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A New Stmple Theory of Hypercomplex Integers;

By L.-E. DICKSON.

L. Jutroduction. — Since this Mcmoir presents ideas of more
gencral interest than its title would indicate, it has becn so writlen
that it may be read by those having no previous acquaintance with
hypercomplex numbers. 1t opens up a broad subject which is destined
to furnish a wide generalization of the theory of algebraic numbers.

A clearidea ol the nature of our conclusions is furnished by §§ 4-6.
These and the earlier scetions arc strictly elementary and self-con-
tained, and make use only of facts proved here.

The immediate purpose of the Memoir is to present a new concep-
tion of hypercomplex integers which is entircly free from the fatal
objections valid against the earlicr conceptions of Hurwitz and
Du Pasquier (§ 4). If their definitions are taken literally, there do not
exist hypercomplex integers in the majority of algebras of hypercom-
plex numbers. I we discard a certain one of their assumptions, we
obtain integers but are faced with the insurmountable difficulty that
factorization into primes s not only not unique, but cannot be made
unique by the introduction of ideals of any kind, a fact proved in this
Memoir. These essential difficulties all disappear under the new defi-
nition proposed lere.

In his various papers cited below, Du Pasquier merely determined
the integers in each algebra in the classic lists, without investigating
the properties of the integers. This investigation is made here for the
algebras in 2 and 3 units, to obtain material for an adequate compa-
vison of the old and new definitions, and such a comparison is always
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decidedly in favor of the new. Incidentally, the new definition tells us
automatically just what enlargement we need to make of a Du Pasquier
system of integers in order to obtain a system having unique factori-
zation into primes.

The new definition has been tested by all the classic algebras in 2,
3 and 4 units, and found in every case to give wholly satisfactory
resulls, as well as to explain serious difficulties arising under the ear-
lier definitions. Morcover, the new theory is far simpler Lo apply than
the old, and more readily lends itsclf to the proof of general theo-
rems, which arc wholly lacking in the writings based on the old defi-
nitions.

2. Hypercomplex numbers. — The oldest example is that of ordi-
nary complex numbers a + b, where @ and 0O are real and 7

denotes y — 1. Next we have algebraic numbers, like
X = a—+ //\/—3, J':a+bQ//;.+c:/Z,

where now a, b, ¢ are rational numbers (integers or fractions). These
are examples of hypercomplex numbers

z=a+be(e=\=3), y=a-+be+ce(e,=vo,e=1\1),

the first having two hasals units, ¢,=1, e, and the second threc
basal units ¢, =1, e,, ¢,. The numbers e, 4 or a, b, ¢, which are mul-
tiplied into the units, are called coordinates. The units salisfy the
relations

Ar=—3; eizec erey=¢ e =2 ei=2e
— 9% 1 — Coy 1€2== € C1—= 2, 2= 201

We may and shall ignore the values of the units as radicals, and
employ these relations to express any product (or square ) of the units
as a linear function of the units. The same is therefore true as Lo the
product of any two numbers « or any two numbers y. We call such a
sct of relations the muliiplication table of the units.

‘We give another important example necded later. Let

1o o o o o o
(ry eg= o o) e = L o) 02:(0 o) a=\, ,)
: /

/
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Then any two-rowed square matrix z may be expressed in terms of
these four as follows

(2) T = (j“ 1") o= Ty €y L€y L€y L3y,
Ay Ly

since the product of matrix ¢, by x, is a similar matrix having the

element z, in place of 1. The gencral matrix x is thus expressed as a

hypercomplex number with the four basal units ¢,, ¢, ¢;, ¢;, whose

multiplication table is (')

(3) ¢ = ¢, €} = ¢y CyCa== €263 2= €y, C3¢1== €,y = ¢y,

Cy €)== Cyy Cy€a == (3,

together with the relations which state that all further squares and
products are zero. ,

[nstead of adding or multiplying these hypercomplex numbers, we
may (more quickly) add or mulliply the corresponding matrices «.To
find the element in the rth row and c¢th column of the product of x
by a similar matrix «’, we multiply the elements of the rth row of =
by the corresponding elements ol the ¢th column of 2’ and add the
two products. FFor example,

xZ —_—s Loy — Ty L 0
x’:( 3 z>‘ xx':( o'y 1L >
—xy X o Ly ky— Ly Ty
Hence x and «” are roots of
’ o . 1 (8]
(4) L2 (2 @) X e (L By Ly 1) e 0, &= (o r)'

Here : = ¢, + ¢, plays the role of unity in multiplication. Thus every
two-rowed square matrix x is aroot of a quadratic equation. Matrices
are known to obey the associative law of multiplication zy.s = x.ys.

In the same manner, we can express all z-rowed square matrices as
hypercomplex numbers in n* basal units. Such a matrix x is the

(') If we wrile e); lor ¢y, e, lor ey, ey, for ¢, and e, for e;, we may express
the multiplication table (of 16 products) in the compact form

€ijejk=Ciry,  Cjj€ ==0 (CET)
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root (') of an equation of degree n whose constant term is the deter-
minant of = and is called the norm of «, Hence the norm of a product
is the products of the norms of the factors.

In general, we shall consider only hypercomplex numbers (*)
(3) L Ly 2 C e T8,

with rational coordinates «,, ..., =, and a multipiication table

n

(6) ,_,I.gj:E Yijk Ch ((./=0o,1,...,0),

h=0
where the constants v;;, are rational numbers. The product of a: by
Y ==l ... Yty

is defined to be the number obtained from Zu;y;c;¢; by replacing ¢;¢;
by its expression (6). We agree that .- and y are equal if and onlv
f xy=1y4, oo, xp=2, We assume the associative law and the cxis-
tence ol a (unique) principal unit < such that cw = xc==u: for every
hypercomplex number « ; we shall often write 1 for ¢. If 7 1s a rational
number, 7« denotes Z(rx;)e;. We define »: + y to be

(o) ey o+ (Lt ) e,

Hence the sel of all numbers'(5) with rational coordinates is closed
under addition, subtraction, and multiplication. It is called a rational

(') For a very simple proof, see the second loot-note in § 15.

(*) We may identify e; with the matrix having the element 74, in the (i +1)
th row and (% +1) th column; then rvelations (6) hold in matrices. For
example, if

€q = ¢y crey=2¢y¢,= ¢, el =— ey,

1 o) ) 0 l‘)
co= | - e = .
" \o 1)’ T l—1 oy

/

then

Hence ordinary complex numbers o, 4~ .=/, may be expressed as matrices

< Ty "Cl)
— a2,/
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linear associative algebra with a principal unit (brieflly a rational
algebra), or a rational hypercomplex number system. .

Since &, x, 22, ..., £ are linear homogeneous functions of ¢, .,.,
e, wilh rational coefficients, some linear combination of them with
rational coefficients is zero. Hencc « satisfies an unique equation of
lowest degree with rational coefficients and leading coefficient unity.
This is called the rank equation when the coordinates of x are arbi-
trary rational numbers. Its constant term is called the #orm of x and
designated N ().

3. Preliminary surcey of lypercomplex integers. — Gaass
called a + b a complex integer if @ and & arerational integers; every
complex integer decomposes into complex primes uniquely apart
from unit factors, = 1, = (. ‘

For 0 = |J—3, we might call @+ b0 a quadraticinteger if and only
if @ and ) are rational integers. But 4 would then have 1wo cssentially
different factorizations

h=2x2, A=+ ~17)

into indecomposable integers 2, 1 + 0, 1 — O, no one of which is the
product of another by a unit, necessarily = 1. By a #nit is meant a
(quadratic) integer « = @ + b0 which divides 1, so that there exists
another integer ¢ such that ur=1. Then N(u)N(¢)=1, where
N(u)=a*+ 30* is a rational integer. Hence N(«)=1, a==*1,
b=o,and u==1.

We may avoid all such double factorizations by including among
our (algebraic) integers not only the numbers a+ b0 in which «
and 6 are rational integers, but also those in which @ and b are both
halves of odd integers. Then

I 1 i
w=-+ -0, We=1<_1

9 2 2 s
are units since they are algebraic integers whose product is 1. The
only units are here == 1, == u, = «'. Thus the second of the above fac-
Lorizations of 4 may now be written in the form 4 = (24) (2u'), which
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is not regarded as essentially different from 4 =2 x 2, just as the
latter is not distinguished from 4 = (— 2)(— 2).

A still simpler example will show the wisdom of enlarging certain
proposed systems of integers. Let the system S he composed of unity
and all positive even integers, This system is evidently closed under
multiplication. Then 6o has two (and only two) decompositions intlo
indecomposables of S :

69 =2 % 3o, 6o=0 <10,

where no one of 2,6, 10, 30 is a product of two numbers, cach not
the unique unit 1, of S, so that all four are indecomposable. We evi-
dently restore unique factorization into indecomposables by annexing
to S all positive odd integers.

An algebraic number is called integral if and only if it is a root of
an equation having ralional integral coefficients and having unity as
the coefficient of the highest power of the unknown. For example,
x =a -+ bym is a root of

r’—2ax -+ (a*— m b?) =o,

which, for m = —1, has rational integral coefficients only when «
and & are both rational integers, so that we have Gauss’s complex
integers @ + bi. For m = — 3, the coefficients are rational integers
only when a and b are either both rational integers or both halves of
odd integers (see above). For m = — 3k%, where & is a rational
integer, o and kb have the values just mentioned, so that the coordi-
nate b of the algebraic integer  may have the denominator 2/4.

There is no point in studying factorization in the set A of all inte-
gral algebraic numbers. For, if @ is any rational integer,

a=u}

— gt — N —
=ai=al=...,

where «@,, a,, a,, ..., are roots of x*=a, x*=a, *=a, ..., and
henee belong to A, so that Lthe factorization of @ within A would never
terminate. Hence in the theory of algebraic numbers we confine our
altention to the rational functions with rational cocfficients of a parti-
cular algebraic number. Then uniqueness of factorization into primes
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cither holds true or can always be secured by the introduction of
Dedekind’s ideals. The above definition of algebraic integers led to
this wholly satisfactory conclusion and is therefore a thoroughly satis-
factory definition.

However, this definition fails in general for hypercomplex numbers.
IFor example, et us call a two-rowed square matrix (2) integral if and
only il its four elements are rational and the coefficients of the qua-
dratic equation (4) satisfied by it are rational integers. Then, if & is
an arbitrary rational integer = o,

[0 Kk
M= (/{ 0 )

is an integral matrix, since it is a root of 2* — 1 =0 by M*=¢. But

N~

Iow . o 3
P=MM=\>2 . S=M+M,= .

0 2 3

=]

are neither inlegral matrices, since the middie coefficient of (4)
isg for P, and the constant lerm 1s — g for S. Hence this sct of inte-

gral matrices is closed ncither under multiplication nor under
addition.

Historically the first definition of hypercomplex integers was that
made for the case of quaternions

g=a+bi+c¢;+dh
by R. Lipschitz (*). The maultiplication table of the basal units (*) is

2

(7) P=p=0N=—\, =—ji=k Jjh=—~j=1i kiz=—Iil=/.

(") Journal de Math., série 4, t. 11, 1836, p. 393-439.
(*) They may be defined in terms of the matrix units (1) as follows :
| = e,+ e, t=V—1(ey—e), J=er—e,
= —V=1 (es+ey),
Or we may define 1, ¢, /, & as 4-rowed square matrices with rational integral
elements by means of the last note in § 2.

Journ. de Math. tome 1I. — Fasc. I1l, 1923. 38
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He called ¢ an integral quaternion if and only if a, 0, ¢, o arc rational
integers. Bul we then have three essentially different factorizalions of
2 inlo prime (uaternions I -+ ¢, 1+ j, 1+ k:

(8) 2 ==-—1(1 + )%, 2=—j(14/)% 2=— k(1 + k)

while 1+ 7 is not the product of 1+ j or 1+ /& by a unit, here %1,
=+ {', ij, or = k. )

A. Hurwitz (*) avoided all such difficultics by including among the
integral quaternions not only those of Lipschitz, but also all quater-
nions whose coordinates are all halves of odd numbers. Now the threc
[actorizations (8) are no longer essentially different; for example,

. . 1 . . 1 ..
1+/=0~+{)u, u:::(x——-z)(r+J)::(1--L+,/——-/;),
and the integral quatcrnion « is a unit since « &' =1, where
. .
U o= :(l—l—l ——/—l-/.‘)

is an integral quaternion. Hurwitz's system of integral quaternions is
closed under addition, subtraction, and multiplication, and they have
unicue factorization into prime quaternions when the arrangement of
the norms of those primes is preseribed.

We do not obtain satisfactory vesults by following the definition of
integral algebraic numbers and calling a quaternion ¢ integral if and
only if its coordinates are rational and the coefficients of the quadratic
equation satisfied by ¢ and its conjugate

g =a—bi—cj—dk

are ralional integers. For,
Q=i+ =
Soh 57

.

wonld bhe integral since Q*= —1, and Q — ¢ not integral being a

(M) Gitlinger Nachrichten, 1896, p. 311-340 ; amplified in his Vorlesungen
iber die Zallentheoric der Quaternionen {Berlin, 1919).
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-

{

, .
voot of .£* + 3' = 0. Thus the difference of the integral quaternions Q

and ¢ is not integral.

A. Hypercomplex integers as defined by Hurwilz and Du Pas-
quier. — Our aim is o select the integers [rom the set of all hyper-
complex numbers (5) with rational coordinates, having a multiphi-
cation table (6) in which the v, are given rational numbers. In brief
we seek the arithmetic of a given rvational algebra.

Although the definition by Hurwitz was stated only for quater-
nions, it may be expressed in general form as follows.

Within a rational hypercomplex number system [¢/f. (3), (6)] a
system ol integral hypercomplex numbers shall have the following
properties : _

B (bhasis) : The system has a finite basis (i. e., it contains numbers
g1y -5 i such that every number of the system is expressible in the
form ¥e;q;, where cach ¢; is a rational integer);

(. (closure) : The system is elosed under addition, subtraction, and
multiplication;

U (units) : The system contains the basal units ¢y, ..., ¢,;

M (maximal) : The system is a maximal (i.¢., it is not contained
in a larger system having propertics B, (i, U).

The only modification made by Du Pasquicr (') was to replace U
by the weaker assumption U, :

U, (unit 1) : The systems contains the principal onit 1.

We proceed to show that each of these definitions fails completely
for the algebra with two basal units 1 and ¢, where ¢*=0. Any
svstem has a basis 1, ¢ =7+ se, where » and s are fixed rational
numbers, s=£0. Since ¢* is in the system by C, we must have
¢*= a+ bg, where a and b are rational integers. Hence

2

r=a-+obr, ars=bs; ar==0, 1t — .

Thus 7 is a rational integer, so that any system has the basis 1, se,

(V) Vierteljahrsschrift Naturf. Gesell. Ziirich, t. 3k, 19og, p. 116-138;
L'enseignement math., t. 47, 1923, p. 350-343 ; t. 18, 1910, p. 201-260.

*



2G0 L.-E. DICKSON.
where s is rational, This system is contained in that having the basis,

. 8. . . e
1, teifand only if; is a rational integer. Since therefore the system
. . . [ .
(1, s¢) is contained in the larger syslem <1, ;se>, and the latter 1s

. . . . I .
contained in the still larger system (1 , 7se>, etc., there exists no ma-
-1

ximal svstem. In other words, there exist no hypercomplex inte-
gers in this algebra.

The same conclusion holds true also for Hurwitz’s definition, which
adds the requirement U that ¢ shall occur in the system (1, se) and
hence that s be the reciprocal of a rational integer.

Suppose we omit the requirement M that the system be a maximal.
Itis to be anticipated (§ 3) that the laws of divisibility in a chosen
svstem will not be as simple as in a larger (existing) system, nor the
laws in the latter as simple asin a still larger (existing) system, and
so on to infinity, and hence that the laws in the chosen system will be
extremely complicated. This conjecture is confirmed in § 3.

8. Insurmountable dif ficulties in any Hurwits or Du Pasquier
binary arithmetic with e* = o. — We shall examine the laws of divi-
sibility in the system having the hasis 1, se, where s is a chosen
rational number =£ o. Without disturbing the relation ¢* = o, we may
take se as a new basal unit e. Hence we may take s =1.

Then the integers are x + y ¢, where « and ) are rational integers.
Since x + y ¢ is a root of (w — x)* = o, its norm is «*. Hence.r = 1
for a unit. Conversely, =1+ ke is a unit when k is any rational
integer, since its product by &= v — ke is 1. Write

co=3, =73+ e, Cy==3 + 2e.

Then
(9) CiCyT=Chi,  CyCa==CY,  ¢e==cClv,

where # =1 + ¢, and ¢ = 1 —¢ are units. No one of ¢, ¢, ¢, can be
obtained from another one of them by multiplication by units both on
the left and right. For if , denotes =1+ ke,

U.Cilly==Cy, n=/x3({4+k)=5 (wmod 3).
i / J
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Finally, since no integer has the norm 3, ¢; is not the product of
two integers neither of which is a unit, and hence is a prime. Thus,
by (9), we have two essentially different decompositions ¢, ¢, and ¢} of
the same integer into primes. .

Norisit possible to restore unique factorizationinto primes by the in-
troduction of ideals, hovever defined. I\ is understood that in introdu-
cingideals, each integer whose norm is not zero, and its associates (i. e.,
all products of it on both sides by arbitrary units), shall correspond
to the same nnique ideal, and that the product of two integers corres-
ponds to the ideal which is the product ef the two ideals corvesponding
to the two integers, and finally that the ideal I corresponding to the
units plays the role of unity in the multiplication of ideals and has no
ideal factor othicr than 1. Hence the totality of ideals contains a set of
idcals simply isomorphic with the set of classes of associated integers.

Then ¢, ¢,, ¢, correspond to distinct ideals C,, C,, C,, no one the
unit ideal [, such that, by (9),

(10) CiCe=C2  GCi=Ci  GC=C.

By the last two equations, any prime ideal factor D of C, divides
both C, and C,. Heunce C;=DQ;(¥ =1, 2, 3), where Q,, Q,, Q, are
distinets ideals. Thus

0i0:=02,  QQ=0Q%,  Q,Q,=0l.
No Q; is L. For, 1f Q, = I, the third equation would give Q, = Q, =1.
Hence the (Q; have the same properties as the C;, and it is impossible

to express the equal ideals (5, C, and C; as the same product of prime
ideals.

Tuconen L. — Forthe algebra with the basal units v and e,
where 0* = o, the definitions of integers by both Hurwiiz and Du
Pasquier fuil since there ts no mavimal systew. They fail also if
we omil their requirement that a maximal system exists, since, if
the integers are defined to be numbers of any chosen one of the infi-
nitude of non-macimal systems, factorisation tnto indecomposable
numbers is not wnigue and cannot be wmade unique by the introduc-
tion of ideals however defined.
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Similar insurmountable difficulties will be shown (83 11, {2) o
arise for the majority of algebras in threc units. This is doubtless true
also of algebras in four units, for the majority of which there is cer-
tainly no maximal system (§ 14) and hence, properly speaking, no
integers under the definition of Hurwitz or Du Pasquicr.

6. New definition of hypercomplex integers. — We shall employ
the assumptions C (closure ), U, (unit 1), M (maximal) and R :

R (rank equation) : Forevery number of the system, the coefficients
of the rank équation are all rational integers.

We shall often obtain the same system of integers if we replace R
by the weaker assumption N:

N (norm) : The norm of everv number of the system is a rational
integer.

Consider the algebra with the units 1, ¢, where ¢* = o, for which we
saw that the definitions by Hurwitz and Du Pasquicr both fail. We
make the assumptions G, U,, M, N. Since & =a + be is a root of
(0 —a)*=o, we have N () =a*. Hence if .c is in a system satis-
fing our assumptions, « is a rational integer. The unique maximal
system (of integers) 1s evidently composed of all the x =« + be, in
w lnch @ is a rational integer and J is rational. The product of x hy
the unit 1+ /u’ is @ + (6 4+ ak)e, which, for @ 0, becomes a by

taking A = — (—1- Hence every integer whose norm 1s not zero is asso-

ciated with a rational integer @, and hence is factorable into primes
uniquely apart from unit factors.

Our unique system of integers is the aggregate of the integers in
the infinitude of systems ol)tamcd in § 4by the definition of either
Hurwitz or Du Pasquier. The msurmounlable difficulties, which
arose when they chose as their integers the numbers of any one of
their systems, have now been shown to disappear for our properly
chosen enlargement of their too restricted system. This enlargement
was accomplished by the abandonment of their strong assumption B
of a finite basis and the replacement of it by the weaker assumption N
about the norm (¢f. § 8)

Tueoren . — Al of the difficulties mentioned in Theorem 1
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disappear under the new définition of integers, which now decom-
pose indo primes uniquely.

7. Characteristic equations, property of N(x). — To define the
characteristic equations, note that, by(6),

" n
-t N
2= 2,}',;..8/.«, Vi Wi
hz==0 i=0

\Writing the first equation in full for j = o, 1, ..., n, we get

(Yoo ) ey Yoreq e Yo T O,
J1éo (Y w)ep o Yty T,
FroCo Yty -+ -t (" b )U/t 0

\hen . is replaced by an ordinary vaciable w, the dcterminant of Lthe
coeflicients of ¢, ..., ¢, 1s

n

. ) ~
a(m) -\,-‘*/,-j,‘.;v,-——aj,,m )

I=0

where 3;;=1, ¢;,= oif == k. We call ¢(w) the right-hand charac-

teristic determinant of .z, Let Cy(»), ..., C,(») denote the adjoint
minors of the elements of j th column. Let ¢ = X¢;¢; be the principal
unit. Multiply the above linear equations by C,(x)s, ..., C,(x)c on
the left and add. Weevidently get 5(z) ¢; = o. Multiply this by ¢; and
sumfor j = 0, 1,..., 75 weget8(«) ¢ = o. Hence »is a root of the right-
hand characteristic equation 6(w) = o. It is understood that, besides
substituting .+* for wf, we multiply the constant term ¢ (o)== A (x)bye.

Similarly, every nypercomplex number z is a root of its left-hand
characteristic equation ¢’ (©) = o, obtained by starting from ¢; . ins-
tead of the above .we;. Denote ¢'(0) by A'(x). These characteristic
determinants 6(w) and ¢'(w) remain unaltered (') under any linear
transformation on the hasal units e;.

Ify is a fixed and w a variable hypercomplex number, the rela-

(') Dickson, Linear Hgebras, Cambridge Univervsity Traet, n° 16, 1914, p. 19.
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tion &' = xy defines a linear transformation on x,, ..., &, with the
determinant A’(y). Similarly, to y' corresponds a second transfor-
mation 2" = x'y’. Then to y"= yy’ corresponds 2" = xy", which is
the product of the former transformations. Hence

V(A () = X ).

Similarly, the determinant of the linear transformation defined by
2' = yxis A()"), and we get

AYA(y) = AN

If the coordinates of @ are arbitrary rational integers, its rank
equation R(w) = ois the unique cqnation of lowest degree having
the root . and coefficients which are polynomials in the coordinates
of «x, the leading coefficient being unity. Evidently R(w) divides
both ¢(w) and ¢'(w). Hence N() == R (o) divides both A(x) and A'(x).
By the above definitions, either characteristic equation for x =,
where ¢ is the principal unit, is (1 — w)"*' = 0, and R(w) is then a
power of 1 — w, whence N(z) = 1. It now follows (*) that

NOING) = N

Turoren L. — The norm of a product of any two hypercomplex
numbers is equal to the product of their norms.

8. General remarks on the definitions of hypcercomplex: integers.
— In the new definition, we may replace assumption R by the
assumption that, for every number of the system, the coeflicients of
the right-hand characteristic equation are rational integers, or by the
similar property for the left-hand characteristic éyquation. The advan-
tage in demonstrations is that we know the explicit form ol the charac-
teristic equations for a general algebra, but not that of the rank equa-
tion. IFurthermore, we shall prove that the assumplions B and C of
Hurwitz and Du Pasquier imply the property R of the rank equation.

Turoren IV. — If all the coefficients of the rank equation are

(') Dickson, Comptes rendus du Congres international des Mathémaliiciens,

"

(Strasbourg, 1920), Toulouse, 1921, § 5.



A NEW SIMPLE THEORY OF HYPERCOMPLEX INTEGERS. 295

rational integers, those of cither characteristic equation are rational
integers, and conversely.

The converse follows from Gauss's lemma; if
dHw) =z @ " 4. +a,
has rational integral coefficients and is divisible by
R(w) 2o+ Njw" e oA

with rational cocfficients, these coeflicients \;are all rational inlegers.

Next let R(w) have rational integral coefficients. Then the roots
of R{w) = o ave integral algebraic numbers. But (') these roots include
all the distinet roots of &(w) = o. Hence the cocfficients of the latter
are integral algebraic numbers and also rational (since the coordi-
nates .c; and v, are assumed to be rational), and hence are rational
integers.

Turoren V. — For ecery system having the closure pooperty Cand
« finite basis composed (*) of as many linearly independent num-
bers as the algebra has basal units, the characteristic equations
of each number of the system have rational integral coefficients.

Such a system has a basis E, =1, E,, ..., E,. We may take the E;
as new basal nnits of the algebra. By the closure property C, EE;
belongs to the system. By the property B of the basis, Il;E; is equal to
a linear function of E,, ..., E, with rational integral coeflicients.
Ilence the new constants of multiplication U, ave rational integers.
The samc is true of the coordinates \; of every number X = ¥X, I, of
the system (property B). Hlence either characteristic equation of \ has
rational integral cocflicients. But the coeflicients of that equation are
invariant under every linear transformation of the basal units (§ 7).

Hence any system according to the definitton of Du Pasquier is

' (") G. Scueeeers, Math. Annalen, t. 39, 181, p. 302, — Dicksox, Linear
Algebras, p. 2,

(*) Assumed by Du Pasquier (vef. in § %) in finding his systems of 2-rowed
square matrices, the only algebra for which he has given details of the work of
finding maximal systems.

Journ. de Math., tome II. - Fasc. L, 1g23. 39
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a system according to the new definition, but not conversely, so
that the new maximal systems ave usually not svstems of Du Pasquier.

After the introduction of the new basal units E,, the particular
Du Pasquier system becomes the set of linear combinations of the E;
with rational integral coordinates and hence has property Uj but this
need not be true simultaueously of the remaining Du Pasquier sysiems
of the same algebra (¢/. § 16). Hence alter making a suitably chosen
transformanon ol the basal units with rational coefhcients, we obtain
an algebra in which at least one Du Pasquier system is a Hurwilz
system.

9.General theory of integers of reducible algebras. — A linear
associative algebra S of hypercomplex numbers with s basal units
whose coordinates range independently over all rational numbers, and
having a principal unit ¢, is called rationally reducible if it contains
« + 3 =snumbers ¢, ..., e, E,, ..., Iig, not satisliing alinear homo-
geneous equation with rational coefficients, such that

(r1) eB;=o, Ejei=o (F=1, .. o5 /=1, ..., P)

In the contrary case, S is called rationally irreducible.

Let S be rationally reducible. It is rcadily proved (') that-all
squares and products of e,, ..., ¢, arc lincar functions of e, ..., ¢,
with rational coeflicients, so that ¢,, ..., ¢, ave the basal units of an
algebra a with rational coordinates. Likewise, If,, ..., Egare the hasal
units of an algebra A. Also, @ and A have principal unitse and 1% res-
pectively, whose sum is .

Conversely, from any two linear associative algcbras @ and A with
basal units ¢; and £}, principal units ¢ and E, and rational coovdinates,
we evidently obtain a linear associative algebra S with the basal
units e, ..., ¢, I%,, ..., Eg, principal unit ¢ + E, and rational coordi-
nates, by postulating relations (11) and regarding e, ..., Eg as satis-
fyng no linear homogeneous equation with rationial coefficients.

We call S the direct sum ofaand A and write S=a +A = A + q,
and call @ and A the components of S.

(') Dicksox. Linear Algebras, p. 26, 27.
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Tucoren VI. — Consider systems of integers having properties
C, Uy, R (and M). The first (or sccond) components of the num-
bers of any (maximal) system of integers of arationally reducible
algebra constitute a (maximal) system of integers of the first (or
second) component algebra. Concerscly, gicen a (maximal) system
| ] of integers « of an algebra a and ¢ (maximal) system [X] of
integers X of another algebra A, (f we add every number x (o every
number X, we obtain sums forming a (maximal) system of inle-
gersof the direct sum a + A.

By Theorem IV, R implies that the coefficients of the right-hand
characteristic cquation are rational integers, and conversely.

(¢). Let |z] be any given system of integers = of a reducible
algebra S =« + A. We have s =& + X, where « is a number Xu;e;
of the lirst component algebra @, and X is a number X E; of A. To
determine the right-hand characteristic determinant of s for S (§7),
we employ

%
—
:e,:\_,‘.z:[e,e, 4 O (==, ..., 2),
i=1 ‘
5

. ST
k=0 -+ L b @R DFR O (=1, ...

Ao

Ience the right-hand characteristic determinant of = for S is equal
to the product of that of & for @ by that of X for A. Hence, by
Gauss’'s lemma (§8), the polvnominals in 0 which ave equal to the
last two determinants have rational integral coefficients when zisin
the system | z]. Hence the rank equations of «» and X for aand A,
respectively, have rational integral coefficients. Next, if also
F=w'+ X isin [3], then 3= @z’ + XX’is in [z] by the closure
property C. \We have now proved the first half of Theorem VI with
both words maximal omitted.

(¢f) Conversely, let | x] by any given system of integers w of an
algebra @, and [X] any given system of integers of another algebra A,
As explained above, we may regard @ and A as the components of a
rationally veducible algebra S=a+ A for which relations (11)
hold. To every number . of || add every number X of [X]. By the
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facts in (7), these sums form a system |z] of numbers of S having
properties C, U,, and R.

Further, let |2} and [ X| be maximal systems of @ and A, respecti-
vely. Then if |5} is not a maximal system of 3, it is contained in a
larger system |s] of S. By (/), the first components .’ of the
F=u'+ X' form a system [+'] of numbers ol @ having propertics C,
U,, R, and likewise for the second components \X'. Either || is
larger than [:x| and contains it, or else | X'] is larger than|X], con-
trary to hypothesis. This proves the last half of Theorem VI,

(¢iv) Returning to part (#), let [ 5] be a maximal system of S. Then
if | ] is contained in a larger system |..'] of @, part (i7) shows that [}
and [X| determine a system |z'] of numbers '= '+ X of S, which
have properties C, U,, and R, such that | 3’| contains the smaller
system |s], whereas [5] was assumed to be a maximal. This complectes
the proof of the first half of Theorem V1.

Tueoren V1L -— The second part of Theorene Il holds also for
systems of integers defined by properties G, U, N and M.

We employ the known result (') that the rank equation of S is
equal to the product of the rank equations of the component algebras @
and A. From their constant terms, we get

(v2) Ne(z) = N (@) . Ny (X).

where each norm is taken with respect to the algebra indicated by
the subscript. '

Let there be given systems [ .| and | X] of integers of @ and \, ves-
pectively. To everv x of |2] add every X of [ X]; these sums form a
set | 5] of numbers 5 = « + X ofthe direct sum S=«-+ A. Since N, ()
and N,(X) are rational integers by assumption N, N.(3) is a rational

(') For, if #(w) =10 is the rank equation of ¢ and R(w)=o0 that of A, w
and X are both roots of »(w).R(w)=o0. But : == & + X Implies s¥ =¥+ \4,
whence f(3)=/f(2)+ f(X) for any polynomial /. Uence, 3 is a voot
of r.R = o. That it is not the root of an equation of lower degree follows by use
of 5=z +o0 or 5==0+ X, since the coefficients of r avre independent of the
coordinates of X.
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integer by (12). Thus | ] has property N and evidently also proper-
ties G and U,. .

Suppose that | =] is not a maximal, but is contained in a larger
system | 5'] of numbers of S having properties C, U,, N. Since ¢ + o
and o + E are in [5], thev are in [2’|. Then if #’=2'+ X'is any
number of [ 5'], es' = " and @'+ E are in [5']. Thus Ny(w'+E) is a
rational integer by hypothesis, and is equal to N,(2') by (12),
since N((E)=1 by § 7 (end). Heunce N,(&’) is a rational integer.
lHence the z’ form a system | 2’| of numbers ol @ having properties C,
U,, N. Likewise for the X’. Fither [.2/] is larger than [.] and coutains
it, or [ X'] is larger than | X|, contrary to the assumption that |x]
and | X] are maximal.

IFrom the third and fourth sentences of the preceding paragraph,
we obtain the following analogue of the first part of Theorem VI.

Tucowen V. — In a rationally reducible algebra S = a + A,
constder systems of integers having properties G and N\ and con-
tarning (") the principal units e and Yoof @ and A. The first compo-
nends of the numbers of any (maximal) system of integers of S
constitule a (maximal) system of integers of a, and the second
components a system of A

Let a number z = . + X of a system | z] of integers he a unit, so
that there exists a number s'=uw’ + X' of | 5| such that 3’ =ct=¢+E.
Then wx’= ¢, XX'= E, und « is a unit of ¢, and X of A. Conversely,
ifxz and X arc units of @ and A, then 2 + X isa unitof @ + A.

I all integers of norm == o of the component algebras ¢ and A
factorinto primes uniquely apart from unit factors, the same is true
of the integers of & + A.

For example, consider the direct sum (¢,) + (e,) + (¢,) :
¢i = ¢ eie;=o(y =), 1= e, ¢, + €.

The rank and characteristic equations are II(w; — ©) = o.

(') Without assuming that the systems coutain ¢ and I, T have verified the
theorem for the three classic reducible algebras in 3 units (§ 11), the proof
being fong only for @ = (ey) + (¢,). b =(e,).
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Hence under the new defimtion by properties €6, U, R, M the
integers are the numbers having rational integral coordinates. The
latter are all Zo in the product of ¥ by a suitably chosen unit
=+ ¢, ¢, =% ¢,. We restrict attention Lo integers « of norm x,z @, %o
and having posilive integral coordinates. Denote 2 by (&, 2,, «.).
Then xy = (wyy ey £, X232 )- Since

Py 18)=(Ps ¢ ) (1, 1 8) (P gy Y= (s ¢, V) (15 1, 1),

onc of the coordinates of a prime 1s arational prime and the remaining
two are unity, and conversely every such number is a prime. Hence if
the p;, ¢, 1 are all rational primes, we have the following unique
factorization into primes :

“" b &
(pyeePaqre ..q,,, Pyeoora) = l] (piy 1, 1). Tl(u fir 1)- ]](l, 1, 1)

fot I=t k=1

Given that a number . of an algebra ¢ is an integer if and only if
specilied coordinates «; ave rational integers and the remaining coor-
dinates x; are rational, and similarly for another algchra A, then we
know from Theorem VI that in the direct sum S =a + \ a number
s=ux + Xis an integer il and only if the coordinates «; and \, are
rational integers and the remaining coordinates ;; and \; arc rational.
From :3'=az'+ XX/, where ' =x'+ X' is a unit, we conclude
that an integer s is associaled with those and only those integers
whose first components are associated with & in @ and whose second
components are associated with X in A.

If @ is one of the two rvationallv itreducible algebras in two basal
units (§ 10), or one of the three in three basal units (§ 12), we shall
find that an integer .« of @, such that N(z) = o, is associated with the
abridged integer having the same coordinates &; (which were rational
integers in «), but having zeros in place of the coordinates ; (which
were rational in x). Hence for every rationally reduciblc algebra
in 2, 3 or 4 basal units, each integer 7 = & + X, such that X(z) # o,
is associated with the abridged integer having each «; and X zero, but
with no furtier coordinates zero. Thus the laws of factorization in
@+ A arc the same as in @’ + A/, where @’ denotes the abridgement
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of @ 10 the hasal units ¢;, and A’ the abridgement of A to the units E,.
But if « is the algebra of matrices (§ 1), further coordinates ave
zero in the associates ol .
By the results in this section we may read oll at once all the pro-
perties of the integers of a rationally reducible algebra from those of
the components.

10. Algebras in two uaits. — \\e assume properties (i, U,, N, M.
The unique maximal syvstem of integers of the reducible algebra

“w - P S, ——— »
(en) + (€)@ e =1¢y, LR == 0 2y =0, eiT=e¢y, 1z ey - 0,

is composed of all the numbers .roe, + 2 ¢, in which 2, and x, are
rational integers. Those of norm . @, 7% o decompose into primes
uniquely apart from uunit factors = e, e, (§ 9). This algebra is
another form of that with the basal units 1, ¢, where ¢*=1. That
with e* = o was treated in §3 4, 8. That with ¢* = — 1 has as integers
(sauss’s complex integers @ + y ¢, where w and y are vational integers.
For ¢*==2= 1, the same results ave abtained by Du Pasquier’s definition.

1. Reductble algebras in three units — Such an algebra is the
direct sum of an algebra in two units ¢, and ¢, (§ 10) and the
algebra (e,) in assingle unit such that ¢ =e¢,. llence they are

(20) + (0)) + ()3

By

A+ (), N = (¢o 1), erim ey, €0 T € ey = €, cl=— ey
a}
B 4 (e,), B={(e,, &), 23 Oy, CoC1TT € €T €, e} = o.

Under the new definition (*) of integers, Theorem VI shows that the
integers of the first two algebras are the numbers all of whose coordi-
nates are rational integevs, whilethose of B + (¢,) are X x;¢;, where x,
is rational and ¢, and z, are rational integers. For all three algcbras,
every integer of norm £ o decomposes into primes uniquely apart
from unit factors.

Only for the first two of these algebras are the integers thesame by

(') Also with R veplaced by N, the proof being longer.
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Du Pasquier’s (*) definition. In B + (¢,) replace ¢, by 1 — e,; we get

his system 3. He found that the most generval system of numbers

under his delinition has the basis 1, 2e,, B¢, 4+ gey, where 2 and 3
. 5 & . . .

are rational, = = =%, while &, and g avc vational integers, whence no

bl

systems is maximal and integers do no exist, Nole that the aggregate
of the numbers in all of his systems is the above system of inlegers
ander the new definition,

Let us ignore the assumption of a maximal, and take as integers
the numbers of an arbitearily chosen one of his systems. Withont
altering the multiplication table of the units, we may take a¢, asa
new unil ¢, which amounts to taking « = 1. Then the integers have
the basis

12 ¢+ €, e. e teve - e,

¥

Thus g®e, is integral. Write /i for g* <+ 3, and
;= (3, /. N)=3 +ye,+ gle,.
where (2, v, x,) denotes ¥ x;e;. Since

(rgy @y 22) {6y V1o Y2) = {Tg g Ty Vi Ly Yoy T2V2),

we have '
cicp=c}(ifj+ h=2t), c;u;= cjon-
w= (1. 1), W =1,

whence w, is a unit. Thus
¢ = ¢y cl=C 3=, ¢y, Cl==caC.y =CaCy U,
which may be written as

CiCo=ciuy, CoCy = CF, €€y == €3 U~y,

which are exactly of the type (9). The only possible units are
(1, 1, = 1) and their negatives; but (1, {, — 1) is not one of our inte-
gers, and hence is not a unit, if {g|>2. We lind that no two of
Cyy €45 Cy are associaled numbers and that cach is a prime. Hence (§ 5)

(') Bull. Soc. Math. de France, L. N\LVIl, 1920, p. 109-132.
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lactorization into primes is not unique and cannot be made unique by
the introduction of ideals of any kind. This conclusion applies Lo each
of the triply infinite number of systems ol integers, one system for
cach set of values of «, 3, &. We saw above how these difliculties
disappear under the new definition.

12. Irreducible Algebras in Three Units. — We employ assump-
tions C, U,, N, M, and find that the resulting integers have also pro-
perties U and R. For the algebra

Ty: e,=1. e} = ey, e ey =¢,0 =¢e}=o,

the vank and characteristic equations are all (&, — w)*=o0. The
maximal system ol integers is composed of all numbers .« for which a,
is a rational integer and x,, «, arc rational. Lf

P B TN

o— —_ for o 2,
Z,5% 0, €L ==y, ot d=1— —¢ -k

6’2 »
2
R $y

Hence x is a unit if w,=1. Thus « is a unit, and any integer x of
norm , % o is associated with «,, and hence decomposes into primes
uniquely.
e X, .
If we replace « by 1 — ¢, — —¢,, we see that all the preceding
Lo Lo T

statements hold also for the algebra

Ty ep==1, el=r¢e,=¢ee=7c;=0,
Finally, consider the algebra

T, eﬁ=c’|\> C;J:cl, €18 ==Cy €= (3,
€6 == €)= ¢,8,= €0, =¢; =0,

e+ =1, Rw) =(r,—a) (t,—n), 0(w) == (tp— o) (L—w)2

Thus
N(ae)=a,r, N(x +1) = (@, +1) (&;-+1).

Hence if & is an integer, «x, @, and @, -+ x, ave rational integers. Thus
the maximal system is composed of all numbers a: for which x, and x,
are rational integers, while , is rational.

Journ. de Math., tome II, — Fasc. 11l 1923, 40
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Denote « by («,, x,, x,). Then
(13) (Tgy X1y &2) (Yur Pr: ¥2) = (&g Yoo X1 Y1y &1 02 T9Yo).
For e e==(x, 1, 3), u,u ;=1, so that . is a unit. Now
(14) ot tz= (24, &y, 1), =2, Te v -+ &y 3.

Hence, unless x,= .r,= 0, we can find rational numbers ¢, = such
that » = o. Thus any integer of norm x,x, o is associaled with
£ o+ e,. By § 10, the latier integers decompose into primes
uniquely. ‘

These salisfactory results regarding the integers of any of these
three algebras T, are in marked contrast to the results obtained by the
definitions of cither Hurwitz or Du Pasquier. Then there is no
maximal system of intcgers, while if we select any system we mect
cssential difficulties.

First, for T, which is Du Pasquier’s system 4, the most general
system of integers was stated by him to have the basis 1, g ta®e,,
%c, + 3e,, where o and § are rational and g is a rational integer, so
that no system is maximal. Taking

E,=uae + Be,, E,= Rk = aZe,,

we obtain T, written in capital letters E,. Hence the new basisis 1,
r

~ ~ I . P T 3

E,, tE,, where ¢ ==. Write ¢; for 3 + jI5,. We obtain (g), where

>
now

=1+ tE,, c=1—tE,

are units. No two of the primes ¢,, ¢,, ¢, are associates. Hence (§ 9),
decomposition into primes is not unique, and cannot be made unique
by the introduction of ideals of any kind.

IFor T,, which is Du Pasquier’s systemn 6, the most general system
of integers was stated by him to hLave the basis, 1, ac,, B¢, + ve,,
where a, B, v ave rational, so that no system is maximal. The last two
numbers of the basis may be taken as new units 15,, E, without dis-
turbing T,. The further discussion for T, applies also here,
where t=1.
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Du Pasquier’s system 3 is

ey=1, ei=1, €,6:= €y, €., =— €y, ¢ =o,

and his most general system of|integers has the basis 1, ae,,
SE+ 8¢, where o and § arc rational, g is a ralional integer,

and I = é (1+ ¢,). Taking the latter as a new unit in place of ¢,, and

lthen ¢ = E+ ¢='8¢, in place of E, we get
=g, gey = C,, €,3 = 0. el =o,

and the basis 1, ae,, 2z The ellcct of taking ae, as a new ¢, is to
take o =1. Finally, we write ¢, for ¢, and ¢, for 1 —¢, and get
algebra T, and the basis 1, ge,, ¢,. Hence (p, ¢, r) is an integer if
and only if p, ¢, - are rational integers such that p: ¢ (mod g).
By (13),

(Py gy 1)Y= (p, 1, 3)(1, q, w), il s+o=r

All three numbers are integers if
p=q=1  (modg).
As special cases, or by (14),
(py 1y 0)uz=(p, 1,3),  ww(t, g, 0)=(1, 9, W)

Hence (p, ¢, ') is the product of units and ( p, 1, 0), (1, ¢, 0). Also,
(py ¢, 0) is the product of the last two. By (14) for x = (p, p, 0),
a is associated with (p, p, r) if and only if r = p(w + ). Heace if
p==1(modg)and if » is not divisible by p, (p, p, ) and (p, p, o)
are not associated, hut have the same factorization apart from units.
This property of (p, p, 1) holds also for the product of (r, s, £)
by (a, b, 1), where

= rw+yss, n=aw;+ bs,,
if s + al is nol divisible by the greatest common divisor of r'a

and sb; for example, if 7 and 0 have a common factor not a divisor
of as(s + w)).
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Tusorene IN. — For the suc classic algebras in three units, the
integers of the unique system obtained by the new definition have
knique factorization into primes and the system is cither identical
(in the case of two reducible algedras) with the system of integers
obtained by Du Pasquier’s definition or else is the aggregate of
the numbers in his infinitely many systems, no one of which is a
maximal nor has satisfactory laws of factorisation into primes.

Thus the new definition succeeds when that of Du Pascuicr fails,
by causing the proper enlargement of every one of his systems which
present serious difficultics to a system having no difficulties.

13. The Associated Arithmetic. — In § 12, we proved that the
integers of norm == o of the algebra T, in three basal units are asso-
ciated (by multiplication by‘units) with the integers x,¢, + v, e, of
the algebra S =(e¢,) + (¢,). We shall say that the latter integers
form the arithmetic associated with the arithmetic of the integers
of T,. And similarly in general.

- 44. Algebras in Four Units. — We make use of Study’s (*) list
of the algebras into which any algebra in four units can be transformed
by a real linear transformation on the units. Ten of them are ratio-
nally reducible, and the propertics of their integers are obtained by
inspection from the resultsin § 9. Thirteen of them are rationally irre-
ducible (although 111, is algebraically reducible). We shall discuss
in 8§ 16, 17 the algebra of real quaternions and the algebra XII,
obtained from it by an imaginary transformation of the units.
There remain eleven algebras. Ifor each ol them, there is no
‘maximal system under the definition of Du Pasquier (*), so thal inte-
gers do not exist. Under the new definition by properties G, U,, R, M,
the integers are found by a mere inspection of the left-hand characte-
ristic equation &'(w) = o, while their essential properties are readily

(') Monatshefte Math. Physik, 1. 1, 1890, p. 305-30g.
(*) Comptes rendus du Congreés international des Mathématiciens (Stras~
bourg, 1920): Toulouse, 1921, p. 164-173.
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found. The notation V (13) means that the algebra is numbered V in
Study’s lst and is system 13 in Du Pasquier’s list. The notation
[ oy 2, | means that Xu;e; is an integer (under the new definition) if
and ouly if &, and ., are rational integers and the remaining coordi-

nates 2, and 2, are rational.

For algebras V (13), IX (17), X (18), XI (19), XIV (22), and

XV (29), we have

o' ()= (Ty—a) and [y 1.

The assoctated arithmetic is that of rational integers w,.
For 1, (1 1) and X1 (20),

B(w) =) (wp—m)t a2 2 and gy b
The associated arithmetic is that of ordinary complex inte-
gers «w, + &, 1.
N ® M - .
FFor VIT'(15), we employ new units-
E 1 “ l'
o:;('"‘el)« |31=;('+ez)7 €2, €4,
and get
E?, = Em E‘I, = I‘:u ey = Ca, E, €3 == €y, e;,E(, = €2, e, = ¢y,
all further products being zero. Then
0 (w) = (2y = 0) (r,— o) L, )
IYor X111, (21), we employ as units the proceding I, L, anc
= .l le, — o D— 1 -
]42-~2k@2 ey)s ;= ,2(4-9 +€y),
and get
E2=E, =8, REE=E, E=~. EE=HL, §EE=I:,

all further products being zero. Then

0 () = (&)~ ) (&) —w)?, [ @]
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For XV (23), we employ new units 15, I, e,, ¢,, and get

1
D

0= EM . lif = l*:l, l:‘l €y = Ca, El Cy == Cy, e, l:\) =e,, (,’;;E":‘: €.

all further products being zero. Then
¢ (w) = (W, —w)* (&;— ), [, 2 |

IFor the last three algebras the associated arvithmetic is that of
(E)) + (E)), and hencee is that of pairs of rational integers.

18. _lgebra and Arvithmetic of Square Matrices. — Tt was
shown in § 2, that all n-rowed square matrices with rational elements
form a linear associalive algebra in 2* basal units. We shall now inves-
tigate maximal systems ol such malrices having properties C, U,, R.

The system S composed of all matrices whose elements are all
rational integers has the propertics C, U,, R by §2. We shall now
prove that it is a maximal. Supposc that 3 is contlained in a larger
system L having those properties. Thus L contains a matrix 72 whose
elements are fractions having a least common denominalor d,
where ¢ > 1. By a theorem due to H.J. 8. Smith (*), we can find
square matrices p and ¢ having rational integral elements of deter-
minant unity such that pmg =&, where ¢ is a diagonal matrix all of

whosc elements outside the main diagonal are zero, while thosc in the

. d d, .
diagonal are .(_;, ceey -(-li, 0, ..., 0 where 7 is the rank of m, the d; are

rational integers which are positive with the exception (when r=#)
of d,, whose sign is that of |m|, and d, is a divisor of . Any
common divisor of d, and d would divide every «; and hence divide
the numerator of every clement of m, contrary to the definition of d.
Hence d, and d are relatively prime.

Since matrices p and ¢ belong to 5 and hence to L, the product
pneg =& belongs to L by property C. \We shall prove that ¢ does not

(}) Phil. Trans. London, \. 151, 1861, p. 293; Coll. Math. Papers, .1,
p- 367: Cf. Bacumasy, Arith. Quadr. Formen, t. 1V, 1898, p. 294; Bocuer,
Introduction to Higher :ligebra, 1907, p. 264-267. e first remove the

. 1 o .
rational factor 5 Jrom m and place it in front of p.

»
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have property R. If R(®) = o denotes the rank equation of the general
n-rowed square matrix «, we obtain R(w) by subtracting ¢ from
each diagonal term of «w. This classic theorem (') was verified in § 2
for n = o.

IFor 5 the rank equation becomes

TH() -

[ts coeflicients are rational integers by the assumption R. llcnce its
s
d
contradiction, our system S is a maximal.

But this systems S is not the only maximal system. If X is any
system of matrices with rational elements having properties G, U,
R, M, and if £1s any matrix such that both ¢ and ¢' transform cverv
matrix with rational elements into one with ralional elements, we
readily prove that ¢ transforms X into a system of matrices having the
same four properties. The conditions on ¢ are evidently satisfied il (*)
the elements of 7 are all products of rational numbers by the same
number. This common factor may be omitted since it cancels
from ¢~*m¢. 1lence il we transform our maximal system S by any
matrix having rational elements of determinant not zero, we obtain a
maximal system of matrices with rational elements having properties
C. U, R. We obtain in this way an infinitude of distinct maximal
systems. IFor, il we employ as / the diagonal matrix whose diagonal

roots arc ralional integers, whereas — is not integral. In view of this

(') Let ¢;; denote the matrix whose elements are all zevro except that in
the 71l row and jth column, which is unity. Let .i; be the element in the (b
row and s th column of .. Then

O Wy €k Uy Caj ey Oy

Transposing and keeping j fixed. but taking /=1, ..., n, we have n equations
the matrix of whose coefficients is derived from (.r;;) by subtracting o ==
from each diagonal teem. The determinant D of this matrix is known to be an
irreducible polynomial, when the .r;; ave arhiteary, Thus the rank equation
is D =o.

(*) Aad only then for z2-rowed square matrices.
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elements are &, ..., k,, we see that ¢ transforms (¢;;) into a matrix

. k; . . . -
having ¢; 7% as the element in the 7th row and jth column. Since the
; :

k's are arbitrary rational numbers =% o, we may take £, =1 without

loss of generality. For example, if 1 = 2,

L= (! 0) PRYEI R AV &€y k.o .
o /‘ ' » :I.l .1,3 /\._.l *l‘[ ;I':,
1f in the final matrix we let 2, «x,, x., x, range independently over

all rational integers, we obtain a system S, which is identical with 5,
ifand only if £ = == L.

Tueorew X. — There ewist infinitely many maximal systems
of n-rowed square matrices with rational elements having proper-
ties C, U,, R. One such maximal system is composed of all the
matrices swith rational integral clemeats.

Whether or not there exist maximal syvstems, not derivable from N
by transformation, is not decided here and a decision is immaterial [or
our theory. In any case we would make an arbitrary selection of onc
maximal system and call its matrices integral. Fortunately the selec-
tion of S itself is wholly satisfactory, since the matrices of S have
unique factorization into primes, as we proceed to prove.

Nothing is simpler (') than the arithmetic of all matrices »2 with
rational integral elements. Any such matrix « is a unit if and onlv if
its determinant is = 1; for, its adjoint matrix «' has rational integral
elements, and uu' = «'u=1. By the above discussion (with now
d = 1), there exist units p and ¢ such that png =2, where ¢ is a dia-
gonal matrix whose diagonal terms d; ave all positive integers or zero.
Thus matrix m is associated with such a diagonal matrix 8. Hence
unique factorization of matrices of non-vanishing determinants into
prime matrices will follow if proved for diagonal matrices all of whose
diagonal elements arc positive rational integers. But this was proved
for diagonal matrices near the end of § 9 (for the typical case n=3),

(*) In spite of the very long discussion by ideals, etc., by Du Pasquier in
his Zirich thesis ( Vierteljahrsschrift Naturf. Gesell. Ziirich, t. 531, 1906,
p. 55-129; t. 52, 1907, p, 243-248)."
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since the product of two diagonal matrices(d,, ..., d,) and(3,, ...,¢,)
1s (d Yiy ey [ln ‘n)

Or, il we prefer, we may write ¢ = d, e, + (l._. e, + d,e,, where

‘1 0 o : o 0 o o o o
ee={ o o o], ;= 0o 1t o}, ey = 0o o }.
L0 00, L0 00 o o 1

’

]

el=e; eje;j=0 (7=%1), ey t+ ey toy=1,

which are the basal units of the algebra employed in § 9. But there
are now infinitely many units, while there were only eight.

Turoresm XI. — The arithmetic of all n-rowed square matrices
with rational integral elements is associated with the arithmetic of
the direct sum () + (¢y) + ... +(e,), and has unique factori-
zalion inlo primes.

16. The Property U. — An equivalent statement of the first
theorem in § 13 is that the system S of n-rowed square matrices with
rational integral elements is the unique maximal system of all matrices
with rational elements having properties C, R, and U, where U states
that all the basal units e; occur in the system.

The initial result in § 13 shows also that S is the unique maximal
system of matrices with rational elements having properties B, C, U,
so that the matrices (of 8) having rational integral clcments are the
integral matrices according to Hurwitz’s definition (§ 4). For, if S is
not a maximal system, we proved that it contains the diagonal
matrix 3, and hence by property C also every power of ¢. There is no
finite basis (i. e., property B fails), since ¢" is not a linear function of

N . . " - d\"
the lower powers of ¢ with rational integral coefficients ¢;. Ior, (71')
4,

would then be equal to Xe¢; ('—(?) which is the quotient of a rational

. di . . .
integer by d"~ ', whereas — is not a rational integer.
Under Du Pasquicr’s (') definition by properties B, C, U,, M, a

(Y Vierteljahrsschrift Naturf. Gesell. Ziirich, t. 31, 19u6, p. 116-148;
quoted in I’'Knselgnement math., t. 18, 1916, p. 201-260.

-—>
D

Journ. de Math., rome Il. — Fasc. HI, 1g23.
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long computation led him to all of the «* maximalsystems of 2-rowed
square matrices with rational elements, since lhe four basal matrices
involve six arbitrary rational integers.

Hence, if we assume C and either B or R, we lind a unique maximal
system of matrices or an iafinitude of maximal systems, according us
we assume also U or U,. However, we have an excellent veason for
deciding not to assume U, in spite of its having led us to a simpler
conclusion than does U,. In fact, property U is not always invariant
under a linear tsansformation of the hasal units with rational (')
coefficients, while the properties U, B, R, N, G, M are always all
invariant. Expresscd otherwise, a maximal system of integers contai-
ning all the basal units may transform into a system not containing
all the new basal units.

Lightis thrown on this question by the algebra devived from the
algebra (7) of real quaternions by taking

Ui=0V—1, Ey=/jyV—1. E=—"%

Thus

(13) Br=—1, Ei=R=+1, EE=—I,E=I

Lo

Bt
BBy B = — Ky, Eaby=— By B=— E.

Call w and 2/ conjugates if

~ ~ U N A
RIS PN IR O DP vy — N

Then
(16) N(@) =z’ '=a' 2= 2] + a]— 0] 2y,

Consider maximal systems of integers ' with rational coordinales
having properties C, U, N. Let « be an integer, so that N(x) and
N (@ + 1) are rational integers. By their difference, the double of the

(1) If the coeflicients are rational integers of determinant =1 (the case of
arithmetical equivalence), property U is invariant. When Lhat property is pos-
tulated, we should not conline our investigation of all possible arithmetics to a
study of a complete list of algebras no two of which are equivalent under trans-
formations of the units with rational coefficients, but study the much larger
list of algebras no two of which are equivalent under transformations with
rational integral cocfficients.
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« absolute term » .z, of 2 is a rational integer. By property ¢, ks, .,
E,.c, E,x ave integers; their absolute terms are — x|, x,, 2,. Hence
cach 22;1s a rational integer. Evidently ;= X, + @;, where X, is a

. . I rgy - .
rational integer and @;=o or -- Then v = X + @, where X 1s an

integer by property U. By C, ¢ = .« — X is an integer. Write
otz '—'-(4\\\-5--::\,-!‘:,«}\ Aj=oor 1.

By N(), A} + A} and A+ A} diller by a multiple of 4, whilé each
sum is o, I, or 2; hence they are equal. Thus the only scts of values
are

a7) (Ao Ny Ay Ay = tecoo,0) (olno),
(o.y001)0 (1oo,1.0),

(l:"a‘“l)* (1, 1,10).

An cvident system | of integers salisfving our assumptions is
composed ofall the numbers X whose four coordinates are all rational
integers. \We shall examine the systems obtained by annexinyg to |
one or move of the five numbers « 5 o corresponding to the sets (17)
other than the first set.

I"irst, annex the ¢ corresponding to either the second or fifth
set (17), viz.,

e U e 1 )
(18) o= = {1, =+ 1, €3 (v=+ By

Since ¢, I, = ¢y, e,E,=¢,, the enlarged system contains both ¢,
and ¢, by propecty C. If we annex also the @ corresponding to either
the thivd or fourth set (1), viz.,

N DIV P IR
(o) ey :(l‘-l”-“ ), y= S (1 K.,
. - ‘. c‘ )I — )' o l, — )'
we annex both, since I, ¢} = ¢}, B el =¢|.

But

. - 1 N
eyte— E,= :(1 + 1)
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| § . . .
has the norm -, and wedo not obtain a system salisfying our

assumptions. Hence the only possible maximal systems ave I, the
system S, obtained by annexing the pair (18) to I, and the system S,
obtained by annexing the pair (19) to I. For, the a corresponding Lo
the sixth set (17) is equal to ¢, + ¢, and to ¢, + ¢, and hence is in
both S, and S,.

The system S, contains (18) and all the I5,, and Lence also
1 12}
i . . . . .
(20) e, == :(l-—l&a):(';p— K, c'z:;(l‘,g—hl):('l———]‘,,.

Conversely, from (18) and (20) we obtain by additions and subtrac-
tions the three E; and 1. The multiplication table of the ¢, is given
by (3). Hence the system S, is composed of the linear combinations
of the ¢; with rational integral coefficients, and has properties C,
U, M. While we may deduce the new norm (rom (16) by expressing
the old coordinates x; in terms of the new, we obtain it directly
from the next remark. The velations (3) are all satisfied by the ma-
trices (') (1). Then w == X:ux;e; becomes the matrix (2), whose deter-
minanl &, 2, — @2, is N(x) bv (4), and is a rational integer when x
isin S,. Thus S, has the propertics C, t , N, M.

Also S, has the same properties since it is derived from S, by
interchanging ¢, and ¢, and changing the sign of ¢,, and this trans-
formation of units leaves unaltered the multiplication table (3).

Tucoren XIL. — Algebra (15) contains exactly two inaximal
sets S, and S, of inlegers having properties C, U, N, and each s
equivalent (under rational transformation of the units) to the
arithmetic of 2-rowed square matrices with rational integral
elements.

We proved above that the algebra of matrices with rational ele-
ments has a single maximal set S’ of integers having properties C,
U, R (and hence N). When we transform the algebra (15) into the.

(') But by no other 2-rowed square matrices apart {rom the interchange of
those covresponding to ¢, and ¢, as well as those corresponding to e, and ¢,,
such interchanges leaving unaltered the set of equations (3). ‘
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matric algebra by the rational ‘transformation (18) and (20), we
thereby trausform S, into S, and S, into the system of matrices

I 1
Xg o =y 22y, 20+ s RN
(21)

U,
\ - \1'2, A ""("
N 2

1
;.2'3

in which ., 2, @, x, range independeuntly over all rational
integers. This system of matrices (21) does not contain ¢,. It has
properties G, N, M, U7, but not U.

In view of Theorem X and our transformation of units, algebra (15)
has an infinitude of maximal systéms having properties C, U, R, and
hence composed of integers uccording to the definition adopted in this
memoir. By the formula above Theorem X, such svstems include
that formed of the linear combinations of 1, £'e,, KL,, e; with
rational integral coefficients, wherve A is any fixed rational number =£o.

The value of the provisional assumption U lies in its help in
detecting at least one maximal system according to our definition
(with U, and not /), and morcover one having the pleasing pro-
perty U, as well as uniqueness of factorization into primes, which
recommend its selection in preference to all other maximal systems
as the system ol integers of the algebra in its initial units.

V7. Integral Quaternions. — 1f x is in a maximal system of qua-
ternions with rational coordinates having properties G, U, N, we find
at once that only the first and last cases (17) exist, so that the four
coordinates of  are either all rational integers or all halves of odd

integers. Hence .« is a linear combination of

[S

(22) pr= (ki ) gk, '

with rational integral coeflicients. The squares and products of the
numbers (22) arc equal to such linear combinations of (22).

Tueores XII. — The wunique maximal system of quaternions
with rational coordinates having propertics G, U, N is composcd of
all quaternions whose four coordinates are either all rational
integers or all halves of odd tneegers.
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A like conclusion was reached by Hurwitz for quaternions having
properties C, U7, B, as required by his definition of integers. llis proof
is much longer and more difticult then the ahove proof.

According to the definition of integer in this memoir, there is at
least one maximal system of integral quaternions, viz., the system of
Hurwitz, and its numbers would -naturally be chosen as our integral
quaternions in view of their admirable properties as to factorization
into prime quaternions.

18. General Theory. — We shall now give a complete theory of
mtegers in any linear associalive algebra, Lhe coordinales of whose
numbers range over all complex numbers. There are two categories
of such algebras. For any algebra of the first category we may intro-
duce new units €,y v.y 4y 74y -.oy Ty such that (1)

aQ
H

9 g - [P oy g —— N .
;==& 5= Mg, 0o 3= "Mies NpTi6 == = g5tlizs

while all {urther products are zcro. Here v, 4, and v, are ol charac-
ters (¢, j), (7, 1) and (¢,1); while in the summation, >3, = > 0.
For the general number

S= ) AL XpE Y e Vi line

we have ¢(w) = lI(.r; — w)"i. Since R(w) is a divisor of the latter,
the maximal system of integers is composed of all the numbers =
in which the &; are rational integers and the y; are rational. We rea-
dily prove that w= 1+ Xa;r; is a unit if the a; arc any rational
numbers. For,

u(1—ayn))=1—aint - L=1+ aeny- b,

where ; is a linear function of v;, 7.4, ..., With rational coeflicients.
Similarly,

(Vb @i+ 1) (10— oty =1 — atyni + =1+ auas+ L,
(U @i+ ) (L — @33 =1+ ay, iy + 6.

(*) K. Cartax,Annales de la Fac. Sc. de Toulouse, 1,12, 18y8, B.33; Dicksox,
Linear :llgebras, p. 4.
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We finally veach a product equal to 1. Hence
ne =1, r=(—ayn)) L — ) (t—agn). .o =1+ 3b;n;,

wheve each #; is rational. Thus ¢ is an integer, and « and ¢ arc units.

Ifx,, ..., ®, are given rational integers each 4 o and y,, ..., y; are
any ralional numbers, 3 = X.¢;+ Sy, 7, 1s associated with Xz 1. 2,
there exists a anit ¢ such that z¢ = Y., For, if « is the unit

wzm -4 St yp g,

Suig;u = 3. As shown above, there cxists a unit ¢ such that «v =1.
Hence the arithmetic of any algebra of the first category is asso-
ciated (§ 13) with the arithmetic of the algebra which is the direct
sum (&) + ...+ (&)

‘The units of an algebra of the second category (') fall into sets,
each corresponding to a unit of an algebra of the first calegory, and
having the mulliplication table

Vo e i P E b I S DTV R \
€238y = Cuyp Cxy Mgy = Nyes f‘:’i*; Col = T35 Ny4 Mgy —'Z Joot fyy
(T>p.v>0),

where the superscripts do not denote powers, the ¥'s ave constants,
and all further products of the ¢ and n arc zero.
Consider any number = of the algebra. Then

> 4 y
=, N } 2k ek Y= \, ye, e, .
. PANEN AR v PR B

N [

b v

The right-hand characteristic determinant s(w) of = is known to be a
product of powers of the detcrminants

.....................

.-z:l’,'l .l';,ig P -I',',,»,,»— (]

which involve no coordinate of y. Hence z is an integer if and only

(') Garran, loc. cit., B, 515 Dicksox, loc. cit., p. B4.
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if .z is an integer, Lhe
AR

coordinates of y being arbitrary rational num-
bers. Consider

l .
— - d v
v=1+ ¥ g Ting

m s
Then

cu=a+ N & af, g
W 2B 7Y
4

P

%
[N

bl

will reduce to @ -+ y il and only if
N 2 . =
g 2 T8 =g

2

(for all o, A, 3).

Tlere & and A cach take the same values 1, ..., p;. The determinant of

the coeflicients of afy, ..., @4 is D, (0), which is not zero if N(x) 0.
Then the equations uniquely determine the a.

The prool that « is a unit is similarv to that above :

o2
.
1. .1 —_— “ .
u <| — Eadg N34 ) =1 +}-| bz}‘3 o
' a4 x. 8
whose product by
1 ""/~ b&ﬁ 'ﬂaﬁ
1S
253
N ?
["'2‘ Cag Mg
‘ x.

............

We finally reach a product equal to ¥. Hence we ==t for

Iy

2 O Q SN\ [ ©
T 1—2‘ a,"g‘r,g‘(ﬁ) (1—}_‘ b§3nii’j)(l—-2‘
%8 B

\,
Gy pl
Ci8 ‘033). ..
i as %3

— N P D

=1+ >_, Sl
sad

where the ¢ are rational. Thus ¢ is an integer, and « and ¢ are units.

Then xu ==

=3

gives 3¢ ==.r. Thus every number = whose norm is not
zero is associated with ils 2 component.

These & components are known to be ‘the numbers of the algebra
which is the direct sum of several geneval matric algebras (§ 13).
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Applying Theorems VI and XI, and noting that our conclusion applies
also to algebras of the first category, we obtain

Tuonen XIV. — The arithmetic of any linear associaticve algebra
the coordinates of whose numbers range over all complex numbers
is assoctated with the arithmetic of a direct sum of algebras cach
with ¢ single unit. Any number whose norm is not sero decomposes
tnto primes uniquely.

We thevelore obtain only trivial arithmetics from algebras the
coordinates of whose numbers range over the ficld of all complex
numbers. If we restrict the coordinates and the coeflicients of the
teansformations of the units to the field of real numbers, we obtain
algebras in addition to those just investigated (for example, real qua-
ternions) and now obtain arithmetics which are not trivial. If we
cmploy the lield of rational numbers, we obtain still further algebras
and a rich variety ol arithmetics, which will form the subject of
the book cited in § 20.

19. The Integers of Cayley's Algebra. — We employ the four
(quaternion units 1, 7, J, A as well as the new units
¢ = ¢, le=¢;, [fe=e, e =e-,

Any lincar combination of these 8 basal units may be designated
by = ¢ + Qe, where

(23) = &gt 2 A2 h Q=03+ 258 + 2o+ a: b

are quaternions. lnstead of cmploying Cayley’s multiplication table
for these 8 units, it is far simpler to use the condensed law of multi-
plication

(21) (g+Qe)(r+ Re)y=1+Te. t=qgr—NRQ, T=RKg+Qr,

found by the writer (*), who also discovered that both right-hand
and left-hand division, except by zero, is always uniquely possible.

(') wekson, Linear Algebras, p. 1.

Journ, de Math., tome Il. — Fasc. 111, 1g23, 42
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Here 7' denotes the (uaternion conjugate to 7 (§3). Unlike all the
earlier algebras in this memoir, the present algebras is not asso-
ciative.

As a special case of (24), the product of x by ¢'—Qe¢ in cither

order is
qq’ + QO =) +. .+ 22,

which is the norm N(x) of ., since it is the constant term of the qua-
dratic equation satisfied by . We have

N(xy)= N()N(»).

We shall determine all maximal sets of integers w with rational
coordinates having properties C, U, N.

With «, also ¢ + 1,2 + 7, ..., « + ¢;, arc integers. From their
norms we subtract N(«) and conclude that 2., 41, ..., 22, -+ 1, are
all vational integers. Hence .

.z-,—_—%,.\’, (=0, ., 7)),
,

where each \, is a rational integer. Since N(x) is a rational integer,
X/ is divisible by 4. According as X, is even or odd, X} has the
remainder o or 1 when divided by 4. ilence the number of odd X,
15 0, 4 or 8. In the first and third cases, ¢ and Q are Hurwitz’s integral
quaternions. By annexing e to all such quaternions, we obtain a
system 11 containing our «x, and forming a part of the larger system
(30) obtained below. ‘

Hence let exactly four of the eight coordinates of =g + Qe be
halves of odd integers, the four not being those of ¢, nor those of Q
(otherwise « isin H). If threc of those four are in one of ¢, Q, and
hence the fourth in the other, then, by employing .z ¢ instead of x if
necessary, we may assume that three are in Q and one in ¢. After
multiplying z on the left by 1, £, j, or k, we may assume that x, is
half an odd integer, while x,, x., x, arc rational integers. Subtracting
trom . a quaternion with rational integral coordinates, we get
% +Q,e. Its product by 1+ 7 is i)(r + 1)+ Q, ¢, which falls under the

next case.
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Next, let exactly two of the coordinates of ¢ and two of those of (¥
be halves of odd integers. After multiplying .« on the left by 1, 4, j,
or k, we may take wx, as half an odd integer. Since the multiplication
table (7) of quaternions is unaltered by a cyclic permutation of7, j, &,
we may treat only one ol three analogous cases (and at the end of our
discussion draw simila® conclusions for the two omitted cases), and
hence assume here that ., is half an odd integer, while @, and x, are
rational integers. Then by subtracting a quaternion with rational

. . t . . e
integral coordinates, we get ¢ = - (1 + ). Since

Lo 4-1=(q-1-+(Q0)e, fy+1=q,

we may replace () by Qi without disturbing ¢. Hence if either .,
or ., of () is half an odd integer, we may take x, to be that one. Afier
subtracting Re, where R is a quaternion with rational integral coor-
dinates, we have the cases

(23)  Q=:(0), () S k),  S( k),

v

IS

We shall reduce these cases to the second, for which a is

(26) ’ "==‘—‘,(|+i)~}-‘l)(|+,/)v.

whence

(t+ 4= _-')(l—{-i—%—j— kY + ge,
so that the set contains

1 . N
(27) p=;(l+t+‘/+/~')»

and hence all of Hurwitz's integral quaternions. We shall assume that
the latter occur in our set in all cases.
Ifor the first case (25), v is

L= E((-f—i) “+ %(1 “+ e,
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Then

(pe)l.= %(—— 1— /) -+ E(l + Me.

Apply the cyelic permutation (¢A ) and to the result add 1 +/; we
get Z. In the third case (25), replace j by — &, and & by j (so that
the multiplication table of quaternion units is unaltered); we get the
second casg (25). In the fourth case (25), we add

%(l-&-i—j—/")e.

which belongs to our set by hypothesis, and get the first case (25).
Hence all cases have now been reduced to (26).
Since the set contains Z, it contains

el =w= 1)(—!+j)+%(l——i)e, (pe)l=¢= %(——1——/.‘) + %(1 + Iye.

Adding 1+ te to «w, and 1+ A to ¢, we get

(28) \V=%(x+j)+ :;(r+i)e‘ V= (|+/r)+%(1—+—/.‘)e.

1

2
The followings 8 numbers

(29) i jy koo, e W, Z, V

are evidently linearly independent. In view of 2 W, 27, 2V, 25, we
may express e, je, ke, 1 as linear functions of the numbers (29) with
rational integral coeflicients. Note also that

pe=%—W+Vie—1—i— 4k

Hence all of the numbers previously mentioned as belonging to our
system of integers are lincar functions of the cight in (2g9) with
rational integral coefficients. It can be verified that this is true also of
the product of any two of the numbers (29). llence the system of
numbers .

(30) | &= 2p+ o+ vy +ay b+ ae + 0, W+ ol + 2,V

{ (L'gy +-., 25 rational integers)
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has the properties U and C. It has the property N, since

B ! . 4 i L . f 1 1
(J l) £ = ; (vl'“ 4 Lyt Ly +J’7) -+~ ktl'l ~t- SJ,'U -+ ;.‘l ﬁ)t ~- (-ﬁl‘g -+ -—a P g(l‘.‘;,)_l

1 T X 1
-+ <,l'3 + et _—;.z‘7> b+ [.1'., + = (X5 -+ &g+ .r:)J e

T TR 1
+ —xyie + —a, e+ —a- ke,
2 g M 9

the sum of the squares of whose eight components is the rational
integer ‘
N(w)zm a2 4ok a0y (@ + 2y + 2y T+ 2+ ;)
2 (@ b ) O T A a0 Tl T T A Ty T 2

If we make any enlargement of thissystem (30), we obtain a system
not having properties U, G, N. For, let us annex u = ¢ + Qe, four
of whose coordinates are rational integers, while four arve the halves
of odd integers. Iirst, let two of the latter be coordinates of ¢ and
two of (). This will be true also of u, iu, ju, ku, in one of which =,
is half an odd integer. After subtracting Re, where R has rational
coordinates, we may take

1 1 1
) —— 3 - ), - Y.
Q 2(l+l), 2(1—*—], or g(1+ﬁ)

In the respective cases, we subtract W, Z, or V from u and get a
number lacking e and hence a quaternion 7. If r is in Hurwitz's
arithmetic, r is in our system (30), and we have caused no enlargement
by annexing «. Hence 1 is not in llurwitz's arithmetic and therefore
enlarges it to a system of quaternions not having properties U, C, N
($17).

I*inally, let exactly threc of the coordinates of () and one of ¢ be
halves of odd integers (the reverse case reducing to this after multi-

plication by ¢). As above we may assume that ¢ = _';, while three of
the coordinates of () are i) and the fourth is zero. Subltracting ge, we

1 1 .. . I
get — — —le, where =1, i, j, or . But the norm is now ~ and not

a rational integer. Hence our system is a maximal.
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Turonem XV. — The only mazimal systems of integers of Cayley's
algebra having properties C, U, N are (30) and the two systems
obtained from it by cyclic permatations of i, j, k.

For the system (30) there are exactly 20 units :

sl R el */, =Lk, e, Ao de, * /e, t= e,

v, c
o= :(I’:Iilf"i_/j: Ly, ue.

'-;(i 1oz y) -+ '.l-z(:t Ltk e, i(:i*: 127) -+ :l-».(:i""/:t ke,
%(T_lii)-{—g(ﬂ:l:‘;_/‘)(f‘ 5(.’.’:\:&()%— ;(::h (= h)e.
(L) + S (E e h)e SCEER - SR e,
é(:':ii/.')—i—é(:‘:::b ie. i(ri::@ - %(tjt/“)c’.
S(EfER S (EIE e, SRR+ (R e,
é(i(i‘._/’)-i—i(:*:xi/.‘)e, S(EIE) (R

There are many ways to express 2 as the product of an integer /
by its conjugate : f=1 -+ 7, or a number with any two coordinatex
= 1 and the others zero; f=p—+ ¢, for gin (27), or a number with

3 . { ]
any four coordinates == ., onc =1, and three zero; f=¢ -+ Qr,

where ¢ and () are both of the form

Note that

(1+i)o=p--pe, a:%(l—%j)—l—%(l%—./.‘)e,
T(1+i)=p+pe, = %(l+ k) fl;(‘.'*"j)e\

where 7 is a unit, but  is not an integer (30). Thus g + pe is the pro-
duct of 1 + 7 on the left by a unit, but not on the right. Again

k= e }= —') (v=+J)+ »l) (1 —{)e = unit.
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But 1t would be very laborious to prove that two integers of the same
norm are not associates if we permit unit factors both on the right
and left simultaneously.

Il & is a given integer (30), we can find an integer ¢ of the same
form (30) such that

m?,

X3

N(g-—mq):

Fa

where n¢ is any given positive rational integer. When @ and 6 are any
given integers, we can find integers ¢ and ¢ such that '

NP B,
a=qb-- ¢, N()F s N
f
Take (') g =ab, m = 0b, and wrile ¢ for @ -- ¢ b, \We readily verify

by (24) that (gb)h = gue, although the associative law usually fails
here. Thus

1

<

g—gm={(a—qh)b=1<cl, N((.’)N(-/;): ms,

FaN]

For integral quaternions, Hurwitz proved similarly that
N(g—maqg)<<m?, a=by+c, N(c) < N(b),

and hence established the existence of a right-hand greatest common
divisor of @ and /. Since we are unable to prove its existence for our
integers (30), we have no valid rcason to prefer the system (30), or
one of ils Lwo equivalents, to other maximal systems (il such exist)
having properties G, U, N, M.

20. Ouwtlook. — We investigated above the integers of the classic
canonical algebras to which any algebra in 2, 3, or 4 basal units can
be reduced by a linear transformation with real coefficicnts. 1f we
restrict attention to transformations with rational coefficients, we'
obtain a much larger list of canonical algebras. The arithmetic of the

(") Wh=r--Re, we weite & for ' — Re, where 7 is the conjugate of the
quaternion 7.
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new algebras not in the (ormer list will have new types of properties.
In particular, we may now secure unique factorization into primes,
only after the introduction of ideals. This becomes evident if we recall
that an algebraic number field of degree 1 is a special type of linear
algebra in n basal units. This more general theory of hypercomplex
integers will be presented in the author’s book, Al«rcbras _and Their
Ar uhmeucs, in course of publication by the Umve;‘sn\ty of. G
Press.




