum of four squares.

TuroreM 4. — Lvery positice integer is represented by
R R I R S T Tl

By Theorem 3, 4n+ 2 is a sum of four squares. Two of them are
even, (25)* and (20°)*, while the remaining two, ¢* and ¢*, are odd.
Hence ¢ =.r+y, d =x — y for integers .z, y. Using (12), we sec
that every odd integer 27+ 1 is represented by g. Next, the double
of gis(23) 4 (200)* + 222+ 2y,

Levsa 4. — 1/ b=3 (med}), 2* + y*+ b=o0 (mod2") has solu- .

uons.

This is fist proved when n=3. If =3 (mid8), take z=1,
y=2. If b=1- (mod8), take r=1, y =0. We next proceed hy
induction from n =m23 to n =m 1. Hence let £+ 1>+ b = 2"q¢.
Taker =%+ 2" '\, y =v+ 2"\, Then

AP h =N (modamtty, Nozg +~EN+0Y.

Since £ and 7 are nol both even, we can choose integers \ and Y so
that N i1s even.

.
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We may now extend the proof of Theorem 2 and obtain :

Tueorem 5. — [f b=3(mod4) and if p is any integer relatively
prime to b, there exist solutions of 1?4+ r* + b= o (modp).

Tuconeyn 6. -~ Ecery positice integer is represented by
e R L e T

We apply Theorem 1 with m =2, b =23. Then p*<2b only when p
is 1 or 2. Take s =w =o0; then (10) hecomes 2 = p(N*+ Y ?) and
evidently has integral solutions. Next, lct p be any positive integer
not divisible by 3. Then 2+ *+ 3 =0 (modp) has solutions by
Theorem 5. Hence Theorem 1 shows that the double of every positive
integer p nol divisible by 3 is represented by /. Let also p be odd.
Svidently 2 + y + 5+ a'is even. Ifr + yisodd, .r* 4 v* and 22+ o
are =1 (mod4)and 2p = = o (mod 4), contrary to hypothesis. Hence
r4+y=2X,x—y=2Y,s4+0=2/5 -w= 2V, By (12), /s
now the double of a like form. Hence every odd pnot divisible by 3
is represented by /. This holds also for every odd p divisible by 3
since Lhe triple of /v is a form of type /. Hence cvery positive odd
integer is represented by /L. The same is Lrue of its double by (12).

TreoreM 7. — FEvery positive multiple of )y is represented by
G =12+ )4 5350+ 7‘\"-’.
\\ ¢ apply Theorem | with =4, b =7. Then p*<ab oniy when

-pS3. lfp=rora take s =w =o:then (m lwwmcsﬁ =p(\' 4+ Y?)
and is solvable. II p=3,=r'=1hy (8) and (g9); then (10) holds
if X=w=o0, Y=r, s=1. Next, let p be any positive inleger not
(livisil)lc by 7. Then £+ '+ 7=0 (modp) has solutions by Theo-
rem 5. Hence Theorem 1 shows that 4p is represented by @. This
holds also when p is divisible by 7 since 7 is a form of type ®.

Treoken 8. — Every positive multiple of 4 s represented by

b=a2+ ) 11324 e,

We dpplv Theorem 1 with m=14, b=r11. Then p*<2b only
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when p<4. W p=1, 2 or 4, take 5=w = o0; then (10) becomes
h=p(\*+ Y andissolvable. If p=3, take z =0, 5w =15 Lthen (8),
(9), (10) become

rtsoor o, (=0 o, 213 = (mod ).

1z (3N 4 )24 (3Y - £)%

Hence 2+ 2 =1. The final equation holds if X\ =Y = o. We repeal
the last part of the proof of Theorem 7 with 7 1'cpl<|ccd by 11, and &
by ¢. v
Theorem 8 1s new. Attempts to prove it by means of ternary forms
have failed.
We have now proved by descent :

Tueonem 9. — FEvery positive integer is represented by each of the six
Jorms (V) having s =2, g=o0o0r 1, h =1, 2, or 3.

A, The Cuse s=3. — We take y,=y,=o0 and prove that the
resulting quaternary form represents all positive integers.  Use will
be made of the classic theorem that every positive integer not of the
form

(13) (8 +7)

is a sum of three squares without a common divisor > 1..

We first show Lhat every posilive integer m is represented by each
of the forms g =+ 0;+ 02+ hy* (h=1, ..., 7). W misnot of
the form (13), this is true with y = 0. [t now suffices to prove that g
represents 8 n 4+ 7, since 2%\, ..., 2y then give a represcntation of
(13) by g.  'We exhibit a value of y for which 8N + » — /y* is posi-
tive and not of the form (x3) and hence is a sum of three squares.
For h=r1, 2, 4, 5, or 6, take y =1. For h=3, take y=1 or 2
according as N=o0 or N>o0. Tor =7, tuke y =1 if N=o, 1,
or 2; but take y =2 if N2 3, o

Every positive multiple of 4 is represented by cach of the forms
X3 +X”+\ ~+dy?, where d=Gh—1, h=r1, ..., 7. Let m be of
the form (13) and a multiple of 4, whence £21. Take y = 2*-'. Then

—dy?'=4*'P, P=48n+7;)—d=1 (mod4).

4
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Thus P is positive for every nand #<7. Hence I’ is a sum of three
squares, and the same is true of 4*~' P.

Tueorem 10. — FEeery positive integer is represented by each of the
“fourteen forms (1) having s =13, g=oori,h=1, ..., 7.

8. Polygonal Numbers. — When .v is an integer 2o,
. . { , .
() Py (X)) == —m (2! — &)+t
is called a polygonal number of order ne + 2. In particular,
1 .
()= :.1.'(;1‘ 1)

is a triangular number and p, () = .x* is a square. Iermal stated
that he was the first to discover the beautiful theorem that evers
integer A0 is a sum of m—+ 2 polygonal numbers of order m —+ 2
(whence A is a sum of three triangular numbers, and a sum of four
squares). Cauchy gave the lirst proof in 1815, and showed that all
but four of the polygonal numbers may be taken to be the special
ones o or 1. Two much simpler proofs have been given by the writer
in papers cited below.

‘When «x takes all integral values, positive, negalive, or zero, the
numbers (14) shall be called generalized polygonal numbers g,..().
No one of them is negative. Since p,(— x) = p,(x — 1), every g;(x)
is an ordinary tri:mgulér number. Henceforth we take m > 2

Tucorem 44, — Lver y integer A 2o isa sumof t/tree generalized pen-
tagonal numbers g D(.L)

By (13), 24A + 3 is a sum of three squares ©*, ¢*, »* withoul a
common divisor >1. Hence from

o

Wi P wt=0 (mod3y, w4024 ai=3 (mod4 ),

we see that u?= ¢*= w?=1-both modulo 3 and modulo 4. Hence u,

¢, w are each of the form 6s—==1, and their squares are of the form
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(6 —1)?, where .z is positive, negalive, or zero. Thus

4

VN 3 =2br- 1) =3+ 21232 —2), A --—2. (3@‘--— z)= I gs(r),
where Lhe suinmations extend over three values of a:.
Tueonen 12. — Feery integer A 2o is a sum of three generalized

hexcagonal numbers g, (2).

For, 8A + 3 is a sum of three odd squares (42 —1)*, whence
A=X(2a*—2)=2Xg,(x). Second proof : Every A is a sum of

. : ] . . . .
three triangular numbers (= -y(y +1). According as y =23 or

ymrr—, =g (= 3) or g(3). | ,
The only earlier paper on this subject is by S. Réalis. (").- Bylong
proofs he obtains the inferior theorems that every .\ is a sum of four
numbers g; () or four g, (2).  That he was contént to use four when
three sulfice is remarkable in view of the fact just noted thal the gene-
ralized hexagonal numbers coincide with the triangular numbers.

Tueorexn 43. — FLvery \ is a sum of fom' numbers g (.r).

In fact (*), every A is a sum of four values of p(x—2) 101‘ inte-
gers &' 20. They are values of g; (.x).

Treorem 14, — Every A &5 a sum of /ow- numbers g,,(x)
Except (*) when A = 4 (mod8), every A 2o 1is a sum of four values

of ps(x — 5) for integers x 2 0. They are values of g, (x) = 3a* — 2.
Lf n is a sum of four values of the latier, then 47+ 4 is a sum of four
values of

1 — B+ 1=(1—2x)(1 —bx) = y(3y -—2)=g(¥). y=1-—ar.

() Nouv. Corresp. Math., \. &. 1878, p. 27=30.

(%) DicksoN, Gener al;oatwns of the theorem of Fermat and Cauchy on poly-
gonal numbers ( Bulletin American Mathematical Society, vol. 34, Jan.-Feb..
1928. Theorem 4). .

(3) Ibid., Theorem 6.
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[t remains Lo prove that every A = 4(24 < 1) is a sum of four num-
bers g5 (). By the last vemark, this will he trae if 24 is a sum of four
numbers g, (). By the theorem quoted, the latter is true unless
“2k=4(2[4 1. Thisagain is a sum of four numbers g (.r) if 2/ is.
Hence the theorem is proved by descent.

Tueoren 1. — If mz=, every posztm' tdeger N is a sum of m— o
numbers g,,..,(1).

IFor ('), every A is a sum of m — 6 numbers o or 1 and four values
of pu..(x—3) for integers .r >0 All in— 2 summands are values
Of gues(2).

But fewer than m — 2 summands do not serve for every A, [n
fact, p(—1)=m—1 is the least g(x) which exceeds p(1)=1.
ance A =m—2 requires m — 2 summands 1. Thus there is no
improvement of either Theorem 15 or Theorem 14.

The values in order of g;(.v) arc o, 1,4,7, 13,18, .... Nosum
of threcis 1o or 16, Again, 1 is not a sum of two g; (), while 5 is
not a swmn of two g, ( r). "

Tutoren 16. — The number of summands w Theorems 11-15 s «
minimum.

IFor interesting forms of Theorems 11-15, see § 9, end.

6. A WWaring Problem. — Find every quadratic function ¢(x)
having a positive coeflicient of .x*, which takes only integral values
for all integers 220 such that every positive integer A is a sum of a
limited number £ of those values of g(xr) which are integers o for
integers x 2 o. .

Let () =oaux? +§r+y Take x=0, 1, 2. Then y, a4 B,
hoa + 273 are inlegers. Hence 22 is a positive integer m, and 23 is an
integer. Since ¢ does not represent every A, /> 1, and a sum of two
or more values of ¢ must give A=1. Hence g(1)=1, g(k)=o for

(1) Ibid,, Theorem 5.
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certain integers u >0, k>o. Let k be as small as possible. Then

7(2)=q(@) —q(h)= > (2 — B)[m(z+ k) + 2B},

Since g(u)=1, 2B="h—m(u—+k), h=2/(u—1Fk). Since hisan
intéger,u —k==1orx2. Hu—k==x1,q¢@)ispn.(ExFxi)
in the notation (14). For every such polygonal functiorrthe minimum ¢
has been found (). For the new case t — k=2,

(15) q(x)::;(x-_/f)[m(:c~/cxz)i|].
[For the lower signs, & = u + 2 2 0. Since
(16) q(/.‘t:)::%(:—m)

is an integer, m is odd. The case m =1 may be excluded. For the
lower signs, this is true by the definition of £ as least. For the upper
signs, when m =1, (15) becomes p,(x — k — 1), wich was treated in
the papers ciled.
The derivative of (15) is zero when  — k=== ¢, where
v=(2m —1)f(2m),

whence x lies between £ and A ==1. This x is the abscissa of the
minimum point of the parabola y = ¢(=). But
q(k)=o, ' ghxa)=q(u)=1,

and (16) is negalive. Hence for the points on the parabola below
the x — axis, the only integral abscissa is # &=1. Thus g(x)2o0 for
every integer 20 except = k=1, which is therefore the only
value of z Lo be excluded in our problem.

We first treat (15) for the upper signs. Write X =2 — b — 2.
Then

(17) q(.z‘):g(X):é(X-{—ﬁ)(mX—l—n):l-&—f(X),

(18) f(X)::ém(X'z-—X)—{—-lX, t:-;-(3/n+|).

(1) DicksoN, Bulletin Amer. Math. Soc., vol. 34, Jan.-Feb., and March-April,
1928,

Journ. de Math., tome VII, — Fasc. [IL, 1g28. . 42
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Tueorem 17. — If m=2M + 1 >1, every integer N237m —6 is a
sum of four values of f(X) for integers X2o0 and 3M — 1 numbers
oort.

We apply the result proved by Cauchy :

Lemya 5. — If a and b are positive odd integers und
(19) < fa, 024-9b + 4 > 3a,
there exist integers 2o satisfying
(20) a=2+y 440 b=z4+y+s4+m
Evidently N =f(x)+/'(y) + f(3)+ f(»)+ris equivalent to

(21) ,N:;-/'z(a—b)+lb—+-r', o<r<k.

The following discussion holds when E is not restricted to the
present value 3M — 1, nor ¢ Lo the value in (18), but with the single
restriction 2/2m. Insert the value of a from (21) in (19) and
replace r by E or o in the first or second inequality. We get

1 ) 1
/3 —4 ) om—
(22) b<2‘V +2m th’ b>U +m (}_t

an : am
(23) U=24mN+ (6t —m)*— 16m2, V=amN -+ (2t —m)*—amk.

Then b and U are positive if N2> -Z m. There will occur at least d posi-

live integers between the limits (22) if their difference exceeds d, and
hence if '

(24) (.V‘:’—U'17>l’, l’:zmd—l{mﬂ—zl.

The left member is2> o if

(25) 16V —U=8m(N— 4E)+ f(2t— m)*+ 3(2l —3m)* 0.
Then (24) holds if its square lolds and hence if

(26) F=(2V+W)2_UV>o0, 8W=U-—Pz

In the present case, 2t=3m—1, 2E=3m—5. Take d=1.
Hence

U=24mN + 18m?*+ 4{8m + g, V=a2mN+m2+gm -+,
P=4m+r, W =3mN4+4m*+-5m+1,
F=mN2—36m*N - 1om*N —12m*— 20)m* + 56 m*+ gm.
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Hence I'>o0 if N237m—6. Then N >4E and (25) holds.
Sinced = 2, there is a positive odd integer b between the limits (22).
Since E2m—1, we may choose r so that th+r=N (mod m).

Then (21) yields an integral value of % (a—b) and hence an odd

integer a. Since all the conditions in Lemma 5 are satisfied,

Theorem 17 is proved. ‘

When 2k+2, X20. We saw that k-1 is the only value
of z to be excluded. Hence the summands in our problem for g(x)
are the values of g(a) for x =o, 1, ..., k, and all the values of func-
tion (17) for integers = 2 o. '

First,let £ =o0. Then the summands are ¢(0)= o and the valucs
of (17). By theorem 17, every integer 2L.=4+ 37m—0Gis a sum
of 3M — 1 numbers o or 1 and four values of 1+ f(X), and hence is
a sum of 3M + 3 numbers chosen from o and values of (17). We
next prove this also for all positive integers < L=74M +-35. The
values < L of (17) are

(27) 1, 3IM+3, 8M+6, 15M 410, 24/ M 415, 35 M 421, 18M + 28, 63M - 36,
The sums by four of these numbhers and o are

o0=1, 3M 4+ 3-6, 6M + 6-8, 8M +6-9, gM + 9, 10, 11 M+ g-11,
12M 12, 14M 412,13, 15M 41013, 16M 1214,
17M + 13, 18M + 13-15, 19M 4-15-16, 21 M + 16, 17, 2o M +18,
23M - 1618, 29 M 4-15-19, 26M +-19, 20, 27M + 18-21,
20M + 22, 3oM + 20-22, 31 M 4 22, 23, 32M 4 21-21,
33M + 23, 24, 34M + 25, 35M 4 21-25, 36 M + 26, 38M 4 24-n7,
39M + 25-28, 4oM + 27, 28, 41 M + a7-29, 42 M + 28, 29,
43M + 27-30, 41M + 3o, 415M + 30-31, 46M + 30-32,
47M -+ 31, 32, 48M + 28-33, 4gM + 33, 50M + 31-31,
5¢M + 31-35, 33M + 34-36, 54M + 34-36, 55M + 37,
56 M + 34-37, 57M + 37-38, 58M + 37, 38, 59M + 36-39, .
60M 4- jo, 61 M + 4o, 62M + 39-41, 63M + 36-41,
6AM + f0-42, 65M + 41, 2, 66 M + 39-43, 67 M + 42, 43,
68M + 4%, 6gM 4+ 42~45, 0M + 42-45, 71 M + 42-46,
72 M 4 43-46, 73M + 45-47, 7AM ~+ 45-47.

The maximum gap 3M is from 3M 46 t0 6M —+ 6, since all later
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gaps are S2M+1. Hence every integer <L is derived from an
entry of the table by adding at most 3M —1.

Tneorem 18. — If m=2a2M—+1>1, every positive integer is a sum
of 3M + 3 positice or sero values of %x [m(x—2)+1] for inlegers

x20. The number 6M -5 is not a sum of fewer than 3M + 3 such
values. :

7. Theonem 19, — Ifm=2M +1> 7,every integer N 237m — 29
s a sum of fourvalues of f(X) and 3M — 4 numbers o or 1.

Since M>3, E=3M —42m—1 and we may choose 7SI so
that ¢ + r=N (mod m). We have the same ¢ and d as in § 6, but
now 2E=3m —11. Hence we have the same U, P, W, wlile V is
increased by 6m. Hence F is increased by

2hm*N — 144 m*+ 4o8m?+ 18 m.,

Now F> 0if N237m — 29.
Let k=1. The summands are ¢(0)= o0, ¢(1)=3M +1 and the
values of function (17). Their sum by four are

(28) o-4, SM~+1-6, 6M+2-8, 8M+6-9, gM—+3-10, 11 M+5-11, .

. ey

The first gap 3M — 3 is the maximum gap since it is not less than the
largest later gap 2M <1 in the table of § 6. This proves :

Tueorem 20. — If m=2M—+-1> 7, every positive integer is a sum
of 3M positive or zero values of é(x —1)[m(x — 3)+ 1] forintegers
x20. The integer 3M requires 3M such summands.

To prove a theorem analogous to theorem 19 for m =17, we must
take d=14 to have two odd values 3 and 3+ 2 of 4. The latter
with r=E=5 gives tb +r=1t3+-6 (mod m), which with ¢3+r
(r<E) give a complete set of residues. 'We find that I' > oif N 2 829.
Hence to cxtend Theorem 20 to the case m=17, we would have to
verify it for all N < 829.
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8. Function (15) for the lower signs. — Write X=x—#.
Then ¢(a) becomes £(X) in (18), except that now

(3m —1)=3M 41.

1
2

Give to £ its least valuc 2. 'We saw that £ — « =1 is the only value

Soofzfor which g(x) isncgative. Hence thesummandsare g(o)=1
and the values of £(X) for integers X20:

(20) 0,1, 3M 1, 8M4-3, (5M~+46, 24M-+10, 35 M~+15, 18M—+21, 63 M~-28.
Tueorem 21. — If m=2M+1, every integer N2l is a sum of
four values of [(X) with t=3M+1 and E numbers o or 1, where

E=3M—3, (=37m—45 if M>2; E=4, =147 ifM=2;
kL=1,l=310{fM=1.

For M22, E2m —1 and we may take d=2. Then P =4m—1.
First, let M> 2. Then 2 =3m— g and

U=o4mN + 48m*— 48m + g, V=omN+n2+3m+1,
W=3mN~+/ im>*—5m—+1,
F=mN*— 36m*N + 46 m? V——lzm"—l32m1+24 m2+33m.

Then I > o1f N>o7m 45.
Second, let M=2. Then

U =120N + ¢69g, V=10N + 41, W =15N + 76,
F—=25N2—3550N — 14765 > o0 if N 2147.

Third, let M =1. As at the end of § 7, we may take d =14. Then
U =9(8N + 33). V=6N 19, P =23, W =gN — 29.
Then F = g(N*— 308N — 618) > o if N>31o0. |
Tueorew 22. — If m=2M 1, every positive integer N.is a sum

of E numbers o or 1 and four positive or zero values o f %(x—— 2) (mxr—1)

Jorintegers xS0 where E=3M —3ifM>2, E=4ifM=2,E=1
if M=1.

This is true by theorem 24 if N2/,  For M 22, it suffices to verify
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it when N <37m —38=17/M—1. The sums by four of the num-
bers (29) are

0-4, 3M+1-4, 6M + 2-4, 8M 4+ 3-6. gM + 3, 4, 11 M + 4-6,
12M+ 4, 14M + 5,6, 15M <+ 6-g, 16M +- 6-8, 19M +- 6, 18M + 7-),
1M+ 7,8, 21M+8, g, 22M + 8, 23M —+ g-11, 24M +--13,
26M 410, 11, 29M +10-13, 2gM 411, 3oM +12-14, 3y M +19,13,
3oM 4 12-15, 33M +13, 14, 34/M 413, 35M + 14-18, 36 M + 14,
3I8M +15-18, 3gM +15-18, JoM + 16, 17, 41 M + 16-18,
42M 417,18, 43M + 17-20, H4M + 18, 1HM + 18,19, 16M + 18-90,
49M + 19,20, 48M +19-24, j9M + 20, S0M + 20-23, 51 M+ ai-24,
53M + 21-23, ....

In the continuation from 53Mto74M, all gaps avcSM—+1. The
second gap 3M — 2is amaximumif M > 2, since it is not less than the
largest later gap 2M+1. 1f M =2, the maximum gap is 2M 1
(beginning 12M + 4). For M =1, Theorem 22 was verified for
N < 310 by a separate table.

9. A Generalization. — In the most general Waring problem for
a quadratic function f'(x), its values for integers 2 o are not assumed
to be all integers. Let £ be the least integer £2o0 for which /() is
an integer 20. Then /() is not used as a summand when z < %.
Write X=x—E, ¢(X)=/(X+%). Hence the summands are
certain values of ¢(X) for X2o0, while ¢(0) is an integer 20. The
coefficient of X* is positive since there must he infinitely many
positive integral summands.

Changing the notations, we consider

Jlz)= e+

7 dx+c, t> o0, c2zo, d>o,

where ¢, n, ¢, d are all integers, and z, n, d have no common divisor
>1. Without loss of generality we may assume that d is relatively
prime to both tand n. For, if t=pT, d=pD, where p is a prime,
let  be any integer 2o such that f(x) is an integer. Then

D/(x):'[‘x’l—t—]’-;w+l)c
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is an integer. Since n is not divisible by p, @ is a multiple pX of p.
Hence the integral values of f(z) for integers &2 o coincide with the
integral values of

Pl 2y,

5 X2+ B X+c
for integers X 2o, Similarly, if n=pN, d =pD, then z=pX and
JS(x) becomes
. Pt

T X+ L)l;lx ~+
This reduction from d to D may be repeated.

If d=2, then ¢t and n are odd and f(«)is an integer for evcry
inleger z. The latter is evidently true also if /=1. For such a
function f(x), Waring’s problem was treated partially in §§ 6-8. It
has been treated completely (') when f(2) is an integer 2o for every
integer 20.  Here let d > 2.

The discussion is simplest when ¢t =1, d = p*, where p is a prime.
Then n is not divisible by p. Hence z and  + n arc not both divisible
by p. But their product must be divisible by p’ if f(«) is an integer.
Hence one of them is divisible by p*. According as x=p*X or
z—+n=p'X, fbecomes

X(pfXEn)+e

for the upper or lower sign. Hence the integral values of
(30) /—:T(w‘—)- nz)—+c¢ _ (renot divisible by prime p)

for integers 22 o coincide with the values of
(31) pigt+ns+c

for all positive, negative, and zero integral values of z.

For ¢ =0, n=1—p*, (31) is a generalized polygonal number of
order 2(p“+1). Hence those numbers coincide with the positive or
zero integral values, for integers 2o, of the single function (30).
The small orders are 6, 8, 10, 12, 16, 18, 20, 24.

(1) DicksoN, Amer. Jour. Math., 1928.
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Next, let t=1,d=2p". Then n is odd and not divisible by the
odd prime p. The preceding proof shows that the integral values

of f(a) for integers = Z o coincide with the values of é(p"z’—}-nz)—i—c

for all integers 5. Ior ¢ =o0, n= 2 — p*, the latter is a generalized
polygonal number of order p*+- 2. The small orders are 5, 7, g, 11,
13, 15, 19, 21, 25.

For an infinitude of integers & (including all < 22 except 14 and 17),
all generalized polygonal numbers of order v coincide with the posi-
tive or zero integral values of a single function /' (z)forintegers z2 o.
Hence theorems 41-16 may be interpreted as theorems on the repre-
sentation of all positive integers as sums of positive or zero integral
values of f () for integers x 2 o.

An elaborate investigation of all these Waring problems will be
given in a later memoir.



