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On the formal modular invariants of binary forms

By \WW. L. G. WILLIAMS.

Introduction.

A. Hurwitz in a paper (') published over twenty years ago first
defined formal modular invariants, but he did not prove that there
exists any such invariant not congruent to an algebraic invariant.
L. . Dickson, O. E. Glenn, O. C. Hazlett and others have added to
our knowledge of these invariants, but little has been published on
the invariants of forms of order greater than two. The problem to
which this paper owes its origin is the determination of a fundamental
system of invariants of the cubic, mod p, a prime; though no solution
of this problem for any prime is to be found in the following pages,
results obtained in considering it are now published in the hope not
only that some interest may attach to them, but that they may to some
slight degree contribute to a solution of this problem.

Article | is devoted to a brief introduction to the subject and to
three theorems, two of which are proved by a method different from
that employed by Hurwitz in the proof of the first, a method which
leads immediately to a proof of the third.

In his discussion of the invariants of the binary cubic Dickson in
his Madison Colloquium Lectures (*) has proved the existence for
every prime greater than three of a certain invariant; when one
examines this invariant, mod 3, one finds, as Dickson points out, that
it is the product of two invariants of the same degree neither of which
is the product of invariants. An examination of the case when p =7
confronts one with the same circumstance and the question whether

(V) Hurwitz, Archie der Math. u. Phys., 3¢ série, vol. 5, 1903.
(*) Madison Colloquium Lectures, p. 48-51.
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matters fall out thus for every p greater than 5 is an interesling one.
The question is answered in the affirmative in Article 1, and other
results of kindred nature find their place in the same article.

If ¢ is the order of a'binary form and p a prime, it will appear Lhat,
unfortunately, our problem resolves itself into @ (¢) problems, ¢ (¢)
being the number of numbers less than ¢ and prime to it, one for each
prime value of r when p is cxpressed in the form ¢gm + r (r <g).
Thus when ¢ = 2 there is but one problem (') since all odd primes
arc of the form 2 m + 1, and this is one of the circumstances which
have made the determination of a fundamental system of invariants
less difficult for the quadratic than for forms of higher order.

In Article 111 various general theorems are proved and the essential
differences for the cubic between the case p =3 m + 1 and the case
p = 3m + 2 are made clear. In Article IV and V some of the details
of classilication according to leading terms of invariants of the cubic,
mod 5 and 7, are given; the tediousness of such a classification has
made it seem unwise to publish itin more detail, but we illustrate the
general theorems already proved, in the cases p =5 and p =7, and
prove that there at least twelve independent invariants, mod 5. That
it is almost certain that the number of members of a fundamental
system varies with the prime, as in the case of seminvariants, will not
escape the reader’s notice. Article VI contains a generalization of a
theorem of Hurwitz and some modular identities involving algebraic
invariants of the binary cubic, quartic, and quintic, which are not
without interest.

As when a binary ¢-ic form

S=(ay, ay, ..., a,) (%, y)? is carried over into
F= (A, AL AKX Y)Y by the linear substitution -
(e=IX+mY

(A) | y=0X4+mY,

(1) 1f we except the very special case which arvises from taking p=3
(Dickson, loc. cit., p. §2).
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isobaric polynomial, invariant mod p under (1) and (2), is an inva-
riant; and hence a polynomial invariant mod p under (1) and (2) is
whose determinant is supposed different from zero, a function

Wag, .vvyay)
is called an (algebraic) invariant of f under all substitutions (A)
when

L Aae ooy Ay = Um"—=1Im)Y Yay,y o ovy an)y

so | is called a formal modular invariant of f under all substitutions

a=I{NXN4+mY

y=UN+nm'Y,

L, my ', n, being integers reduced, mod p, a prime, and {m'— I'm
not divisible by p, if

Lo oo, A== (U= Um) Way, o0 ay) (mod p).

Every algebraic invariant is thus a formal modular invariant, but the
converse is not true. In this paper only invariants which are polyuo-

mials in their arguments are considered, and the word invariant is used
to denote formal modular invariant.
The transformations

J‘:X-l—-\",

(I) v,:\r;
., ' ‘.v.—_:\",
(2) |y =—X;
and

{ =X,
3 !
) l y=1}Y

(A being any integer =% o, mod p) generateall binary modular substi-
tutions of determinant not divisible by p. A necessary and sufficient
condition for the invariance of a polynomial I under (3) is that I be
modularly isobaric, mod (p — 1), i. e. that the weights ¢,, 64, ..., q,
of the terms be congruent, mod (p —1). Consequently a modularly
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either an invariant or the sum of invariants, the separate invaviants
being obtainable by a simple separation according to the weight of
the terms. It is thus convenient to speak of a polvnomial invariant
under (1) and (2) as an invariant, though it may not be an invariant
in the strict sense of that term, but the sum of Lwo or more invariants.
A polynomial invariant, mod p, under (1) is called a formal modular
semincariant. lovariants and seminvariants are homogencous ov the
sums of homogencous seminvariants or invariants,
We employ binomial coefficients

() (5 (2

and it should be noticed that we confine ourselves rigidly to forms in
which all of the binomial coefficients are incongrucut to zevo, mod p.
All theorems arc proved under this restriction, even when this fact is
not explicitly stated.

As an illustration consider

J=art+3ba%y + 3yt drh
which is carried over into

F= AN3-3 BNX2Y 4- 30 XY2 - DY®
and
S =@ N30 N2Y + 3¢/ NY 4= 'Y

under (1) and (2) respectively, where

{\ -=a,
B=a-ib,
) C=a+2b-c, |

Di=a+3b+3c+d,
K= (—ac)d -+ (bt — a*b)d — b¥— Y+ @ - ali?e:

a'=—d,
‘, 0= ¢,
2
(2) i
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is an invariant of the cubic, mod 5, for it is invariant, mod 5, under
(1) and (2). Itis homogeneous and modularly isobaric, mod 4.

'or an invariant of degree i?and weight==w, mod p —1, of the
binary ¢ — ic form the congruence ig — 2tw==0, mod p —1, holds(").
It has been pointed out by Dickson that the (p +1) linear poly-
nomials @, at*+ 30+ 3ct +d (L =o, ..., p — 1) with coefficients
reduced, mod p, play a fundamental role in the theory of the inva-
riants of the binary cubic. 1fin

03, (E'*‘tn)a (l=°>---»P""‘)
we set

~rl:{

i=d, IPn=c¢, =), n*=aq

we have these (p + 1) linear polynomials and a substitution of & -+ y
for £ and v for v in these is equivalent to (1”), while

(")

=", n=g,

Nyt

is equivalent to (2’). Thus the linear polynomials simply change their
order under (1"); under the substitution (2")

7]3) (E'Flﬂ)s (‘——_03-")1’_[)1
become

=3 3 P—t 3 .
gty =-—nd, &+ ;N (t=1,2,. ..., p=—1).

Since

bv Wilson’s theorem
o )

p—1

q]__[(at3+ 322+ 3ct -+ d)

t=0

is an invariant of the cubic. Similar reasoning leads us to the general
theorem :

(') Guenw, Amer. Journal of Math., vol. 37, 1915, p. 75.
Journ, de Math., tome 1V, — Fasc. II, 1925, 23
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Tucorem I :
r=1

—a /
a,)l I laolq -+ k?)ﬂ, l"-! “+ .ok (h/—l

t=0 -

is a formal modular invariant, mod p, of the binary ¢ — /¢ form
(

- where p and q are such that none of

(1) @) (L)
) ) MRS )
1 a l] — 1
is divisible by p (*).

In like manner there follows at once

Tueonen I1 :

-1
r VA pe- 0

- Wl {
I\):«{',“"“-f—_)‘ a,ti+4- <|/> a4+ ay, (A=1,2, ..,

t=0

are invariants of (a,, a,, ..., @,) (.t, ¥)7. Hurwitz proved this theorem
by quite a dillerent method for the case A = 1, and Dickson (*) inde-
pendently discovered the invariant K,. The method due to Hurwitz
could easily be applied to the general theorem, but not to the follo-
wing theorem, whose proof by the present method offers no difliculty.

. . . . ) — 1 .
Tusowen ULz If p is odd and N isan integer such that ;o van
integer
) p—=t p-t Y
L O ‘
l.—=ay, ¥ +> [a../'/ —+4- (:’)a, e a’l.

=0
is a formal modular incariant of (a,, a,, ..., a,) (&, y).

Theorem 11 is of course only a special case of Theorem 111,
Dickson has found a fundamental system of invariants of the binary

(") Nunwirz, drchiv der Mathematik und Physik, 3¢ série, vol. 8, 1903.
(%) Dickson, loc. cit., p. 44 et seq.
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quadratic, mod p, but no fundamental system has been given for any
form of higher order except the cubic in the special cases when

p=z2andp=3(").
1L.

Other lincar polynomials in a,, @,, ..., @, than those hitherto
considered play their partsin the theory of formal modular invariants.
These Dickson has expressed in the forms

at + b, (l(t'l__ /.~) “+abt + ¢, (1(13—3/;;__/') + 3b(t3—/g) e 3etad
((!J.v k=o,1, N /] —1),

for the purpose of developing the theory of seminvariants and inva-
riants of linear, quadratic and cubic binary forms. There is another
method dealing with these linear polynomials which for certain pur-
poscs offers considerable advantages. FFor not only is there a one-to-
one correspondence between the polynomials

a(.l'l-i-<:’>a,('l“'+...+aq and (54 en)? (=0, .00, p—1)

obtained by an interchange of @; and 2~‘x‘, but there is a like corres-
pondence between the polynomials a(¢* — k) + 20¢ + ¢ and the qua-
dratics ' + 2rzy + sy* obtained by selting x* = ¢, wy = b, y* = q,
and between ‘
a(B—3ht— ) +3b(—h)+3ct+d
and
W34 Juaty +3vayiwyd

obtained by setting a* =d, x* y =¢,xv* = b, y*=aq, r, s, 1, ¢, w
ranging over the values from o to p—1 in such a way as to repre-
sent all non-congruent quadratics and cubics of the formsa* + ...
and @* + ...

As above, a substitution (1) on one of the forms generates a substi-
tution (1) on the corresponding linear polynomial, and substitu-
tion (2), a substitution (2'). (1) and (2) generate all modular binary
substitutions of determinant unity; if we call two linear polynomials

(") Guens, Transactions Amer. Math. Soc., vol. 19, 1918, p. 117.
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equivalent when and only when one of them passes into a multiple of
the other by a binary linear modular substitution of determinant
congruent to unity, mod p, the questions of equivalence of two linear
polynomials and of the equivalence of the forms are identical.
Following Dickson we call the set of all forms equivalent to a given
onea genus; we use the same term for the set of all lincar polynomials
equivalent to a given one. Now Dickson (') has proved that all qua-
dratics, irreducible, mod p, form a genusj in fact, if ®,. ®,, ..., ®, be
all the quadratics, irreducible mod p, the product @, @,, ..., @, is
carried into itself by any modular binary linear substitution of unit
determinant. Let ¥',, W', ..., U, bet he linear polynomials correspon-
ding to ®,,®,,...,®,; then W, W,, ..., U, is an invariant as il is inva-
riant under the substitutions induced by (1), (2) and (3). Itisin fact

exactly the invariant :
T =1y,

(4 ranging over the quadratic non-residues of p) forming a member of
Dickson’s fundamental system of invariants of the quadratic, where
Ye=a(*— k) +2bt+c.

The cubic forms, irreducible mod p (p > 3), form two genera,
each of which includes exactly one half of the irreducible forms;

calling the forms of a genus ¢, ®,. ..., I,,._. ., the product I I ®; 1s

¢

carried into itself. We have therefore the

Tueoren : The product of the 2

> linear polynomials corres-
ponding to a genus of irreducible cu[uc Sorms &+ ... is an inva-

riant, mod p, of the binary cubic; there are two suc /, tsariants,
,ﬁ~p

each of the formsd * ()0

(') Transactions Amer. Math. Soc., vol. 12, 1911,
(*) The theorem of p. 49, Wadison Colloguium Lectures is equivalent to the

theorem : the product of the d 3 P linear polynontials corresponding to all
cubics, irreducible mod p, is an (neariant. Our theorem then states that the

—_n
invariant is alw ays the product of two invariants, each of degree P—r 5 L
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Theorems of a like character for quartics, quintics, sextics and
septimics, mod p, follow mnnedmtely from the facts regarding genera
of irreducible forms of these orders given in Dickson’s paper.

Not only is the product of the linear forms of a genus an invariant
but the sum of their A(p — x)lh powers (A = 1, 2, ...) areinvariauls
since J is transformed into m Y, (say) and hence ;" is transformed
into 4} ", mod p, since MM "=1, mod p, by Fermat’s theorem.
Also the sum of the products of the A (p— 1) th powers of the i,
taken two, three, ... at a time are invariants. (Some of them may of
course be = o, mod p.)

An example will make clearer the above theorems and the paralle-
lism between ivceducible forms and linear polynomials. The single
genus of quadratics, irreducible mod 5, consists of the following ten
forms:

(a) wE-i- 2y, () a3y},

(0) 22 axy + 3y, (8) &2 2wy + fyh
(¢) iy -yl (7) X oy 4+ 2y,
(d) w2y 4y, (9) &2y gy,
(e) 223y 430, () &30y 4 Ayt

Ulnder substitution (1) these are carried into cach other in the
order (@), (M), (&) (), (), (@), ... and (@), (B), (), (), (2), (@), ..}
under substitution (2) (@) and () are equivalent, .... The corres-
ponding linear polynomials are:

(a) aa+ ¢, (e) 3a+c.

() Ja+ab+ec, B3 da+2b+c,
(¢) a-+4b+v¢, ) aa+4b+c,
(d) a+ b+c, () aa+ b+ec,
(e) 3a+3b-+c, (e) Ja+3b+c

and their product, the sum of their fourth, eighth, ... powers and the
sums of the products of these latter taken two, three, ..., nine ata
time are invariants.

A remarkable consequence of the present method is the theorvem :
Every form (ao, @y oeny Qo) (22, ))¥ of even order has an incariant

of the form a +

»"
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Let us first prove this theorem for the quartic
a1 hady - 6ex i fdayi ey (mod H).

Squaring the ten irreducible quadratics above we have ten quar-
tics, ®,, ®,, ..., ®,,, and theproduct ®, @, ... @, is invarviant under (1)
and (2). Lorming W, W', ..., W, by making the substitution

s=e, aty=d. atyr=r, N =N rr=a,

we see that ¥, 0", ., U°, | is an lnvaviant e'* +....
~e e o . R —p .
Similarly if we raise to the p — " power the L'«TL quadralics

irreducible modp, and make in each of the 222 — /¢ forms so obtained
the substitution

XM= gy, asly = g, g, ooy yH=a,,

the product of the linear polynomials so obtained an invariant
e
W,y .

If we arrange a seminvariant according to the descending powers
of the most advanced letter, the first term is called the leading term
of the seminvariant, and Lhe coeflicient of the most advanced letter in
the leading term is called its leader. Bx. gr. a*d* is the leading term of

D=a'd*—6abed + 40°d 4 fHac*— 3 b2t

and «* is the leader of D.

If the leading term of a seminvariant, modp, is a*,, A must be a
multiple of p, up say (). If the seminvaviant is an invariant, modp,
fg —2w:z0, mod(p--1), viz. 2nup —jnep=o0, mod(p—1)
whence w0, mod ged (p — 1, 2n) where ged (p — 1, 20) is the
greatest common divisor of p — 1, 2n. If(p-—1) is prime to » the
invariant of the 2/ — f¢ whose existence has just been proved has the
lowest degree of all invariants whose leaders are constants, and no
invariant of such a form with respect to such a modulus differs cssen-
tially from a power of this invariant.

Y Wiians, Transactions Amer. Math, Soc., vol, 22, 1921, p. 61.
b



ON THE FORMAL MODULAR INVARIANTS OF BINARY FORMN, 179

Ul

I 1 is an invaviant, modp, of a form f= (a,, @\, ..., @) (v, ¥V
aud A™ isthe »'" itevation of the Aronhold operator

J
e (?,[’ T
day

\ — ‘), - l’_,o.
A= da, Fa da,
A Lisalso an fnvariant of f(which may be==o0,mod p) (*). Applying
this theorem to the discriminant

D= @td?—- Gabed -+ 463d -+ a3 — 302 ¢?

of the binary cubic form we see that this form has invariants whose
leading terms are a*dr' and «*d*". None of these three invariants is
a polynomial with integral coellicients in the other two. If @*d" is the
leading term of an invariant of the cubic, using the notation of
Articlel, ¢ =3,/ = r+ 2, w=3r, mod(p — 1), whence 3r+6:. :tr,
ulod(p~- D). If p-— 1 is not divisible by 3, r=z2, mod(p — )5 if p
is of the form 3m 41, r==2, mod’—)—T— We shall show later how

actually to construct aun invariant of the cubic, mod 3, for every value
of r==2, modj, and an wvariant of the cubic, mod7, for every
value of 7o n, mod:».(: 7_)‘—5, for which seminvariants exist.
Suppose that ™ is the lcad"ing term of an invariaut, modp; then
3N 6, mod(p —1). If pisof the form 3m + 2, A must be a mul-
P

tiple of p — 15 if pis of the form 3m + 1, A must be a multiple of

But A must also be a multiple of p, for is *+... is a seminvariaat,
modp, of the binary cubic, s must be divisible by p ("'\ A must then

be a multiple of p(p-—1) when p is of the form 3m + 2, and a

pp—1)
3

multiple when p is of the form 3m + 1. lf for p=3m + 2

there exists an invariant, mod p, led by d»#=", then no invariant led by
any power of d is essentially different from a power of this invariant,
Pt [l~ n

and if for p = 3m + 1 an invariant, modp, led by « *  exisly, no

(') Guesx, Bullettn Amer Math. Soc., vol, 21, 1913, p. 170,
(*) Wnas, loc. cit., p. 69.
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invariant, mod p, led by a power of d is essentially different from a
power of this invariant ('). We proceed to show that theseinvariants
exist for values of p > 3. There is no loss in generality by making the
proofs for the simple casesp =5, and p = 7.

1. If p =35, cousider the polynomials
a, at*+3bt¥+3ect+d (t=o...c, p—1==4),
V1Z.
a. d, Py= a+3b+3c+d,
P;=3a+2ab+ c¢+d,
Pa—aa+ab4 e 4d,
Py= a+3b+ac+d.

Under transformation (1) we have the substitution
a & PP, Py Py
a P, Py P, v, d
and under (2)
a d L, P, Py ry 5
—d @ (—P (2P (=3 (=

Consider the sum
(AP, PyP P )+ (aPyPyP P 4 (a Py Py P,d) - (a Py P, dPy)b
-+ ((l ‘)‘(1l)‘l)g)i - (a({‘)l l)i I‘;;)‘.
each term containing all of «, &, P,, P,, P, P, except a, d, P,, P,
P,, P,, respectively. Since under (1) and (2)
@ d+PL+PI P+ P} and  adP, PP, P,

are invariant, then the sum under consideration Is also invariant and
we have the

(') Two invariants I, and I; whose leading terms are S,d™ and S,d™ respec-
tively, are not essentially different if k=12, and there exists a constant
k # o, modp, such that £S5, =8, mod p; A1, —l == aninvariant ly= Sad)*s—*—. o
¥ being < A, :

P . . C ) — 1
) (p‘ where ¢ is the integer between o and p, which is= ’-—‘—- » mod p,
.
by Article 1.
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Turonen :
r=t
[Py Py Jemt Y @' [al + 358+ 3c + d )~
=0
Xa(t+124- 3000+ 1) 4 3e(t 1) + d]"-l
X[e(t+p—1)P+3b(t+p—0)-+3e(t +p—|) -~ d]r,
is an incariant of the binary cubic form
ard+ 3oy + Jexyd +drdy

istleading term is dP*=""and, if p is of the form 3m + 2, no inca-
riant, mod p, whose leading term is a power of d is essentially
different from a power of this invariant.
p—1
2. If p — 1is divisible by 3, since (— ) ¥ =1, mod p, fort =1, ...,
p — I, we have the

TueoreM ¢
p—t

r—1 bt

[dPyo Pp ]S+ N [+ 300+ 3ct+d] Y

I=o
rp—1

xla(t+p—1)2+30(+p— )+ 3c(t+p—1)+d]*?
Is an rncariant of

axd+ 30ty 4+ Jcayi+dyt  (wmodp),
pip—=0
when p is of the form 3m +1; its leading term isd * , and no
ineariant, mod p, whose leading term is a power of d is essentially
different from a power of this invariant.

The invariants of the last two theorems are sums of (p — 1) terms
and it is very easy to see what the leading terms are. Invariants more
complicated in type are made up by forming the sum of all the pro-
ducts g(23¢Sp— =) at a time of a* e,

P} =(a+3b+3c+ d),
l’:’t :(a‘.a+3.a’b+3.ac+d)l,
......... Cerrasraaaany
—_— N
Py = (p—l +3p —1 b+op—xc+d}

Journ. de Math., tome 1V, — Fasc. [, 1923, 2.

-—
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where I, = a® + 368 + 3¢t + d and X is a multiple of p — 1 if p is of

the form 3m + 2 and a multiple of’—"—%—I if p is of the form 3m + 1.
Each term of the sum is of the form

X pr Yy
0(11,‘....1,“_‘ .

. 1Y, ' . n WA
or @ lPh oo Py or a'P;...1 Kq-

. Pk >h
g1 or 1 vee | iy

Under transformation (1) each term has a unique first, second, ...
successor and its p th successor is itself, whence it is evident that the
sum is formed by adding C*' [the number of combinations of (p +1)
things taken ¢ at a time] seminvariants and is itself a seminvariant.
Under transformation (2) each term is carried into a term of the sum
and if A is carried into B, Bis carvied into A. [ln factif A =D}, ..., 1},
B=1%, .., where iris==p — 1, mod p (i =1, 2, ..., ¢)]. Hence
the sum is an invariant since it is invariant under (1) and (2) and we
have the

Turoren : The sums of the products taken qatatime (22 ¢ Sp—2)
of @, &, P} (at* + 308 + et + AV (t =1, ..., p — 1) areinvariants,
mod p, of the binary cubic form, X being a multiple of p —1if pis
of the form 3m + 2, and a multiple of B———:' if pisof the form
Im + 1.

In like manner may be proved the

Tucoren : The sum of all the terms of the type a*d"*, a"*d",
a®P, L (I=1.n, . m =1, 2, ) Is an invariant; likewise the
sunt of all the terms of the type a*d" P is an invariant.

The sum of the following is an invariant, mod 3, of the last type:

(1) &P} (1) &Py (2) &Py (3) &Py (4) &P} (3) d*'a
(2) @Py  (6) P{a®  (12) P{Py (1) PPy (8) PP} (9) P} a®
(3) @Py  (10) PIPY  (10) PIPY (8) Pya&  (16) PiPY (8) Pya®
(D) &Py () PPy () P& J) PPy (4 PIPY (3) Pa®
(3) a*d®  (12) PPy (13) PIPY  (13) PIPY  (9) Pia@*  (6) Pia®

The sum of each group of five is a seminvariant, and the terms
marked (1) are carried into each other by substitution (2), those
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marked (2) carried into each other by the same substitution, etc.,
(x1) and (16) being carried into themselves.

Itis casy to provethat every formal modular seminvariant (invariant)
of the covariants

(b — ac)at - (be — ad)wy + (¢ — bd))?,
(a*d —3abe 4+ 2 0*) ¥ + (abd — 2act + b¥e)ay
- (— acd + 2Hd — be)aent 4 (— adi 4+ Sbed — 2a¢3) y?

is a formal modular seminvariant (invariant) of the cubic.

V.

Lu this article the preceding general theorems are applied o the
case of the binary cubic, mod 5, and an attempt to classify its inva-
riants is made, though a fundamental system is not determined.

Since p — 1 is not divisible by 3 for p =5, the exponent ¢ of any
invariant ¥ +. .. is divisible by 20; there exist invariants with the
leader d*" e. g.

M= d* PIPIPYPY + @ P PLPI P
4+ @ PIPiP b
-+ abl’):\' !): d‘ l)}
+ @ P} PP}

+atd PPy Py(t).

There then exists an invariant d*"*+ ... for A =1, 2, ... and any
invariant whose learding term is a power of d** does not differ essen-
tially from a power of \[

Every invariant led by « is of the form ad*** . (n=o, 1,
2, ...) for seminvariants whose leader is @ have as leading terws @,
ad?, ad', ad'®, ... and the only ones of these which satisfv the condi-
tion ig — 2w==0, mod 4, are of the form d*****, There exists such an

a_
(1) Since P 5 P =p(p —1) when p =235, M and the products of the members

of the two genera of linear polynomials corresponding to the two genera of
irreducible cubies have the same leading term when p = 5. For another form
of expressing these invariants v. Dickson ; loc. cit., page 5o.
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- . - N
invariant for every value of ., viz (ad,,)M*, where as above
4

dw= [ J(ats+ 302+ 3ct+d).

t=0

It is easy to derive from the relation /g — 2w ==0, mod 4, that if
the leading term of an invariant is of the form a*d¥, ¢ =2, mod j.
An invariant exists for everv value of ¢ satisfying this condition.
When ¢ = 2 it is the algebraic invariant :
D=ad*+ (40’ — 6abe)d + 2b*c* — ac’;
for g =6, it is

Di=@dt+ (203 +aabe)d® + a¥d®*+ (2@ be + b+ 2abcd + 2 ab’e)d
+ 2@+ act+ 2 b8 ¢+ a b3t

obtained by operating on D with the Aronhold operator

; d Jd ;0

“0% +[I‘(T,; +C°(’)—c +(Pd—d;

when g==10 it is (@8,,)*.
Those whose leaders are @*'* and @*d**® arisein a more complicated
way. Consider the linear factors of

4
?l:II[a(ti—l)-i-abt—E—c]

t=u
and of
+
60,::1_1[0(0——3.25)+3b(t’—3)+30t—:—d] ()
;:0 )
viz,
A=ja + ¢, o= 40 +d,
B= ab+c, . 0= ab+3c+d,
C=3a+4b+¢ E= a+ b+ c+d,

D=3a+ b+c, s=da+ byfe+d,

8= 3b+e¢, 2d+ac+d.

I

() y10ss is an invariant as will be noticed later; there is a misprint in (31),

p- So of Madison Colloquium Lectures where it is referred to as 71903
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Transformation (1) induces acircular substitution on the constituents
of each set. If A <—->B means A is carried into B and B is carried
into A under substitution (2), we have

AR <> a?,

B <> — By,
Ct <> — Y,
D? <> — @3

.
B2 <> €l

Then the sum of

Ar a7 B:Dv — o'k oA e pCe
B2 gv (08 .B'i — E? g a*Bv — a* y? AD?
C*Ev DAY — sty 2 Cr — 0 at B 3¢
D2 ¢ BB — s — E g CAY
KS! -/'I A2(Ce — 2 01 Yi IB'I —_— kY DB«

is an invariant when ¢ = 2, 6, 10, .... When ¢ = 2, the sum of the
first three groups is an invariant which is congruent, mod5, to a
multiple of D. The leading terms for ¢ = 6, 10, ... are
adt, a*d, ad"®, Ed's, ...
Of these
Di=atdtt+...

and
Di=atd®+. ..,

are not polynomials with integral coefficients in the invariants pre-
viously mentioned in this section. But any invariant whose leader
is a* is not essentially different from one of D, D,, (ad,,)?, Dy, Dy,
or one of these multiplied by a power of M.
lnvariants led by @® must have as leading terms @*d®, a*d’, a*d'', . ..
in order that the relation 3¢ ==2w, mod 4, shall be satisfied. But no
invariant with the leading term a*d® can exist, as under substitu-
tion (2) @®d?® is carried into — a*d®. Since
adpD =add’ +...,
adpDy=add" 4. . .,
(adp ) =a%dV+. ..,
adpDy=—add¥ ...,
adyD;=add¥®+...
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. e . - .
and multiplication of these by the proper power of M gives any other
possible leading term a®d*#+3, we see that any invariants led by a® are
esscntially equal to a polynomial in ad,,, D, D,, D,, D, and M.
Consideration of invariants led by higher powers of @ leads us to the

Turorey: An y incariant led by a power of @ has the same leading
term as a product of powers of some or all of D, D,, D,, Dy,
ad,, and M. )

. . . O N "
N =K, =a"+ 24 (@l - 36843t 1- d)}
=0
= (0 —ac)d? 4 (bet — ¥ b)d — b — ¢t + @ - abe (mod 5),

)
K,=a® \‘\: (@t~ 3br2 - 3t + d)*
l==0
= (0 — ac)d¥ - (3hed -+ 23 0) P+ (2 e -+ 2ac’ + 0%) d?
+ (2@ — @b - 307 ¢+ bet)d
+ @t @t 308+ 3N+ 3 atbic - Sabied + abic,
13
Ky= a't+ ‘\: (@4 3bet 4 3t - d)'
t=q
= (07— ac)d® - (JaPe + J 0 - Sach)db
A (3a%h 4 Bt abet - J @ 03) B - (0" - Y@ e )d?
+ (3@ DS b3t bett — @ b)d S+ G4 atelt 4 alve?
4+ aabtct+aadbbe -+ jat et - @t b+ adlle,

ave invariants led by A =0*—ac, and it is apparvent that every
invariant led by A has the same leader as one of these or its product
by a power of M, for from the relation 3¢ = 24", mod 4, the possible
leading terms ave Ad?, Ad®, Ad'?, Ad'Y, Ad'®, Ad*3,. ... .

Now from K, K,, K,, and M we can make up invariants having the
same leaders as Ad* when ¢ -:z2, 6, 10, mod 203 no invariant Aa? with
the leading term Ad? for ¢ =:11, 18, mod 20, can exist, for not even
such seminvariants exist, as may be seen from the fact that such
seminvariants cannol be made up from the members of a fundamental
system of seminvariants, mod 3, given on page 52 of Madison Collo-
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quium Lectures (), or from the theorem of Article VI of the present
writer's dissertation (*). In fact, any invariant led by any power of A
does not differ essentially from a product of powers of some or all of
these four invariants, so long as the degree of the leader does not
exceed the degree of / in the leading term. '

When the leading term is ¢ A the relation 3¢ == 24, mod 4, gives as
leading terms of possible invariants'aAd®, aAd',.... If an invariant
with @ Ad® as its leading term exists, it will be easy to form from it and
the invariants alrcady meantioned an invariant with the same leading
term as any invariantin this list. Such aninvariant G, does in fact
exist and is 3(ag,, — (i) where G = ad® — a®d — 3(bc*—b*¢) (*);
it may be obtained independently by operating on 3K with the
operalor :

B=(a'd — 3abe +a0%) - + (abd — 2act+ bec)d_‘)b
+ (acd + 20%d — be?) (;-)Z + (— ad*+ 3bed — 2¢3) (—)%

A detailed discussion of the invariants of the binary cubic, mod5,
from the present point of view would be too tedious for publication,
especially as these methods have not led to a determination of a funda-

mental system, mod 5. The only other independent invariants known

to me ave
1Y

7,60.,::]][(1(1.’3—— Dobt+clla(t—t)+3b(2—2) 4 et +d]

=0

mentioned in Article 1V, and the invariant

-

o=

(') Loc. cit.

(*) Loc. cit.

(*) Madison Coll. Lect., page 50 : That this is an invariant is easily verified;
it may be obtained by writing a@'=a”?, V'=07, c'=c?, d'=d? in the joint
invariant

ad'—a'd—3(be'—V'c)

of the two cubics (a, b, ¢, d)(x, ¥)* and (a’, V', ¢/, d")(a, ¥ )}, wherep =5,
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(h ranging over the quadratic non-residues of 5) where
Li=(0*—ac) (*— &) + (be — ad) t + c* — bd.
This is an invariant of the cubic, forit is an invariant of the covariant
(0% — ac)at+ (be — ad)ey -~ (¢t — bd)y2.
The leading term of this last invariant is
(b —a* b)ram,

We have seen that even in the very simple case p = 5 the cubic has
at least twelve independent invariants, a3,,, G,, K, K,, K, D, D,,
D,, Dy, v,%.., M and Q. A brief treatment of the invariants of the
same form when p = 7 will bring outsome striking differcnces between
the cases when p is of the form 3»2 + 1 and of the form 3m + 2.

V.

From the point of view of classification by leaders there are marked
contrasts between the invariants of the cubic forp =35 and p =-.
Just as when p =3, the invariant of lowest degree whose leader is a
is ad,,, which is now

al[ (a+308+3ct+d)==ad +...,

=0

but the condition /g -- 2w =0, mod (p — 1), imposes no more
stringent conditions on an invariant @*d +-... than that A:=:o,
mod 2. We have in fact the algebraic invariant D, and the formal
modular invariant

3
K= ¢1“+>: (@ 30t + 3ct + d),

=0
which has as its leader a numerical multiple of @*. Indeed

— K=—K,=a*d*+ (&+ 2abe)d*+ 3 (b + ac®)d*+ a* d®
+(3bct—aatbe + 3@ %) d + D+t + 3ablc + 3a bier -+ act.
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There is no invariant with leading term @*d® nor indced with lea-
ding term @*d*™**, @*d**+*, for no such seminvariants exist ('). By
operating with the Aronhold operator on D and K we obtain:

Dy=a*d®+ (a0 Jabe)d -+ a* @ + (ha“ be + fabic + fabe' + 60%)d
+ a2+ abict+ 3aT ¢ - 2act,
Ry== a?d™ = (607 + Dabe)d* -+ (52 -+ Hacd + fat)dd
+ (6bet -+ fatbe 4+ 6@ ¥Yd' + fadd?
+ (fdbe + 60— Jabic 4+ fabeT)d?
4 (6@t ct 4 a4 D0 - D+ facd) a?
+ (dathe 4+ Hat b + GiTedt + Jadbie + 4@ b + 4@ bet 4= 3hete)d
+06a’ b+ 3t 4-0a et 4 50 =53¢ 3-3uble
—+ Dbt - Gabiet+ dathiet | 6adet.

An invariant whose leading term is @*d' is (@8, )*.
All invariants led by a constant are essentially the same as powers of
M= (dV, D00, 1500 (ad P PP, P, D)t
A (P PP P PP A (ad PP PP
- (ad P PP PP e (ad PP, P PP
A (@l P Py PP e (ad P PPy, )2

=dt -,

Now multiplying D, D, K, K, and (@3,,)* by the proper powers
of M we obtain invariants with the same leading term as those of all
invaviants led by @*, as can be casily verilied.

These invariants do not, however, complete the fundamental system
so far as invariants led by a power of « ave concerned, for by operating
with B we obtain

L=add?+...

an invariant obviously independent of them.

V1.

* A. Huewitz in his original paper on the so-called formal modular
invariants cited above discussed the invariant, mod p (p >2) of the

T(Y) Wiaans, loe. edt., p. 74,

[ 4

Journ. de Math., tome TV. — Fase, I 1925, LN



190 W. L, G. WILLIAMS.
binary quadratic @.c® + 20wy + ¢y,

Pt

K=K =—ar! —E (at?+ 2bt +c)r—?

=0

P
and proved it congruent, modp, to (4*-—ac)* . Assuming the
theorem (') that every absolutely isobaric formal modular invariant
is congruent, mod p, to a rational integral algebraic invariant, the
truth of Hurwitz’s identily is obvious, for this invariant is absolutely
isobaric, and as A = 4% — ac is the only algebraic invariant of the
binary quadratic, K must be a constant multipleof a power of A. The

r—1 R . .
power must be the L—:—~ th and the constant multiplier is 1, since
p—1

E (2ht)r-Vz= hr—t (mod p).

ton

One generalization is that

=1

O q
— uy '——z I a4 (l)ult'/ Ly b,
[FSRTha

is an invariant of the hinary ¢ — ic form

et

((
ay et 4 ( I) a, :z"/"y A wy 7
. :

to this we have called attention in Article 1.

We call attention to an interesting generalisation of another kind,

(p—1)
q

. . p . . 2 . . . .
viz, if p is a prime such that 1s an integer, the invariant

ap—n P! Ap—1;

—
—a, " ——Z(aot’l-i-...—i—n,,) !

=0

(') Miss Olive G, Hazlett writes that she announced the proof of this impor-
tant and diflicult theorem at the December, 1924, meeting of the Awmerican
Math. Soc. The theorem is true, il and only if p > 2.
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is algebraic. The proot that this is an invariant is given in Article 1T

supra. [t is of weight p — 1, for if we ascribe 1l)o ¢ the weight 1 every
2p—

term in the expansion of (a,&/+ ...+ a,) 7 is of weight 2p— 2.
Now the invariant is simply the coefficient of ¢’~* in this expansion
and is therefore of weight p — 1 throughout. The theorem of Hurwitz
is the special case of the theorem when ¢ = 2.

The special case ¢ = 3 gives as simple a result as ¢ = 2, provided p
is of the form 3 4+ 1. For the only algebraic invariant of the binary
cubic

ard g 3haty -+ Jewyd - dy?
18
D = @*di— babed + §0¥d + facd — 3 b3c?

and hence when p s of the form 3m + 1

dpo0 r .—l 2p—1) a(/)_l) ,--ml
e TN (@l =308 3t -+ (1)—3”— = (: ( ) ne (mod p)y (")
—d 8 \ 4 (XX —_— N (I) — l) [ )
t=v
in particular, when p = -,
3
A N\ B 3 N 3
—-a'-—-}_‘ (@430t + 3t + d) =D {(wod 7),
=0
which may easily be veritied directly.
When ¢ > 3 the results ave less simple, for there ave always two or
more algebraic invariants. The quartic has two algebraic invariants

sz ae — J0d - 3¢,
J=(ac - b)e+ 2bed - ad* — ¢,
Putting p =3, 7, and 11 we have

\ A » 2n . ’ s N
r— (at' + J08 + 6t + fdt+ ) =2l mod 5),
anned

=0

[
‘ o N 9
—_t -—‘\_‘ (@l -+ 0P+ Gt 4 [dt4-e¥ =1 (mod 7)
=

(') For direct verification of this vesult, see my paper, Fundamental Systems
of ormal Modular Protomorphs of Binary Forms, soon o appear in the
Transactions of the Amer. Math. Soc.
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‘and

1
—a? ——E (ati 4+ 408+ 6ct2+ Jdt+¢) = {1 (mod t1).

(=0

These results are evident without any calculation since no other
combinations of 1 and J of the proper degree are possible, and the
constant multiplier is obtained by a comparison of the terms conlai-
ning ¢ alone.

FFor the quintic

n
— —E (@t =306 4-10ct +10dt+ Set - f) = 61, (mod 11),
=0

where

Li==a*f* —roabef -1- Jacdf 4-16ace — 1aad?e + 16 2 df - g b2e?
— 1202 f —90bede + (SO + 48 ¢t e — 3232,



