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A New Simple Theory of Hyper complex Integers ; 

BY L.-E. DICKSON. 

I. Introduction. — Since this Memoir presents ideas oi more 
general interest than its title would indicate, it has been so written 
thai it may be read by those having no previous acquaintance with 
hypercomplex numbers. It opens up a broad subject which is destined 
to furnish a wide generalization of the theory of algebraic numbers. 

A clear idea of the nature of our conclusions is furnished by §8 -i-b. 
These and the earlier sections arc strictly elementary and self-con-
tained, and make use only of facts proved here. 

The immediate purpose of the Memoir is to present a new concep-
tion of hypercomplex integers which is entirely free from the fatal 
objections valid against lite earlier conceptions of Hurwitz and 
Du Pasquier (§ 4). If their definitions are taken literally, there do not 
exist hypercomplex integers in the majority of algebras of hypercom-
plex numbers. If we discard a certain one of their assumptions, wc 
obtain integers but arc faced with the insurmountable difficulty that 
factorization into primes is not only not unique, but cannot be made 
unique by the introduction of ideals of any kind, a fact proved in this 
Memoir. These essential difficulties all disappear under the new defi-
nition proposed here. 

In his various papers cited below, Du Pasquier merely determined 
the integers in each algebra in the classic lists, without investigating 
the properties of the integers. This investigation is made here for the 
algebras in 2 and 3 units, to obtain material for an adequate compa-
rison of the old and new definitions, and such a comparison is always 
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decidedly in favor of the new. Incidentally, the new definition tells us 
automatically just what enlargement we need to make of a Du Pasquier 
system of integers in order to obtain a system having unique factori-
zation into primes. 

The new definition has been tested by all the classic algebras in 2, 
3 and 4 units, and found in every case to give wholly satisfactory 
results, as well as to explain serious difficulties arising under the ear-
lier definitions. Moreover, the new theory is far simpler to apply than 
the old, and more readily lends itself to the proof of general theo-
rems, which are wholly lacking in the writings based on the old defi-
nitions. 

2. Hypercomplex numbers. — The oldest example is that of ordi-
nary complex numbers a-h hi, Avhere a and b are real and i 
denotes \J — 1. Next we have algebraic numbers, like 

χ = (?+ b \/— 3, y = a -f- b y 2 4- c v'-i, 

where now a, b, a are rational numbers (integers or fractions). These 
are examples of hypercomplex numbers 

x — a + b e(^c ~ \J— 3), γ — a -r- b el-{- c e
2
(e

t
 = \Λ>, e

2
 —Vs 

the first having two basais a/tits, e
0
~i, e, and the second three 

basal units e
G
 = 1, e

n
 e

2
. The numbers a, b or a, b, c, which are mul-

tiplied into the units, are called coordinates. The units satisfy the 
relations 

c- = —3; = Cit'i — c*2 Ci = 2, el—2el. 

"We may and shall ignore the values of the units as radicals, and 
employ these relations to express any product (or square) of the units 
as a linear function of the units. The same is therefore true as to the 
product of any two numbers χ or any two numbers y. We call such a 
set of relations the multiplication table of the units. 

We give another important example needed later. Let 

··» *-(: :)· *■=(: :)· -(: :> ·«(: :)· 
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Then any two-rowed square matrix χ may be expressed in terms of 
these four as follows 

(3) ,r rzr
 2

 ̂  =r x
0
 e„ -4- J7, e, + ,r

2
 e, -4- X

3
 e

3
, 

since the product of matrix (\ by &·„ is a similar matrix having the 
element χ

ΰ
 in place of i. The general matrix χ is thus expressed as a 

hypercomplex number with the four basal units e
0

, e
n
 cj, c

3
, whose 

multiplication table is ( ') 

(θ) C'y— 6'0, C~i — C'3, ί-2^3 *-·>> i-'3«l—— ^1' 
C ■> (? \ — C j CΛ — 631 

together with the relations which state that all further squares and 
products are zero. 

Instead of adding or multiplying these hypercomplex numbers, Ave 

may (more quickly) add or multiply the corresponding matrices Λ·.ΤΟ 

find the element in the rth ΓΟΑΥ and cth column of the product of χ 
by a similar matrix as', we multiply the elements of the rth row of χ 
by the corresponding elements of the cth column of a;' and add the 
two products. For example, 

*'=(*> -UA.
 xx

> =(***>-0 V 

Hence χ and χ' are roots of 

( /1 ) X- — ( x
it
 4- x

3
) χ 4 (x\)X,· — .ri Xi) ε — ο,

 ε

~(^0 · 

Here ε = c
0
 -t- c

3
 plays the rôle of unity in multiplication. Thus every 

two-rowed square matrix a? is a root of a quadratic equation. Matrices 
are known to obey the associative law of multiplication xy.z = x.yz. 

in the same manner, we can express all /^-rowed square matrices as 
hypercomplex numbers in ri~ basal units. Such a matrix χ is the 

(') If we write en for e0, e2l for e,, eXi for e.2, and e22 for e3, we may express 
the multiplication table (of 16 products) in the compact form 

C ij £ jk — ^ iki cij Ρ Ik — Ο ( t ). 
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root (') of an equation of degree 11 whose constant term is tlie deter-
minant of χ and is called the norm of x. Hence the norm of a product 
is the products of the norms of the factors. 

In general, we shall consider only hypercomplex numbers (-) 

(5) X — Xa <?„ + · r I e L + ... -r- Χ η eu 

with rational coordinates r
0

, .v
u
 and a multiplication table 

(6) 

η 
c<ej=2 y,

'
/kC/

·' ^'"· i —(>i 1 > · · · 'n), 
/.·=0 

where the constants y
i//(

 are rational numbers. The product of χ by 

y —- y» e'> * · * 4- y η en 

is defined to be the number obtained from Σχ/γρ'/ΐ^ by replacingei ej 
by its expression (6). We agree that ./· and y are equal if and only 
if £-

0
 = y

0) xn — ya. We assume the associative law and the exis-
tence of a (unique) principal unit ε such that zx = χ ζ = χ for every 
hypercomplex number χ ; we shall often write ι for ε. If r is a rational 
number, r x denotes We define +y to be 

(•'"ο + y„) c
0
-f-., .-t- (x

n
 + v

n
) e

n
. 

Hence the set of all numbers (5) with rational coordinates is closed 
under addition, subtraction, and multiplication. It is called a rational 

'(') For a very simple proof, see die second lool-nole in § 15. 
(2) We may identify with the matrix having the element in the {i 4- i) 

tli row and (fc-hi) th column; then relations (6) hold in matrices. For 
example, if 

e 'ô ^o· c'i · cj =- cO 
then 

··-(: ;). :)■ 
Hence ordinary complex numbers λ*04- may be expressed as matrices 

/ .r„ χ Λ 
\ ,ri xJ: 
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linear associative algebra with a principal unit (briefly a rational 
algebra), or a rational liypercomplex number system. 

Since ε, .r,./;% ..., 1 are linear homogeneous functions of e
0

, 
e

n
 willi rational coefficients, some linear combination of them with 

rational coefficients is zero. Hence χ satisfies an unique equation of 
lowest degree with rational coefficients and leading coefficient unity. 
This is called the rank equation when the coordinates of χ are arbi-
trary rational numbers. Its constant term is called the norm of χ and 
designated Ν (χ). 

5. Preliminary survey of hypercomplex integers. — Gauss 
called a H- bi, a complex integer if a and b are rational integers; every 
complex integer decomposes into complex primes uniquely apart 
from unit factors, ± ι, ± /. 

For 0 = \J— 3, we might call a + />0 a quadratic integer if and only 
if a and b are rational integers. But 4 would then have two essentially 
different factorizations 

il = 3X3, :'j — (i + 0) (i — 0) 

into indecomposable integers 2, 1 -1- 0, 1 — 0, no one of which is the 
product of another by a unit, necessarily ±1. By a unit is meant a 
( quadratic) integer u — a -+- b0 which divides 1, so that there exists 
another integer ρ such that uv =1. Then N(w)N(e) = i, where 
N(M) = CI- 4- 3/R is a rational integer. Hence N(M)=I, A~ ±1, 

b — 0, and u =± 1. 
We may avoid all such double factorizations by including among 

our (algebraic) integers not only the numbers a-\-b0 in which a 
and b are rational integers, but also those in which a and h are both 
halves of odd integers. Then 

u ~ —1— 0 tt' — 0 Ί ·>. 'λ Ί 

are units since they are algebraic integers whose product is 1. The 
only units are here ± 1, ± u, ± u'. Thus the second of the above fac-
torizations of 4 may now be written in the form 4 = (2 u) (2«), which 
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is not regarded as essentially different from 4 = a X 2, just as the 
latter is not distinguished from (\ — (— 2) ( — 2). 

A still simpler example will show the wisdom of enlarging certain 
proposed systems of integers. Let the system S lie composed of unity 
and all positive even integers, This system is evidently closed under 
multiplication. Then 60 has two (and only two) decompositions into 
indécomposables of S : 

(k) — 2 χ 3o, 60-—Gxio, 

where no one of 2, 6, 10, 3o is a product of two numbers, each not 
the unique unit 1, of S, so that all lour are indecomposable. We evi-
dently restore unique factorization into indécomposables by annexing 
to S all positive odd integers. 

An algebraic number is called integral if and only if it is a root of 
an equation having rational integral coefficients and having unity as 
the coefficient of the highest power of the unknown. For example, 
x = a ■+■ b \'m is a root of 

χ-—2Λ χ H- {a· — m b·) = o, 

which, for m = — 1, has rational integral coefficients only when a 
and b are both rational integers, so that we have Gauss's complex 
integers α 4-6 f. For m = ~— 3, the coefficients are rational integers 
only when a and b are either both rational integers or both halves of 
odd integers (see above). For m = — 3/c2, where k is a rational 
integer, a and kh have the values just mentioned, so that the coordi-
nate b of the algebraic integer χ may have the denominator 2/» . 

There is no point in studying factorization in the set A of all inte-
gral algebraic numbers. For, if a is any rational integer, 

a — a\ — a\ — a\—. . ., 

where an a.2, are roots of χ2 = a, χ* = <2, χ* — a, ..., and 
hence belong to A, so that the factorization of « within A would never 
terminate. Hence in the theory of algebraic numbers we confine our 
attention to the rational functions wilh rational coefficients of a parti-
cular algebraic number. Tlicn uniqueness of factorization into primes 
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either holds true or can always be secured by the introduction of 
Dedekind's ideals. The above definition of algebraic integers led to 
this wholly satisfactory conclusion and is therefore a thoroughly satis-
factory definition. 

However, this definition fails in general for hypercomplex numbers. 
For example, let us call a two-rowed square matrix (2) integral if and 
only if its four elements are rational and the coefficients of the qua-
dratic equation (4) satisfied by it are rational integers. Then, if k is 
an arbitrary rational integer φ ο, 

-=(: V) 
is an integral matrix, since it is a root of' χ2 — 1 = ο by Μ2 = ε. But 

P = I\M1,= ^3 S = +M2 = (0 3/2 3 0) 

are neither integral matrices, since the middle coefficient of (4) 

is - for P, and the constant term is — ^ for S. Hence this set of inte-

gral matrices is closed neither under multiplication nor under 
addition. 

Historically the first definition of hypercomplex integers was that 
made for the case of quaternions 

η = a 4- bi+ cj -\~ dk 

by 11. Lipschilz ( '). The multiplication table of the basal units (2) is 

(7) Ρ =y'J =/.·' = — 1, ij —" —= /», jk = —kj~i, ki = — ik —j. 

(') Journal de Mailt., série 4, t. 11, 1886, p. 3Q3-43Ç), 
(-') They may be defined in terms of the matrix units (i) as follows : 

1 = en + es, ι = ν'— 1 (e3 — e„ ), ./ = e* — e,, 

/,·= — ^/— 1 (Cj+ d), 

Or we may define », i,J, k as 4-rowed square malrices with rational integral 
elements by means of the last note in § 2. 

Journ. de Math, tome II. — Rase. Ill, 1923. 38 
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He called q an integral quaternion if and only if a, />, c, d arc rational 
integers. But we then have three essentially diflercnL factorizations of 
2 into prime quaternions ι + ί, ι -t-y\ ι ·+· k '· 

(8) a = — i(i + /)5, 2= — y (i H-./)s, 2 =—*(ι +/,·)*, 

while ι 4- /' is not the product of 1 + y or 1 + h by a unit, here ± 1, 
±/, ±y, or ±/1. 

A. Hurwitz (') avoided all such difficulties by including among the 
integral quaternions not only those of Lipschitz, but also all quater-
nions whose coordinates are all halves of odd numbers. Now the three 
factorizations (8) are no longer essentially different; for example, 

I -F-Y — (1 + i)u, 1/ — 1(1 — £(,_Ί + /_ A), 

and the integral quaternion a is a unit since a a' — 1, where 

n'z= I (1 +/_/ + /,·) 

is an integral quaternion. Hurwilz's system of integral quaternions is 
closed under addition, subtraction, and multiplication, and they have 
unique factorization into prime quaternions when the arrangement of 
the norms of those primes is prescribed. 

We do not obtain satisfactory results by following the definition of 
integral algebraic numbers and calling a quaternion ([ integral if and 
only if its coordinates are rational and the coefficients of the quadratic 
equation satisfied by q and its conjugale 

η' —a — hi — cj — d /. 

are rational integers. For, 

(
v

> — ? i + d j 

would be integral since Q2=» —1, and Q — i not integral being a 

(*) GoUinger Nachrichten, 18g(>, p. 3n-34<> ; amplified in his Vorlesungen 
ilber clie Zahlen théorie der Ouaternionen (Berlin, 1919). 
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root of χ- -t- ^ = o. Thus the difference of the integral quaternions Q 

and £ is not integral. 

A. Hypercomplex integers as defined by Hunvitz and Da Pas-
quier. — Our aim is to select the integers from the set of all hyper-
complex numbers (5) with rational coordinates, having a multipli-
cation table (6) in which the y,-yA. are given rational numbers. In brief 
we seek the arithmetic of a given rational algebra. Ο C 

Although the definition by Hurwitz was stated only for quater-
nions, it may be expressed in general form as follows. 

Within a rational hypercomplex number system \cf. (5), (6)] a 
system of integral hypercomplex numbers shall have the following 
properties : 

β (basis) : The system has a finite basis (i. e., it contains numbers 
q

n
 ..., <//, such that every number of the system is expressible in the 

form where each c, is a rational integer); 
( 1 (closure) : The system is dosed under addition, subtraction, and 

multiplication; 
U (units) : The system contains the basal units c

0
, ..., r,

t
; 

M (maximal) : The system is a maximal (i.e., it is not contained 
in a larger system having properties B, C, U). 

The only modification made by Du Pascjuicr (') was to replace U 
by the weaker assumption U, : 

U, (unit 1) : The systems contains the principal unit 1. 
We proceed to show that each of these definitions fails completely 

for the algebra with two basal units 1 and e, where e~ = o. Any 
system has a basis 1, q = r -+- se, where r and s are fixed rational 
numbers, .v^o. Since q- is in the system by C, we must have 
q- — a -t- bq, where a and b are rational integers. Hence 

r2zn a + br, 2rs = bs·, 2r=b, /'2 = — a. 

Thus /· is a rational integer, so that any system has the basis 1, se, 

(l) Vierteljahrsschrift Naturf. Gesell. Zurich, t. ol·, 1909, p. , 11 G-1 -i8 ; 

L'enseignement math., t. 17, 19m, p. 3'|o-343 ; t. 18, 1916, p. 201-260. 
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where s is rational. This system is contained in that having the basis, 

i, te if and only if - is a rational integer. Since therefore the system 

(i, se) is contained in the larger system ^i, and the latter is 

contained in the still larger system ^i, etc
·? there exists no ma-

ximal system. In other words, there exist no hypercomplex inte-
gers in this algebra. 

The same conclusion holds true also for Hurwitz's definition, which 
adds the requirement U that e shall occur in the system (i, se) and 
hence that s be the reciprocal of a rational integer. 

Suppose we omit the requirement M that the system be a maximal. 
It is to be anticipated (§3) that the LTVVS of divisibility in a chosen 
system will not be as simple as in a larger (existing) system, nor the 
laws in the latter as simple as in a still larger (existing) system, and 
so on to infinity, and hence that the laws in the chosen system will be 
extremely complicated. This conjecture is confirmed in § o. 

o. Insurmountable difficulties in any Hurwitz or Du Pasquicr 
binary arithmetic with e- = ο. — We shall examine the laws of divi-
sibility in the system having the basis i, se, where s is a chosen 
rational number φ ο. Without disturbing the relation e~ = o, we may 
take s e as a new basal unit <?. Hence we may take s = ι. 

Then the integers are χ -+-ye, where χ and y are rational integers. 
Since χ Λ·ye is a root of (ω — χ)- — ο, its norm is x~. Hence χ = ±: ι 
for a unit. Conversely, ±n-\-ke is a unit when k is any rational 
integer, since its product bydz ι — he is i. Write 

co— o, Cj — >) (\ c> —~ 3 -+- 'i c. 
Then 

(9) C| (\> — C||Co— Ci, Co Cl—C\~v 

where îz = ι -t- e, and e = ι —e are units. No one of e„, c
[t c« can be 

obtained from another one of them by multiplication by units both on 
the left and right. For if uk denotes ± ι -+- ke, 

ukCjii/z= c„, η ~/'± 3(/-h k) — j (mod 3). 
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Finally, since no integer lias tlie norm 3, e
y
 is not the product of 

two integers neither of which is a unit, and hence is a prime. Thus, 
by (9), we have two essentially dillerent decompositions c

0
c

2
 and c; of 

the same integer into primes. 
Noris it possible to restore unique factorization into primes by the in-

troduction of ideals, hovever defined. It is understood that in introdu-
cing ideals, each integer whose norm is not zero, and its associates (i.e., 
all products of it on both sides by arbitrary units), shall correspond 
to the same unique ideal, and that the product of two integers corres-
ponds to the ideal which is the product of the two ideals corresponding 
to the two integers, and finally that the ideal I corresponding to the 
units plays the role of unity in the multiplication of ideals and has no 
ideal factor other than 1. Hence the totality of ideals contains a set of 
ideals simply isomorphic with the set of classes of associated integers. 

Then e
0

, c,, c
2
 correspond to distinct ideals C0, C,, Ch, no one the 

unit ideal I, such that, by (9), 

( 10) G ι —CS, G— G], C0C, — Ch. 

By the last two equations, any prime ideal factor D of C
()
 divides 

both G, and C
2

. Hence C,= DQ,-(i = 1, 2, 3), where Q
0

, Q,, Q
2 are 

distincts ideals. Thus 

Q."QÎ=^ ÇoQÎ=QT. QOQ. = QS-

No ( ),· is 1. For, if Q
a
 = I, the third equation would give Q0 = Q, = 1. 

llence the Q, have the same properties as the C,, and it is impossible 
to express the equal ideals G, C

2
 and C* as the same product of prime 

ideals. 

THEOREM I. — For the algebra with the basal units 1 and e, 
where e- = o, the definitions of integers by both Hurwiiz and Du 
Pasquier fail since there is no maximal system. They fail also if 
we omit their requirement that a maximal system exists, since, if 
the integers are defined to be numbers of any chosen one of the infi-
nitude o f non-maximal systems, factorisation into indecomposable 
numbers is not unique and cannot be made unique by the introduc-
tion o f ideals howerer de fined. 
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Similar insurmountable difficulties λυϊΙΙ be shown 11, 12) to 
arise for the majority of algebras in three units. This is doubtless true 
also of algebras in four units, for the majority of which there is cer 
tainly no maximal system ($ li) and hence, properly speaking, no 
integers under the definition of Hurwitz or Du Pasquior. 

6. New definition of hypei 'com pie χ integers. — We shall employ 
the assumptions C (closure), U,(unit ι), M (maximal) and 11 : 

R (rank equation) : For every number of the system, the coefficients 
of the rank équation are all rational integers. 

We shall often obtain the same system of integers if we replace 11 
by the weaker assumption N: 

Ν (norm) : The norm of every number of the system is a rational 
integer. 

Consider the algebra with the units ι, e, where e'1 = o, for which we 
saw that the definitions by Hurwitz and Du Pasquior both fail. Wc 
make the assumptions C, U,, M, N. Since .ν = a be is a root of 
(ω — α)~ = ο, wc have Ν(Α·) = ^2· Hence if χ is in a system satis-
ling our assumptions, a is a rational integer. The unique maximal 
system (of integers) is evidently composed of all the χ = a H- />e, in 
which « is a rational integer and b is rational. The product of χ by 
the unit ι H- he is α + (Λ 4- α/ι)ο, which, for α φ ο, becomes a by 

taking k = — Hence every integer whose norm is not zero is asso-

ciated with a rational integer «, and hence is factorable into primes 
uniquely apart from unit factors. 

Our unique system of integers is the aggregate of the integers in 
the infinitude of systems obtained in g 4 by the definition of either 
Hurwitz or Du Pasquier. The insurmountable difficulties, xvbich 
arose Avhen they chose as their integers the numbers of any one of 
their systems, have ΠΟΛΎ been shown to disappear for our properly 
chosen enlargement of their too restricted system. This enlargement 
was accomplished by the abandonment of their strong assumption Β 
of a finite basis and the replacement of it by the weaker assumption Ν 
about the norm (cf. § 8). 

Τ UEO nr.M II. — All of the difficulties mentioned in Theorem I 
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disappear under the new définition of integers, which now decom-
pose into primes uniquely. 

7. Characteristic equations, properly of Ν (A·). —■ To define the 
characteristic equations, note that, by((5). 

n η 

·*·
 rj =- >d } j/<e/n

 ·

y/

· ̂  2d ̂  'hj'· -
/. — 0 I := 0 

Writing the first equation in full for7=0, 1, ..., «, we get 

O'oo— Ό «'« ~ί~ /oi *1 H- . . ·-+- /ο« <Ίι --0, 
/10*0 "+■ (/11 — ~ί" · · · + °< 
..................................................................... 

,1'«0*0 ~'~yH I ' i ·!■ )c'
w

 O. 

When is replaced by an ordinary variable ω, the determinant of the, 
coefficients of c

(t
, e„is 

/1 

O(M)-··: V yukx(
— o

y/
,6) , 

i = i> 

where ο,·,· — 1, ojk~ 0if / =£ k. We call 5(ω) the right-hand charac-
teristic determinant of x. Let C

0
(co), ..., C„(TO) denote the adjoint 

minors of the elements of / th column. Let ε = -£/<*,· be the principal 
unit. Multiply the above linear equations by 0

0
(.ν)ε, C

n
(.z*)£ on 

the left and add. We evidently get o(x) Cj — o. Multiply this by ε,· and 
sum for / = ο, 1 j..., λ ; we get δ(.τ) ε = ο. Hence .ris a root of the right-
hand characteristic equation δ(ω) = ο. it is understood that, besides 
substituting.for ω*, we multiply the constant term 0 (o) === Λ (V) by ε. 

Similarly, every uypercomplcx number χ is a root of its left-hand 
characteristic equation 5» = o, obtained bv starting from CjX ins-
lead of the above .vcj. Denote o'(o) by Δ'(.χ'). These characteristic 
determinants δ(ω) and ο'(ω) remain unaltered (') under any linear 
transformation on the basal units c,·. 

If y is a fixed and iv a variable hypercomplex number, the rcla-

(') DICKSON, Linear 11 go bras, Cambridge 1 nivevsilv Tract, n° l(>, 191/1, p. 19. 
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tion x' = xy defines a linear transformation on x
H
 witli the 

determinant Λ'(y). Similarly, to y' corresponds a second transfor-
mation x' = x'y'. Then to y" = yyr corresponds χ" = xy'\ which is 
the product of the former transformations. Hence 

A'(y) A'Lr') = A'(.»■/). 

Similarly, the determinant of the linear transformation defined by 
x' — y χ is A ()*), and we get 

Al.y) A(y') - Δ(,ν>')· 

If the coordinates of tc are arbitrary rational integers, its rank 
equation Η (ω) = ο is the unique equation of lowest degree having 
the root χ and coefficients which are polynomials in the coordinates 
of .r, the leading coefficient being unity. Evidently R(to) divides 
both ο (ω) and ο'(ω). Hence Ν (.*·)= Il (ο) divides both A(.c) and A'(.r). 
By the above definitions, either characteristic equation for χ = ε, 
where ε is the principal unit, is (ι — ω)"+ι = o, and Ι1(ω) is then a 
power of ι — ω, whence Ν(ε) = ι. It now follows (') that 

Ν (.y ) Ν (/)■ - Ν (.r/).· 

ΤΙΙΚΟΚΕΜ HI . — The norm of a product of any two hypercomplex 
numbers is equal to the product of their norms. 

8. General remarks on the definitions of hypercomplex integers, 
— In the new definition, we may replace assumption R by the 
assumption that, for every number of the system, the coefficients of 
the right-hand characteristic equation are rational integers, or by the 
similar property for the left-hand characteristic équation. The advan-
tage in demonstrations is that we know the explicit form of the charac-
teristic equations for a general algebra, but not that of the rank equa-
tion. Furthermore, we shall prove that the assumptions Β and C of 
Ilurwilz and Du Pasquier imply the property R of the rank equation. 

THEOREM IV. — If all the coefficients of the rank equation are 

(') DICKSON, Comptes rendus (tu Congrès international des Mathématiciens, 
(Strasbourg, 1920), Toulouse, 1921. §0. 
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rational integers, those of cither characteristic equation arc rational 
integers, and conversely. 

The converse follows from Gauss's lemma; if 

ο (ω) — (,)!" Η- «, ω'"-1 -r-... -+- οm 

lias rational integral coefficients and is divisible by 

Κ ( ω ) - : (m) ''-t- Λ [ r»jr_l -Η . ! . -+- Λ 

with rational coefficients, tbese coefficients Λ, are all rational integers. 
Next let Β(ω) have rational integral coefficients. Then the roots 

of Η(ω) = ο arc integral algebraic numbers. But (') these roots include 
all the distinct roots of ο(ω) = ο. Hence the coefficients of the latter 
are integral algebraic numbers and also rational (since the coordi-
nates .Vj and γ,μ· are assumed to be rational), and hence are rational 
integers. 

THEOREM V. — For every system having the closurepoopertyCand 
a finite basis composed ( '-) of as many linearly independent num -
bers as the algebra has basal units, the characteristic equations 
of each number of the system have rational integral coefficients. 

Such a system has a basis E0 = 1, Ε,, ..., E„. We may take the E, 
as new basal units of the algebra. By the closure property C, E,E,· 
belongs to the system. By the property Β of the basis, E,-Ey· is equal to 
a linear function of E

0
, ..., E„ with rational integral coefficients. 

Hence the new constants of multiplication are rational integers. 
The same is true of the coordinates Y, of every number X = ϊΧ,-Ε,-of 
the system (property B). Hence either characteristic equation of Y has 
rational integral coefficients. But the coefficients of that equation are 
invariant under every linear transformation of the basal units (§ 7). 

Hence any system according to the definition of Du Pasquier is 

(') G. SCHRFFKKS, Math. Annalen, t. 31), 1S91, p. 3oa. — DICKSON, Linear 
Algebras, p. ·>.·>.. 

('-) Assumed by Du Pasquiev (réf. in $ V) in finding his systems of 2-rowed 
square matrices, the only algebra for which he has given details of the work of 
finding maximal systems. 

Journ. de Math., tome II. — Faso. Ill,1923 39 
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a system according to the new definition, but not conversely, so 
that the new maximal systems are usually not systems of Du Pasquier. 

After the introduction of the new basal units E
n

 the particular 
Du Pasquier system becomes the set of linear combinations of the E

t

. 
with rational integral coordinates and hence has property 13 ; but this 
neednotbe true simultaneously of the remaining Du Pasquier systems 
of the same algebra {cf. § 16). Hence after making a suitably chosen 
transformation of the basal units with rational coeflicients, we obtain 
an algebra in which at least one Du Pasquier system is a Huvwitz 
system. 

9. General theory of integers of reducible algebras. — A linear 
associative algebra S of hypercomplex numbers with s basal units 
whose coordinates range independently over all rational numbers, and 
having a principal unit ε, is called rationally reducible if it contains 
α + β = s numbers tf,, ..., <?α, Ε,,..., Ep, not satisliing a linear homo-
geneous equation with rational coefficients, such that 

(II) C/Ey — O, Ry (',= ο ( / ~ 1, . . . , |3). 

In the contrary case, S is called rationally irreducible. 
Let S be rationally reducible. It is readily proved (') that all 

squares and products of e
{

, ..., c
a arc linear functions of e

n
 ..., e

x 

with rational coeflicients, so that <?,, ..., e
a
 are the basal units of an 

algebra a with rational coordinates. Likewise, E,,..., Epare the basal 
units of an algebra A. Also, a and A have principal units e and 13 res-
pectively, whose sum is 2. 

Conversely, from any two linear associative algebras a and A with 
basal units and Ey, principal units e and E, and rational coordinates, 
we evidently obtain a linear associative algebra S with tlie basal 
units <?,, ..., ί?

β
, Ε,, ..., Ep, principal unit c -+- E, and rational coordi-

nates, by postulating relations (11) and regarding e,, ..., Ep as sulis-
fyng no linear homogeneous equation with rationial coefficients. 

We call S the direct sum οία and A and write S = «+ A=A + «, 
and call a and A the components of S. 

(') DICKSON. Linear Algebras, p. 26, 27. 
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Tin-oit KM VI. — Consider systems of integers having properties 

C, 1;,, U (and M). The first (or second) components of the num-
bers of any (maximal) system of integers of a rationally reducible 
algebra constitute a (maximal) system of integers of the first (or 
second) component edge bra. Conversely, given a (maximal) system 
|.x| of integers χ of an algebra a and a (maximal) system [X] of 
integers X of another algebra. A, if ore add every number χ to every 
number X, we obtain sums forming a (maximal) system of inte-
gers of the direct sum a 4- A. 

By Theorem IY, 11 implies that the coefficients of the right-hand 
characteristic equation are rational integers, and conversely. 

(/). Let [zyj be any given system of integers : of a reducible 
algebra $ = </-+- Λ. We have r = χ 4- X, where χ is a numberE xi e 
of the first component algebra a, and X is a number ΣΧΑΕΑ of A. To 
determine the right-hand characteristic determinant of ^ for S ($ 7), 
we employ 

* 

ZCfy =T V
 e

.
 Cj 0

 ( / — 1. . . . , ) , 
i — I ' 

;·} 

-ι·ν=«+2χ*'·:«·^ 0='· ···. β)· 
k: I 

Hence the right-hand characteristic determinant of r for S is equal 
to the product of thai of χ for a by that of X for A. Hence, by 
(iauss's lemma (5$ 8), the polvnoniiuals in ω which are equal to the 
last two determinants have rational integral coefficients when ~ is in 
the system [r|. Hence the rank equations of χ and X for α and A, 
respectively, have rational integral coefficients. Next, if also 
ζ' — χ'η- X' is in [3], then 33'= xxr 4- XX' is in [ ~] by the closure 
properly G. We have now proved the first half of Theorem VI with 
both words maximal omitted. 

(//) Conversely, let [.r] by any given system of integers χ of an 
algebra a, and [X| any given system of integers of another algebra A. 
As explained above, we may regard a and A as the components of a 
rationally reducible algebra S = a 4- A for which relations (11) 
hold. To every number.*1 of |,*;| add every number X of |Xj. By the 
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facts in (/), these sums form a system fs) of numbers of S having 
properties G, (J,, and R. 

Further, let [ r | and [X| be maximal systems of a and A, respecti-
vely. Then if | is not a maximal system of S, it is contained in a 
larger system [-'] of S. By (f), the first components x' of ihe 
ζ = χ' 4- X' form a system [.·/?'] of numbers of a having properties C, 
U

(
, R, and likewise for the second components X'. Either [V| is 

larger than [x| and contains it, or else |X'| is larger than|X], con-
trary to hypothesis. This proves the last half of Theorem VI. 

(Hi) Returning to part (i\ let [z\ be a maximal system of S. Then 
if |.x] is contained in a larger system |x'| of a, part (ii) shows that [V| 
and [X| determine a system |;'j oi numbers ζ'= x' -+- X of S, which 
have properties C, U,, and R, such that \z'\ contains the smaller 
system [5], whereas [sj was assumed to be a maximal. This completes 
the proof of the first half of Theorem VI. 

ΤîiEoiUiM VII. — The second part of Theorem VI holds also for 
systems of integers defined by properties C, U,, λ and M. 

We employ the known result (') that the rank equation of S is 
equal to the product of the rank equations of the component algebras α 
and A. From their constant terms, we get 

(ι·0 Ns(5)=: Ν„(.*·).Να(>;). 

where each norm is taken with respect to the algebra indicated b\ 
the subscript. 

Let there be given systems [χ· | and [X | of integers of a and A, res-
pectively. To every a? of [x] add every Xof[X|; these sums form a 
set | z] of numbers ζ = χ 4- X of the direct sum S=«4-A. Since N

rt
(.c) 

and Na(X) are rational integers by assumption N, Ns
(7) is a rational 

(') For, if /'(co) = υ is the rank equation of a and l\(w) —ο that ofA,.*.· 

and X are botli roots of r(W).R( ω) = ο. But ζ — χ 4- X implies «s*—a-·*4- \x, 

whence f{s)=f(ûc)+f(X) for any polynomial f. Hence. -s is a root 
of /'.R = o. That it is not the root of an equation of lower degree follows by use 

of 5 = χ 4- ο or ; = X, since the coefficients of/· are independent of the 
coordinates of X. 
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integer by (112). Thus | ν | has property Ν and evidently also proper-
ties G and U,. 

Suppose that | J] is not a maximal, but is contained in a larger 
system |V] of numbers of S having properties C, U ,, N. Since c+o 
and ο -h Ε are in [s|, they are in |s'|. Then if is any 
number of |V |, ez' = x' and x' -+- Ε are in [ z'\. Thus N

s
(^v' 4- E) is a 

rational integer by hypothesis, and is equal to N„(a;') by (12), 
since i\v(E) = i by § 7 (end). Ilence N

rt
(x·') is a rational integer. 

Hence the x' form a system [#'| of numbers of « having properties C, 
U,, N. Likewise for the X'. bather [V] is larger than [x] and contains 
it, or [X'| is larger than |X|, contrary to the assumption that [a/] 
and |X| are maximal. 

From the third and fourth sentences of the preceding paragraph, 
we obtain the following analogue of the first part of Theorem VI. 

THEOREM VIII. — In a rationally reducible algebra S — « -4- A, 
consider systems of integers haeing properties G and L\ and con-
taining {1 ) (be principal units e and Ε of a and A. The first compo-
nents of the numbers of any (maximal) system of integers of S 
constitute a (maximal) system of integers of a, and the second 
components a system of A. 

Let a number ζ = χ 4- X of a system | z\ of integers he a unit, so 
that there exists a number + οί* | ^| such that zz'~ e-i-E. 
Then xx' = e, XX'— E, and χ is a unit of <i, audX of A. Conversely, 
if χ and X arc units of a and A, then χ 4- X is a unit of a 4- A. 

If all integers of norm φ ο of the component algebras a arid A 
factor into primes uniquely apart from unit factors, the same is true 
of the integers of a 4- A. 

For example, consider the direct sum (e0) 4- (C, ) 4- (C*,) : 

c'j — t'e, e, Cj = ο (y «), 1 — e0 4- c\ 4- e2. 

The rank and characteristic equations are Π(α?£ — ω) = ο. 

(') Without assuming that the systems contain e and Ε, I have verified the 
theorem for the three classic reducible algebras in 3 units (§ 11), the proof 
being long only for a = (<.»„) 4- (ci), b ~ (e2). 
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Hence under tlie new definition by properties C, U,, 11, M the 
integers are the numbers having rational integral coordinates. The 
latter arc all in the product of χ by a suitably chosen unit 
± c0 ifc i?, dt ca. We restrict attention to integers χ of norm χ0χ{χ2φο 
and having positive integral coordinates. Denote χ by ( ϋϋ ̂  y \i/ J y ϋϋ ο 
Then χγ — (x»y0i #ι y κ-, x»y»)' Since 

(Ρî qι *'*)=(Ρ> 7' ' s '· A·), (/>> '·) = (/'» '/> ·)(*» 1» '■)» 

one of the coordinates of a prime is a rational prime and the remaining 
two are unity, and conversely every such number is a prime. Hence if 
the pi, ((j, /y. are all rational primes, we have the following unique 
factorization into primes : 

tt h c 

(pi-"Pa< </ι···7/ο /·,.../·,.)= [J i. 0· J] ('· 7y> 0-11(1, »< '·*)■ 
i =1 /=l A = l 

(liven that a number χ of an algebra a is an integer if and only if 
specified coordinates jy are rational integers and the remaining coor-
dinates Xj are rational, and similarly for another algebra A, then wc 
know from Theorem VI that in the direct sum S = a+.\a number 
^ = χ -Η X is an integer if and only if the coordinates x,· and Xt are 
rational integers and the remainingcoordinates Ay and Xyare rational. 
From .-3' = xx'-+- XX', where 3' —A'-HX' is a unit, we conclude 
that an integer - is associated with those and only those integers 
whose first components are associated with χ in a and whose second 
components are associated with X in A. 

If a is one of the two rationally irreducible algebras in two basal 
units (§ 1.0), or one of the three in three basal units (g 12), we shall 
find that an integer χ of a, such that is associated with the 
abridged integer having the same coordinates ay (which were rational 
integers in x)

y
 but having zeros in place of the coordinates .* ,· (which 

were rational in A·). Hence for every rationally reducible algebra 
in 2, 3 or 4 basal units, each integer - = χ ~h X, such that X(-) φ ο, 
is associated with the abridged integer having each Xj and Xy zero, but 
with no further coordinates zero. Thus the laws of factorization in 
a -+- A arc the same as in a'-h A/, w here a' denotes the abridgement 
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of a lo lite basal units and A' the abridgement of A to the units E
t
. 

But if a is the algebra of matrices (£ lii), further coordinates are 
zero in the associates of .r. 

By the results in this section we may read off at once all the pro-
perties of the integers of a rationally reducible algebra front those of 
the components. 

10. Algebras in two units. — We assume properties C, U
13

 Ν, M. 
The unique maximal system of integers of the reducible algebra 

(<\|) -I- (<?i) : £n = · 'V| = '*,» —O, (if — e?|, 1 = <?„ +e1, 

is composed of all the numbers 4- ,r,r, in which and are 
rational integers. Those of norm .*·„Λ?, Ο decompose into primes 
uniquely apart from unit factors ± e

0
± r, (£ 9). This algebra is 

another form of that with the basal units i, e, where e-~ i. That 
with e- — ο was treated in §§ 1, ii. That with e- = — ι has as integers 
Gauss's complex integers χ -+- yi\ where χ and y are rational in tegers. 
Fore2 —±: i, the same results are obtained by DuPasquier'sdeiinition. 

11. Reducible algebras in three units - Such an algebra is the 
direct sum of an algebra in two units *?„ and e, ($ 10) and the 
algebra (<i

3
) in a* single unit such that <?2 = e

2
. Hence they are 

O'o) (/',) -hC2; 

A -h(t'a), A " («V ft), <Ί·-ΐ'0> te,, ej = —c>0: 

Β -h (e
t
)

y
 Β — (c

0
, e,), e'l — <·

β
, e,<?

0
 = e'\ o. 

Under the new definition (' ) of integers, Theorem VI shows that the 
integers of the first two algebras are tin1 numbers all of whose coordi-
nates are rational integers, while those of Β -t- (*»

3
) are Σ where .τ, 

is rational and .r
0
 and x\

x
 are rational integers. For all three algebras, 

every integer of norm Φ ο decomposes into primes uniquely apart 
from unit factors. 

Only for the first two of these algebras are the integers the same by 

(l) Also willi R replaced by N, the proof being longer. 
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Du Pasquier's (') definition. Τη B + (e\,) replace c
n
 by ι — e2; we get 

bis svstem 3. Ile found that the most general svsteni of numbers 
under his definition bas the basis i, ou',, fie, where α and β 

are rational, while .g, and g arc rational integers, whence no 

systems is maximal and integers do no exist. Nole that the aggregate 
of the numbers in all of his systems is the above system of integers 
under the new definition. 

Let us ignore the assumption of a maximal, and take as integers 
the numbers of an arbitrarily chosen one of his systems. Without 
altering the multiplication table of the units, we may lake ac, as a 
new unit c,, which amounts to taking α = i. Then the integers have 
the basis 

ι — e(,+ É»,, e,. '»·, <?, -t-ge2 

Thus gsea
 is integral. Write h for g- h- 3, and 

C/=(3,Y. /0= 3 4-pe1 + g²e2 

where (a·,,, a·,, :va) denotes Σ a?,·*?/. Since 

(r„, ,r„ a?2) ( re, Vi, r2) = .r0y, ·+- y,„ .r2y2), 
we have 

CjCk=C-( if,/ -T- /.· = 2 0, Cj U, — Çy
+

.,,. 
(l, /, l), UiU..,— I, 

whence «/ is a unit. Thus 

c? = c
0

Co, cr' = c, e, = e, c„ . c* — c2c. 2 — t\>c, /r ,. 

which may be written as 

C| C>>— C
(
"U(, C,)CO — ΟΓ, C„C| --- C] tl—I, 

which are exactly of the type (p). The only possible units are 
(i, /, rt i) and their negatives; but (i, /, — i) is not one of our inte-
gers, and hence is not a unit, if |#|>3. We find that no two of 
c'o, c,, ca are associated numbers and that each is a prime. Hence ($ 8) 

(') Hull. Soc. Math, de France, t. \LV11I, 1950, p. 109-102. 
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factorization into primes is not unique and cannot be made unique by 
the introduction of ideals of any kind. This conclusion applies lo each 
of the triply infinite number of systems of integers, one system for 
each set of values of α, β, «·. We saw above how these difficulties 
disappear under the new definition. 

12. Irreducible Algebras in Three Units. — We employ assump-
tions C, U,, ft, M, and find that the resulting integers have also pro-
perties LJ and R. For the algebra 

Τ, : 6'0 = ι. ej = e2, e* = i\ — e~. — o, 

the rank and characteristic equations arc all (.:r„ — ω)3 = ο. The 
maximal system of integers is composed of all numbers χ for whichxo 
is a rational integer and x« arc rational. If 

x = 00_. X It = .r0, lor Ci = I — 6* t - ) ! - e*
2

. 

llcnce χ is a unit if .£0 = ι. Thus u is a unit, and any integer χ of 
norm xl φ ο is associated with and hence decomposes into primes 
uniquely. 

If we replace a by ι - — t', — ~<?a, we see that all the preceding 

statements hold also for the algebra 

Tj : e0 — ι, c, ■· = e
t
 e·, = e2 e, — e:2 = ο. 

Finally, consider the algebra 

ht · "o — Pu» e, — ci, <?o :—e.
2
Cç— e>, 

C\\ el — el a« — '-'(t ei — c'i Cl — ei = °> 

ee4- e2 = ι, Κ(ω) = (.t·,,— ω) (.*·,— ω), ο(ω) = (χ'0—ω) (.r,— ω p. 

Thus 
Ν (a?) Β ^.RT, Ν(A -h Ι) = (x„ + ι ) ( A·, + ι ). 

Hence if χ is an integer, xnxt
 and x

0
 4- x

( are rational integers. Thus 
the maximal system is composed of all numbers χ for which x

0 and x, 
are rational integers, while x., is rational. 

Journ. de Math., tome II.— Faso. Ill, 4^ 
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Denote χ by (#
0

, χη χ
2
). Then 

(.3) (r0, xu d?,) (y„, y{, yz) = (a?„y,„ A*,yi, aq ra4- :r2y0). 

For «-=ΞΞ(Ι, ι, z), u
z

u i, so that w. is a unit. Now 

04) u
W

i.v i(z= (.c
0

, oc,, /·), r = .r.,4- .ΐ0ιΐ' 4- d.',c. 

Hence, unless x,

()= ,r, = o, we can find rational numbers w, ; sucli 
that /* = o. Thus any integer of norm x^x^o is associated with 

a,V?o+ ·*■<?,. % § 10, the latter integers decompose into primes 
uniquely. 

These satisfactory results regarding the integers of any of these 
three algebras T, are in marked contrast to the results obtained by the 
definitions of either Hurwitz or Du Pasquier. Then there is no 
maximal system of integers, while if we select any system we meet 
essential difficulties. 

First, for T
n

 which is Du Pasquier's system 4? tl'e most general 
system of integers was stated by him to have the basis i, g^orc.,, 
olc, -+- where α and β are rational and g is a rational integer, so 
that no system is maximal. Taking 

Ε, = ae, 4- β<?,, E2=E] = a2ei) 

we obtain T, written in capital letters E/. Hence the new basis is i, 

F,, iE2, where i = Write cy· for 3 -4-y/E*. We obtain (9), where 
now 

η — 1 4- £E.,, Γ = ι — t Eo 

are units. No two of the primes c„, c,, c\, are associates. Hence (§ 5), 
decomposition into primes is not unique, and cannot be made unique 
by the introduction of ideals of any kind. 

For To, which is Du Pasquier's system 6, the most general system 
of integers was stated by him to have the basis, 1, occ,, (icq + ye

2
, 

where α, β, γ are rational, so that no system is maximal. The last two 
numbers of the basis may be taken as new units F

t
, Eo without dis-

turbing T
2

. The further discussion for T, applies also here, 
where/ = 1. 
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Du Pasquier's system 5 is 

£•(, = 1, e'î=i, e,e2=c2) if2cl=—e2, e\ — o, 

and his most general system of (integers lias tlie basis ι, 
^E + Jfj, where α and β are rational, g is a rational integer, 

and Ε = ^ (i <>,). Taking the latter as a new unit in place of c
lf

 and 

then ε = Ε 4- £-1 β c., in place of E, \YC get 

5J = £, ze.> — e>, e.)Z = o, e'i ~ o. 

and the basis ι, αf
2

, />ε. The ellcct of taking ac, as a new e.> is to 
take α = ι. Finally, we write c, for ε, and r?

0
 for ι — ε,'and get 

algebra T
3
 and the basis r, ge

t9
 a*. Hence (//, y, /*) is an integer if 

and only if p, y, r are rational integers such that ρ- η {mod g), 
by (i3), 

(/J> <h '') = if* h -)<I, <h
 u

')> if *·-ΜΓΒΒ/\ 

All three numbers are integers if 

p~~q~ ι (modg). 

As special cases, or by (i4), 

(ρ, 'ι °) uz ~ [pt ι, -), 7- ο) = (ι, 7, «·). 

Hence (^/, 7,7·) is the product of units and (ρ,ι, 0), (1, <7, o). Also, 
(^7, 7, o) is the product of the last two. By (14) for a· ~(p, /7, o), 
a· is associated with (p, /·) if and only if /' = p(w -4- z). Iicnce if 
ρΞΞΞ ι (mod^ ) and if r is not divisible by ρ, (p

:
 ρ, /·) and (/>, ρ, o) 

are not associated, hut have the same factorization apart from units. 
This property of (ρ, ρ, r) holds also for the product of (/·, s, I) 
by (a, /7, /i), where 

/= ru·-H .vs, m = rtti',4- b.zt, 

if ,ç/7 -+- al is not divisible by the greatest common divisor of ra 
and .v//; for example, if ν and b have a common factor not a divisor 
of as(z -f- vv,). 
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THÉORÈME IX. — For the sic classic algebras in three units, the 
integers of the unique system obtained by the new definition have 
unique factorization into primes and the system is either identical 
(in the case of two reducible algebras) with the system of integers 
obtained by Du Pasquier* s definition or else is the aggregate of 
the numbers in his infinitely many systems, no one of which is a 
maximal nor has satisfactory laws of factorization into primes. 

Tluis the new definition succeeds when that of Du Pasquier fails, 
by causing- the proper enlargement of every one of his systems which 
present serious difficulties to a system having no difficulties. 

15. The Associated Arithmetic. — In § 12, we proved that the 
integers of norm φ ο of the algebra T

3
 in three basal units are asso-

ciated (by multiplication by units) with the integers &v0-t-;f| <?, of 
the algebra S = (<?

0
) 4-(r,). Wc shall say that the latter integers 

form the arithmetic associated with the arithmetic of the integers 
of T

3
. And similarly in general. 

14. Algebras in Four Units. — We make use of Study's (·) list 
of the algebras into which any algebra in four units can be transformed 
by a real linear transformation on the units. Ten of them are ratio-
nally reducible, and the properties of their integers are obtained by 
inspection from the results in § 9. Thirteen of them are rationally irre-
ducible (although Ilia is algebraically reducible). We shall discuss 
in §§ 1H, 17 the algebra of real quaternions and the algebra XII/, 
obtained from it by an imaginary transformation of the units. 

There remain eleven algebras. For each of them, there is no 
'maximal system under the definition of l)u Pasquier (-), so thai inte-
gers do not exist. Under the new definition by properties C, Un

 R, M, 
the integers are found by a mere inspection of the left-hand characte-
ristic equation δ'(ω) = ο, while their essential properties are readily 

(l) Monatshefte Math. Physik, t. 1, 1890, p. 3o5-3i>9. 

(1 ) Comptes rendus dit Congrès international des Mathématiciens (Stras-
bourg, 19.J0): Toulouse, 1921, p. 104-170. 
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found. The notation V ( i3) jmeans that the algebra is numbered V in 
Study's list and is system i3 in Du Pasquier's list. The notation 
|x\,, r, | means that is an integer (under the new definition) if 
and only if and r, are rational integers and the remaining coordi-
nates χ.Λ and x3 are rational. 

For algebras Υ (i3), I\ (17), X (18), Xi (19), XIV (22), and 
XVI (29), we have 

ο'(ω) = (,r0— (,>)v and [.r„]. 

The associated arithmetic is lhaL of rational integers 
For III/, (11) and XIII (20), 

ο'(ω) = ; (.r„— fa)âH-.rî [· and {.r
(P
 rj. 

The associated arithmetic is that of ordinary complex inte-
gers 4- a?, i. 

For VI1 we employ new units 

Eo = 1/ 2et), k, — - (1 4-), ea, e?3, 
and get 

bo l-o> h j 141 » ι ε ι — Ca ) 1 4 63 — e
3

, c.> Ej) — ε ■>) ε
3
 Ε) — c

3
, 

all further products being zero. Then 

<3'(ω) = (.r„ — o)2 (a.·,— ω)*. [.r
0)
 .rj. 

For XIII/, (21), we employ as units the proceding E0, Fn and 

ho — -· ( e._> c
:{
 ), I-3 — - ( c.2 4- e;i ), 

and get 

E2 = E
0
, E; = E„ HO !-·>= H.>, E,E3=K3, E:TE0=E;L) 

all further products being zero. Then 

δ'(ω) = (4\> — ω)2 (.<·, — ω)·, [.r„, ,<·,]. 
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For XV (^3), we employ new units E
(>

, F
(

, eSi
 e

s
, and get 

|'ι~ llry, , llij Llt Llt'3 C;J. ^ *0 e.), C;(« 

all further products being zero. Then 

ô'(w) = (.i'o— ω)3 (Λ'ι— ω). |>0, ·<ι]· 

For the last three algebras the associated arithmetic is that of 
(Έ,, ) -4- (E,), and hence is that of pairs of rational integers. 

JUT Algebra and Arithmetic of Square Matrices. — It was 
shown in £ 2, that all //-rowed square matrices with rational elements 
form a linear associative algebra in rr basal units. We shall now inves-
tigate maximal systems of such matrices having properties G, U,, R. 

The system S composed of all matrices whose elements are all 
rational integers has the properties C, U,, 11 by £2. We shall now 
prove that it is a maximal. Suppose that S is contained in a larger 
system L having those properties. Thus L contains a matrix m whose 
elements are fractions having a least common denominator d, 
where d^>\. By a theorem due to H. J. S. Smith ('), we can find 

square matrices ρ and q having rational integral elements of deter-

minant unity such that pmq = δ, where δ is a diagonal matrix all of 
whose elements outside the main diagonal are zero, while those in the 

diagonal are · · ·> ■—> ο, ..., ο where r is the rank of ///, the di are 

rational integers which are positive with the exception (when /·— //.) 
of d

in
 whose sign is that of |//? |, and d,· is a divisor of d

i+i
. Any 

common divisor of d
{
 and d would divide every dé and hence divide 

the numerator of every element of m, contrary to the definition of d. 
Hence d

K
 and d are relatively prime. 

Since matrices ρ and q belong to S and hence to L, the product 
pmq— ο belongs to L by properly C. We shall prove that ο does not 

(') Phil. Trans. London, t. 151, 1861, p. 298; Coll. Math. Papers, t. 1, 

p. 867 ; Cf. BACHMANK, Arith. Ouadr. Formen, t. IV, 1898, p. 294,· BÛCHER, 

introduction to Higher Algebra, 1907, p. 264-267. li e first remove the 

rational factor ^ from m and place it in front of p. 
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have property R. If R(co) = o denotes the rank equation of the general 
//-rowed square matrix x, we obtain ϋ(ω) by subtracting ω from 
each diagonal term of x. This classic theorem (') was verified in § 2 
for n = -2. 

Tor c the rank equation becomes 

ri (M=-

its coefficients are rational integers by the assumption II. llcnce its 

roots are rational integers, whereas ~ is not integral. In view of this 

contradiction, our system S is a maximal. 
But this systems S is not the only maximal system. If Σ is any 

system of matrices with rational elements having properties G, U,, 
R, M, and if / is any matrix such that both I and Γ* transform every 
matrix with rational elements into one with rational elements, we 
readily prove that I transforms 1 into a system of matrices having the 
same four properties. The conditions on t are evidently satisfied if (2) 
the elements of / are all products of rational numbers by the same 
number. This common factor may be omitted since it cancels 
from Hence if we transform our maximal system S by any 
matrix having rational elements of determinant not zero, we obtain a 
maximal system of matrices with rational elements having properties 
G. U,, R. We obtain in this way an infinitude of distinct maximal 
systems. For, if we employ as / the diagonal matrix whose diagonal 

(') Lei C/y denote lite matrix whose elements are all zero except that in 
the /th row and /lit column, which is unity. Let xij be the element in the i th 
row and / tin column of .τ. Then 

•v eij = ,-r,,· e,y -f-.ri( e$j -4-.. . -+- e„j. 

Transposing and keeping / fixed, but taking /= i, .. /<, we have η equations 
lite matrix of whose coefficients is derived from (.*',·,·) by subtracting ot = χ 
from eacli diagonal term. The determinant D of this matrix is known to be an 
irreducible polynomial, when the Xjj are arbitrary. Thus the rank equation 
is Π = ο. 

('-) And only then for -'.-rowed square matrices. 
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elements are /» ,, ..., k„f we see that t transforms (c
ty

) into a matrix 
having c^j- as the element in the fth row and yth column. Since the 

krs are arbitrary rational numbers ^o, Ave may take /£, = ι without 
loss of generality. For example, if η = 2, 

t = (1 0 )::)■-( A. *;,·)■ 
If in the final matrix we let a;

0
, x

n
 χ.,, χ.

Λ
 range independently over 

all rational integers, Ave obtain a system S* which is identical with S, 
if and only if k = ± 1. 

ι 
THEOREM X. — There exist infinitely many maximal systems 

of η-rowed square matrices with rational elements having proper-
ties C, U,, 11. One such maximal system is composed of all the 
matrices with rational integral elements. 

Whether or not there exist maximal systems, not derivable from S 
by transformation,is not decided here and a decision is immaterial for 
our theory. In any case we would make an arbitrary selection of one 
maximal system and call its matrices integral. Fortunately the selec-
tion of S itself is Avholly satisfactory, since the matrices of S have 
unique factorization into primes, as Ave proceed to prove. 

Nothing is simpler (') than the arithmetic of all matrices m with 
rational integral elements. Any such matrix ιι is a unit if and only if 
its determinant is ± i; for, its adjoint matrix u' has rational integral 
elements, and uu'=a'u — i. By the above discussion (with now 
d = i), there exist units ρ and q such that pmq~^

t
 where δ is a dia-

gonal matrix whose diagonal terms df are all positive integers or zero. 
Thus matrix m is associated Avith such a diagonal matrix δ. Ilence 
unique factorization of matrices of non-vanishing determinants into 
prime matrices Avili follow if proved for diagonal matrices all of whose 
diagonal elements arc positive rational integers. But this Avas proved 
for diagonal matrices near the end of § 9 (for the typical case η = 3), 

(*) In spile of the very long discussion by ideals, etc., by Du PASQUIER in 
his Zurich thesis ( Vierteljahrsschrift ISctlurf. Gesetl. Zurich, t. 51, 1906, 

p. 50-129; t. 52, 1907, p, 243-248). 
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since the product of two diagonal matrices (rf,,..., d
n
) and (2,,. 

is (d,S,, dj
n
). 

Or, if we prefer, we may write ο = d
t
 e

{
 d., e.

2
 -+- d

3
 e

;i
, where 

e1 = (ι Ο θ\ /<> ο o\ /ο ο o\ 

e] = eh c
t
ej == o (y =<· /), <?, + c, 4- <?3 = ι, 

which arc the basal units of the algebra employed in § R. But there 
are now infinitely many units, while there were only eight. 

THEOREM XI. — The arithmetic of all n-rowcd square matrices 
with rational integral elements is associated with the arithmetic of 
the direct sum ('?,)-+- (e>) -l· ... -h (V,,), and has unique factori-
zation into primes. 

IB. The Property U. — An equivalent statement of the first 
theorem in § 15 is that the system S of Λ-rowed square matrices with 
rational integral elements is the unique maximal system of all matrices 
with rational elements having properties C, R, and U, where U states 
that all the basal units e^ occur in the system. 

The initial result in § 15 showrs also that S is the unique maximal 
system of matrices with rational elements having properties B, G, U, 
so that the matrices (of S) having rational integral elements are the 
integral matrices according to Hurwitz's definition (§ 4). For, if S is 
not a maximal system', we proved that it contains the diagonal 
matrix δ, and hence by property C also every power of δ. There is no 
finite basis (i. e., property Β fails), since on is not a linear function of 
the lower powers of 6 with rational integral coefficients c

t
. For, i-j) 

would then be equal to which is the quotient of a rational 

integer by d'l~ whereas ~ is not a rational integer. 
Under Du Pasquiers (') definition by properties B, C, U

M
 M, a 

(l) Vierieljahrsschrift JVaturf. Geseli. Zurich, t. 51, 1906, p. 
quoted in renseignement math., t. 18, 1916, p. «01-3G0. 

Journ. de Math., tome II. — Ease. Ill, ly-io. h I 
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long computation led him to all of the od1' maximal systems of 2-rowed 
square matrices with rational elements, since the four basal matrices 
involve six arbitrary rational integers. 

Hence, if we assume G and either Β or R, we find a unique maximal 
system of matrices or an infinitude of maximal systems, according· as 
we assume also U or U,. However, we have an excellent reason for 
deciding not to assume U, in spite of its having led us to a simpler 
conclusion than does U

t
. In fact, property U is not always invariant 

under a linear tsansformation of the basal units with rational (') 
coefficients, while the properties I ,, B, R, N, C, M are always all 
invariant. Expressed otherwise, a maximal system of integers contai-
ning all the basal units may transform into a system not containing 
all the new basal units. 

Light is thrown on this question by the algebra derived from the 
algebra (7) of real quaternions by taking 

E3 = iVι^-ζΥ-ι, κ,=-/>·. 
Thus 

( 15) Ε ; — — 1, Eij — E^ — + 1, Ε, E, ~— Κ., E, E
;
„ 

E, \i, ~ — EjE, — — Κ2, Ε* Κ;,π-.- Es Ej = - Κ,. 

Call χ and x' conjugates if 

χ - .Γ/Ε,·, ,τ .r
0
— X.t'i E,·. 

Then 

(16) Ν (u?) X\v' = x'.V — Λ'Ι — .Γ — ,7'ij. 

Consider maximal systems of integers χ with rational coordinates 
having properties C, ϋ, N. Let χ be an integer, so that Ν (as) and 
N(a? Η- 1) are rational integers. By their difference, the double of the 

(') If tlie coefficients are rational integers of determinant ±1 (the case of 
arithmetical equivalence), property U is invariant. When that property is pos-
tulated, >ve should not confine our investigation of all possible arithmetics to a 
study of a complete list of algebras no two of which are equivalent under trans-
formations of the units with rational coefficients, but study the much larger 
list of algebras no two of which are equivalent under transformations with 
rational integral coefficients. 
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« absolute term » of χ is a rational integer. BY property Γ., Ε,χ·, 
E

a
.e, E

r
r are integers; tbeir absolute terms are — α·,, α·

2ϊ
 a\,. Hence 

each 2 a, is a rational integer. Evidently .*·,· = X
4
-+ a

n
 where Xf is a 

rational integer and α
(
= ο or Then χ — X +■ a

t
 where X is an 

integer by property I . By C, a = χ — X is an integer. Write 

a - ( A0 1 Α,·Κ, ). A, := ο or ι. 

B y N(u'\ Aj; ■+■ A'-; and Aa + AI diller by a multiple of /j, whilé each 
sum is ο, i, or 2; hence they are equal. Thus the only sets of values 
are 

('7) (Λ„, Λ), Ao, A;i) — 1 <!. ο. u.ot, (ο. 1,1,0), 

(ο, 1,0.1). ( ;. ο, 1, o), 
( ι, o, «>, 1 ), ( 1, 1, >. 1). 

An evident system I of integers satisfying our assumptions is 
composed of all the numbers X whose four coordinates are all rational 
integers. W e shall examine the systems obtained by annexing to I 
one or more of the five numbers α φ ο corresponding to the sets (17) 
other than the first set. 

First, annex the a corresponding to either the second or fifth 
set(17), viz.. 

(.8) ''ι = X
- ( K, -u Fab «'a — (l + F;j)· 

Since ί,,Κ2 = <'3, E
2
=c,, the enlarged system contains both c, 

and i'
;1
 by properly (1. If we annex also the a corresponding to either 

the third or fourth set (17), viz., 

('!)) t' ( ' : — ( I'., -4- h;j), Ca — ~ ( t + I'.o) , 

we annex both, since F.,?·', — Ε
3
ι\ = er 

But 
<*
3

-h t'i — Fo~ - (> + l-i ) * 
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lias the norm and we do not obtain a system satisfying our 
assumptions. Hence the only possible maximal systems are I, the 
system S, obtained by annexing the pair (18) to I, and the system S., 
obtained by annexing the pair (19) to I. For, the a corresponding to 
the sixth set (17) is equal to e

y
 4- c

;
, and to e\ 4- e'.

y
 and hence is in 

both S, and So. 
The system S, contains (18) and all the E„ and hence also 

(20) c° — ^7 (1 1 — < ;1 — C'"- — k ι ) — <'i — 1. 

Conversely, from (18) and (20) we obtain by additions and subtrac-
tions the three E, and 1. The multiplication (able of the e

t
 is given 

by (3). Hence the system S, is composed of the linear combinations 
of the t'i with rational integral coefficients, and has properties C, 
IJ, M. While we may deduce the new norm from (16) by expressing 
the old coordinates x,· in terms of the new, we obtain it directly 
from the next remark. The relations (3) are all satisfied by the ma-
trices (') (1). Then χ — becomes the matrix (2), whose deter-
minant x

0
 χ.

Λ
 — x

y
x.> is IS (.χ;) by (4), and is a rational integer when χ 

is in S,. Thus S, has the properties C, 1 , Ν, M. 
Also Sa

 has the same properties since it is derived from S, by 
interchanging e

2
 and e.

y
 and changing the sign of e,, and this trans-

formation of units leaves unaltered the multiplication table (0). 

Τ UEO hk.m XII. — Algebra (10) contains exactly (wo maximal 
sets S, and, S «of integers having properties C, U, N, and each, is 
equivalent (under rational transformation of the units) to the 
arithmetic of 2-rowed square matrices with rational integral 
elements. 

We proved above that the algebra of matrices with rational ele-
ments lias a single maximal set S of integers having properties C, 
C, R (and hence iN). When we transform the algebra (i5) into the 

(') But by 110 other 2-rowed square matrices apart from the interchange of 
those corresponding to and as well as those corresponding to ey and r\, 
such interchanges leaving unaltered the set of equations (3). 
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matric algebra by the rational transformation (18) and (20), we 
thereby trausform S, into S, and S., into the system of matrices 

(21) 

/ Λ'ο Η- 1 "Ι" Γ *+- 2 ·'<»» ■+" ~ >''2 \ 

\ ' ' /' 

in which x09 x{, x.>, x
:i
 range independently over all rational 

integers. This system of matrices (21) does not contain e
0

. It has 
properties C, Ν, Μ, I ,, but not U. 

In view of Theorem X and our transformation of units, algebra (x5) 
lias an infinitude of maximal systéms having properties (1, I ,, R, and 
hence composed of integers according to the definition adopted in this 
memoir. Bv the formula above Theorem X, such systems include 
that formed of the linear combinations of 1, ^2» °s with 
rational integral coefficients, where Λ is any fixed ralional number φο. 

The value of the provisional assumption I lies in its help in 
detecting at least one maximal system according to our definition 
(with I , and not 1), and moreover one having the pleasing pro-
perty 1.1, as well as uniqueness of factorization into primes, which 
recommend its selection in preference to all other maximal systems 
as the system of integers of the algebra in its initial units. 

17. Integral Quaternions. — If χ is in a maximal system of qua-
ternions with ralional coordinates having properties C, I , N, we find 
at once that only the first and last cases (17) exist, so that the four 
coordinates of χ are either all rational integers or all halves of odd 
integers. Hence χ is a linear combination of 

(22) P L- - ( ! -[- t -4-./ -f- />· ), f, f, » 

with rational integral coefficients. The squares and products of the 
numbers (22) arc equal to such linear combinations of (22). 

THEOREM XIII. — The unique maximal system of quaternions 
with rational coordinates having properties C, U, Ν is composed o f 
all quaternions whose four coordinates are either all rational 
integers or all halves of odd integers. 
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Λ like conclusion was reached by Hurwitz for quaternions having 
properties C, I", B, as required by his definition of integers. I lis proof 
is much longer and more difficult then the above proof. 

According to the definition of integer in this memoir, there is at 
least one maximal system of integral quaternions, viz., the system of 
Hurwitz, and its numbers would naturally be chosen as our integral 
quaternions in view of their admirable properties as to factorization 
into prime quaternions. 

18. General Theory.— We shall now give a complete theory of 
integers in any linear associative algebra, the coordinates of whose 
numbers range over all complex numbers. There are two categories 
of such algebras. For any algebra of the first category we may intro-
duce new units ε,, ..., εΑ, η,, ..., ηλ·, such that (') 

ε;—ε,·, r
(?

, V)?Sy·" η ?rJ(r= -"/perCr, 

while all further products are zero. Here η?, v)„ and r
jT
 are of charac-

ters (i
f
 j), (j, 1) and (/, /); w hile in the summation, *>?, ·>*· 

For the general number 

C — a' J î| 4- . . . -f- X/, C/, -+- J'! Tj ι -i- . . . T- + yk pik 

we have δ(ω) — — ω)"'«. Since Η (ω) is a divisor of the latter, 
the maximal system of integers is composed of all the numbers r 
in which the χ ι are rational integers and the y-t are rational. We rea-
dily prove that u — ι Α~Σα/τ^ is a unit if the Oj are any rational 
numbers. For, 

«(ι — α,ηι) = ι — a-r,'î -i- l> — ι + π15η,+ 4> 

where /, is a linear function of η,·, η
ί+(

, ..., with rational coefficients. 
Similarly, 

( L + -f- /;; ) ( t — r/j-2 *]·> j —^ I — (l [λ Y]« + /3 ι "h 13 "Ό 3 —I— /;, 
(i ·+· /4) (l «13*13) — I H- «,4 T(V -h 4· 

(L) K. CART AN, ^4 η η ales de fa Fac. Sc. de Toulouse, 1.12,1898, It. 33; DICKSON, 

Linear Algebras, p. 44· 
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We finally reach a product equal to i. Hence 

ιι\' = ι, r = (ι — rt,rM) (i — flfji'/is) (i — rti3Yl3). · · = » + -

wliere eacli bj is rational. Thus e is an integer, and u and ν arc units. 
If x'

(
, ..., xh are given rational integers each φ ο and y

n
 ..., yk are 

anv rational numbers, 3 = Σχ,ε,·+Σ/ρηρί$ associated with Sa'/S/, /. ε., 
there exists a unit c such that ζ ν = Σχ,ε,. for, if it is the unit 

II I l.r,· 1 Yp "Op, 

Σ.ν,ι, ιι = r. As shown above, there exists a unit ν such that uc = 1. 
Hence flic arithmetic o f any algebra of the first category is asso-
ciated (§ 15) with the arithmetic of the algebra which is the direct 
sum (ε,) + ...+ (εΑ). 

The units of an algebra of the second category (') fall into sets, 
eacli corresponding to a unit of an algebra of the lirst category, and 
having the multiplication table 

'*aJ5 ~ βαγ> — ^xy» τ'[Ίγ 6>γζ — '^ζι "/ρστ Λ
α

γ 

(τ > ρ, τ> 7), 

where the superscripts do not denote powers, the y's are constants, 
and all further products of the e and η are zero. 

Consider any number ζ of the algebra. Then 

- — ■ - ' ~ ̂  'U.S.IJ.' J — ft,y 
λ, λ.υ. ρ, λ, [i 

The right-hand characteristic determinant δ(ω) of ζ is known to be a 
product of powers of the determinants 

D,(6>):^ . 
X/l, 1 1 ^ ρ ; 2 ... I'il'i ^ 

which involve no coordinate of y. Hence ν is an integer if and only 

(') CARTAN, loc. cit., Β. 5ι ; DICKSON, foc. cit., p. 5/|. 
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if .vis an integer, the coordinates of y being arbitrary rational num-
bers, Consider 

a = 1 + E ap xB np xB 
ο, a, a 

Then 

■'■« = *+ 2 '
Ί

).χ"α?·"λ? 
Γ-. χ. ;i 

will reduce to «r-h ν if and only if 

2] "a[l = .rip ( for all ρ, λ. ,3). 
St 

Here α and λ eacli take titc same values i, ..., The determinant of 
the coefficients of */fp, ..., is D, (o), which is not zero if Ν (χ) -f- ο. 
Then the equations uniquely determine the a. 

The proof that u is a unit is similar to that above : 

p>2 

" (■ - )
= 1

 ■•■Σ
 b
k

r
-%· 

*.',1 a.p 
whose product by 

ι — 2 nîp 
is 

p^3 
l_r^ Ca,S η«β' 

, a. ft 

We finally reach a product equal to i. Hence uv — ι for 

r " (1 ~~2 α*ν r,*A (1 ~2 ύ*ρ **?)(1 ~2V · - ·+2 r,*p ' 

where tlie g are rational. Thus c is an integer, and u and e are units. 
Then xu = s gives ζ ν — .c. Thus every number ζ whose norm is not 
zero is associated with ils χ component. 

These χ components are known to be the numbers of the algebra 
which is the direct sum of several general mairie algebras (£ U>). 
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Applying Theorems V] and XI, and noting thai our conclusion applies 
also to algebras of the first category, we obtain 

THEOREM XIV. — The arithmetic of any linear associative algebra 
th e coordinates of whose numbers range over all complex numbers 
is associated with the arithmetic of a direct sum of algebras each 
with a single unit. Any number whose norm is not zero decomposes 
into primes uniquely. 

We therefore obtain only trivial arithmetics from algebras the 
coordinates of whose numbers range over the field of all complex 
numbers. If wc restrict the coordinates and the coefficients of the 
transformations of the units to the field of real numbers, we obtain 
algebras in addition to those just investigated (for example, real qua-
ternions) and now obtain arithmetics which are not trivial. If we 
employ the field of rational numbers, wc obtain still further algebras 
and a rich variety οΓ arithmetics, which will form the subject of 
the book cited in $ 20. 

19. The Integers of Cay ley1 s Algebra. — We employ the lour 
quaternion units i, i,j, k as well as the new units 

a = ic — t'5, je — e,., he = e-. 

Any linear combination of these 8 basal units may be designated 
by χ = q 4- ()<', where 

(•■13) (f — _l" X\ t -+- <*■ !,/ "4~ h\ :— -4- ··£';, ί X(,J + X- h' 

are quaternions. Instead of employing Cayley's multiplication table 
for these 8 units, it is far simpler to use the condensed law of multi-
plication 

(a'l) (7 h-Oe) (/·-}-He) = /-t-Te. t==qr—R'tï, Τ ξξ Κ 7-h Q r', 

found by the writer ('), who also discovered that both right-hand 
and left-hand division, except by zero, is always uniquely possible. 

(') Dickson, Linear Algebras, p. i.j. 

Joitrn, de Math., tome II. — Faso. Ill, 1923. 4a 
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Here /'denotes the quaternion conjugate to r(§5). Unlike all the 
earlier algebras in this memoir, the present algebras is not asso-
ciative. 

As a special case of (2/4), the product of χ by q'—Qc in either 
order is 

ψί ■+■ W — ·Γ0 4- · . . 4- Λ?=, 

which is the norm Ν (χ ) of χ·, since il is the constant term of the qua-
dratic equation satisfied by x. We have 

\(om·) = N(.e)N(j·). 

We shall determine all maximal sets of integers χ with rational 
coordinates having properties C, U, N. 

With x, also χ 4- 1, χ 4- i, ..., χ H- e7, arc integers. From their 
norms we subtract Ν(χ·) and conclude that 2x

a 4-1, 2x
T
 4- 1, are 

all rational integers. Hence 

x1 = 1/2 X (t= 0, ...., 7) 
/ 

where each A, is a rational integer. Since Λ (χ) is a rational integer, 
S.X./ is divisible by 4· According as X

t
 is even or odd, X; has the 

remainder ο or 1 when divided by 4· Hence the number of odd X, 
is 0,4 or 8. In the first and third cases, q and Q are llurwitz's integral 
quaternions. By annexing e to all such quaternions, wc obtain a 
system U containing our &·, and forming a part of the larger system 
(3o) obtained below. 

Hence let exactly four of the eight coordinates of χ — q -l· Qe be 
halves of odd integers, the four not being those of y, nor those of Q 
(otherwise χ is in Η). If three of those four are in one of 7, Q, and 
hence the fourth in the other, then, by employing xc instead of χ if 
necessary, we may assume that three are in Q and 011e in q. After 
multiplying χ on the left by 1, t, y, or /f, we may assume that x

0 is 
half an odd integer, while xn x.Jf x;

, are rational integers. Subtracting 
Ironi χ a quaternion with rational integral coordinates, we get 

~ -t-QiC. Its product by 1 4- / is ^(1 4- /·) 4- Q, c, which falls undertime 
next case. 
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Next, let exactly two of the coordinates of q and two of those of Ο 
be halves of odd integers. After multiplying· χ on the left by i, /, /, 
or kf we may take as half an odd integer. Since the multiplication 
table (7) of quaternions is unaltered by a cyclic permutation ofi, j,k, 
we may treat only one of three analogous cases (and at the end of our 
discussion draw similar conclusions for the two omitted cases), and 
hence assume here that ,c

t
 is half an odd integer, while and are 

rational integers. Then by subtracting a quaternion with rational 

integral coordinates, we get q = ^ (i -h /). Since 

i.v 4- 1 = iq 4- 14- (Of)c, fq 4- 1 = 7, 

wc may replace Q by Q/■ without disturbing q. Hence if either .r, 
or .t\> of Q is half an odd integer, we may lake to be that one. After 
subtracting Ur, where R is a quaternion with rational integral coor-
dinates, we have the cases 

(•>5) C) = !(, 4-i), η («+/0»1/2 (k+ k) 

We shall reduce these cases to the second, for which χ is 

(·>(>) /··= ~ (1 -h /) -h i (, 4-7 )<\ 

whence 

(1 ■+■./ ) ^ — - (1 ■+■1 "+·./ — ) +■je 

so that the set contains 

(27) ρ = 1(1 + e+y+/,·), 

and hence all of Hurwitz's integral quaternions. We shall assume that 
the latter occur in our set in all cases. 

For the first case (20), .v is 

L = - ( 1 4- / ) 4- —(14- /)C. 
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Then 
(pc)l. i( - ι -j) + l- (1 4- k)c. 

Apply the cyclic permutation (tkj) and to the result add ι we 
get Z. In the .third case ( a5), replace j by —A, and A by j (so that 
the multiplication table of quaternion units is unaltered); we get the 
second casç (25). In the fourth case (25), we add 

-(i -\-i — j — A)e, 

which belongs to our set by hypothesis, and get the first case (a5). 
Hence all cases have now been reduced to (26). 

Since the set contains Z, it contains 

eZ = ir== ^ (— 1 4-y ) 4-^(1 — i)e, {pe)'L — v~ ^ (— ι — k) 4- 1(ι4- k) c. 

Adding 1 4- ie to w, and 1 4- A to v, we get 

(28) W= ^(1 4-,/)-h j(i 4- i)e, V = ^ (1 4- k) 4- ^(1 4- k)e. 

The followings 8 numbers 

(29) I. ./, A, p, * w, Ζ, V 

are evidently linearly independent. In view of 2W, 2Z, 2Y, 2p, we 
may express ie,je, A*e, 1 as linear functions of the numbers (29) with 
rational integral coefficients. Note also that 

p e = Ζ — W 4- V 4- /e — 1 — i — k. 

Hence all of the numbers previously mentioned as belonging to our 
system of integers are linear functions of the eight in (29) with 
rational integral coefficients. It can be verified that this is true also of 
the product of any two of the numbers (29). Hence the system of 
numbers 

(3o) 
.'C — >'4\) ρ 4- >T 1 t 4" Λ'-iJ 4" ^;i k 4~ *I\C 4~ ΛΛ 4~ OL'^/u 4~ Χ- V 

{j\u .... x- rational integers) 
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lias the properties II and C. It lias the property N, since 

( D I ) ,£· — - (,i'
0
 4- 'i';; -f- <-1'ύ + 4*

7
 ) "l~ ^'l ~l" ~ «*'(1 1 ~l_ 2 "+" ~ A

'o ~ J 

~+" (^
r

S + ~ ^0 7>
 U ^J ^ ^

 1

 ο
 ,r

v)J
 6 

-i— ·ν· ι e η— ,'2·,; / e 4— k e, 

the sum of the squares of whose eight components is the rational 
integer 

Ν ( :t: ) zzz Jt'l 4- .2'o (.2'| 4- d?s 4- ,rs 4- J?g 4- «37« 4- >v- ) 
4- Λ·.

(
(.Τ,;4- .2V.-H 4':) 4- Λ\ x<, 4- .2·2^·;;4- .2*j.2-'T ~h .Γ

5
 .Τ,. 4" X:,CV~ 4" Λ\}Λ?7. 

If we make any enlargement of thissystem(3o), we obtain a system 
not having properties U, C, N. For, let us annex u — q 4- Q<>, four 
of whose coordinates are rational integers, while four are the halves 
of odd integers. First, let two of the latter be coordinates of q and 
two of Q. This will be true also of u, iu,ju, k w, in one of which xh 

is half an odd integer. After subtracting Re, where R has rational 
coordinates, we may take 

Q = ^(»+0» or I (14-*). 

In the respective cases, we subtract W, Z, or V from u and get a 
number lacking e and hence a quaternion r. If r is in Hurwitz's 
arithmetic, r is in our system (3o), and we have caused no enlargement 
by annexing u. Hence r is not in Hurwitz's arithmetic and therefore 
enlarges it to a system of quaternions not having properties IJ, C, Ν 
(*17)· Finally, let exactly three of the coordinates of ( ) and one of q be 
halves of odd integers (the reverse case reducing to this after multi-
plication by r). As above we may assume that q = while three of 

the coordinates of ( ) are ~ and the fourth is zero. Subtracting we 

get ~ — ^/e, where / = i, i, j, or k. Hut the norm is now ~ and not 
a rational integer. Hence our system is a maximal. 
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ΤΙΙΕΟΚΓ.Μ XV. — The only maximal system* of integers οf C ay ley s 
algebra having properties C, U, Ν are (3o) and the two systems 
obtained from it by cyclic permutations of /', j, k. 

For the system (3o) there are exactly 2/1 ο units : 

11 it i, it,/, it /,\ ±e, Jzie, it je, it /. 

l( - ( it I it ί it. / it L ) , C, 

-, (± » ±7) 4- ^ ± ' ± i)t\ ±j) 4- ^ (iny ± /, )(', 

^ ( it 1 ± /) 4- X- ( ± 1 ± j ) e, ~ ( it ι it / ) + ^ ( ± i :h k)i\ 

- (it 1 it /*) + -(it ι it k)e. - (it 1 it k) -1- - (it /' it / )e, 

- ( it / ± A ) 4~ - ( it 1 it / ) 6', - ( ± I it /, ) -i- - ( ±. / it /1) t\ 

I ( ±y it A) 4- ~ ( it. 1 it /' ) a, I( it y ± />) 4- i ( it i it k ) e, 

i(iti±r./) 4- i(±i±/.·)<?, 1-(±i±j) + ^{±i±j)t>. 

There are many ways to express 2 as the product of an integer/' 
by its conjugate : f~ 1 4- i, or a number with any two coordinates 
it 1 and the others zero; f— ρ -4- e, for ρ in (27), or a number with 

any four coordinates tt x-> one ±1, and three zero; /= q 4- ( )e, 

where q and Q arc both of the form 

-j ( it 1 it / ±j it k). 

Note that 
(ΐ4-<)

σ
 —p-l- pe

t
 σ= ^(1 4-,/) -4 ^(1 4- k)e, 

τ (1 + ί) = p 4- P*> 7-^(14- k) 4- ~ {i4-./)c. 

where τ is a unit, but σ is not an integer (3o). Thus ρ 4- pe is the pro-
duct of 1 4- i on the left by a unit, but not on the right. Again 

. (1 -ι- ί)λ — ρ 4- t'y λ — γ (ι -Η,/) 4- ~ (ι — i)e— unit. 
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But it would be very laborious to prove that two integers of the same 
norm are not associates if we permit unit factors both on the right 
and left simultaneously. 

If £· is a given integer (3o), we can find an integer q of the same 
form (3o) such that 

n ( g— >ηη)1 j ni1, 

where m is any gi\en positive rational integer. When a and b are any 
given integers, we can find integers q and c such that 

a ~ (jh -|- c, Ν (c) ν" — .\ ( /> ι. 

Take ( ') g = af>, m = (>(>, and write c for a -- (/ b. We readily verify 
by (2/j) that (qb)b = r//n, although the associative law usually fails 
here. Thus 

g — r/m — [a — (/ (>) h — c b, Ν (c) Ν ( h) - γ m2. 
d 

For integral quaternions, Ilurwitz proved similarly that 

i\ (— m a ) < /η2, a — b7 ■+· t\ Ν (c) < Ν ( b ), 

and hence established the existence of a right-hand greatest common 
divisor of a and />. Since we are unable to prove its existence for our 
integers (3o), we have no valid reason to prefer the system (3o), or 
one of ils two equivalents, to other maximal systems (if such exist) 
having properties C, U,, Ν, M. 

20. Outlook. — We investigated above the integers of the classic 
canonical algebras to which any algebra in 2, 3, or 4 basal units can 
be reduced by a linear transformation with real coefficients. If we 
restrict attention to transformations with rational coefficients, we' 
obtain a much larger list of canonical algebras. The arithmetic of the 

(') ΙΓ />:-/■-1-Itwe write b for /·'— He, where /·' is tlie conjugate of the 
<1 uaterni on r. 
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new algebras not in the former list will have new types of properties. 
In particular, we may now secure unique factorization into primes, 
only after the introduction of ideals. This becomes evident if we recall 
that an algebraic number field of degree η is a special type of linear 
algebra in η basal units. This more general theory of hypercomplex 
integers will be presented in the author's book, Algebrasjtnd Their 
Arithmetics, in course of publication by the Unive/s^ty of, Chicago · 
Press. , . ,1χ· 


