
E.-J. WILCZYNSKI
Differential Properties of Functions of a Complex Variable which
are Invariant under Linear Transformations; part I
Journal de mathématiques pures et appliquées 9e série, tome 1 (1922), p. 393-435.
<http://www.numdam.org/item?id=JMPA_1922_9_1__393_0>

Article numérisé dans le cadre du programme
Gallica de la Bibliothèque nationale de France

http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pôle associé BnF/Mathdoc

http:// www.numdam.org/ journals/ JMPA

http://www.numdam.org/item?id=JMPA_1922_9_1__393_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA


DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 3q3 

Differential Properties of Functions of a Complex Variable 
which are Invariant under Linear Transformations; 

BY E.-J. WILCZYNSKI. 

PART I(1>. 

INTRODUCTION. 

[f sx' = /(;) is a function of the complex variable z, other functions 
may be obtained from it by subjecting^, or w, or both variables to 
linear transformations. Clearly there will exist properties which are 
left unchanged by all such linear transformations, and it is evident 
that such properties are likely to be of considerable interest. It is the 
purpose of the present paper to show that this is actually the case. 

In the first eleven articles we consider linear transformations of the 
independent variable only. Thus a given function iv=f(s) gives 
rise to a three-parameter family of functions 

<■> MHtS =*=>· 
where α, β, γ, δ are arbitrary constants. It is quite evident that many 
of the most important properties of the function f(z) are left un-
changed by such linear transformations. If w is uniform, so is mp; to 
every singular point of w will correspond one of w\ the cross-ratio 
of four singular points, or of four zeros of the function will be 

(') La seconde partie du présent Mémoire paraîtra dans le premier fascicule 
du Journal, en 19*^3. 
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preserved; elc. Moreover, we may look upon the investigation of 
those properties which all of the functions (1) have in common, as an 
extension of the theory of invariants of an algebraic binary form to 
the case of transcendental forms or functions. 

Let us denote the independent variable by Z, and let 

() iv — /('/,) — rt0H~ «ι( / — ζ) -]- α.>(/ — s)2 -+-,.. 

be the expansion of /"(Z) in the neighborhood of Ζ = ζ. Those func-
tions of the coefficients a0, a,, ... which are left invariant by all 
transformations of the three parameter group 

/2\ V + β 

are railed invariants. Since these invariants may be regarded as func-

tions of w, -> etc., and since their values change with we 

speak of them more specifically as differential invariants. Several 
complete systems of such invariants are obtained in Art. 1. In Art. 2 
we introduce the notion of integral invariant. The most important 
integral invariant is 

(·Ό φ =yV;«',5; dz, 

where 

( a ) »ν·, — , 

is the Schwarzian derivative of vr with respect to The most impor 
tant differential invariant is 

(6) 6
=

Vl^£l. 

It turns out that, from our point of view, an analytic function is essen-
tially determined when the relation between 0 and φ is given. We 
speak of this relation as the intrinsic equation of the function 
π· =/(;). The actual determination of a function whose intrinsic 
equation is given, requires the integration of a linear differential 
equation of the second order, and may be reduced to the solution of 
an integral equation with a skew-symctric kernel. 
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In Art. 4 we introduce rational osculating functions of various 
orders, a notion very closely related to certain investigations due to 
Frobenius and Padé. The relations which exist between the poles of 
these functions, and also between their zeros, are very simple and 
elegant and seem to appear here for the Jirst time. The osculating 
logarithm, introduced in Art. 5, serves to round out this theory in an 
essential fashion, and gives rise to further simple geometrical results. 
The osculating logarithm plays an essential role on account of the 
fact that every logarithmic function has an intrinsic equation of the 
form 0 = constant. 

The poles and zeros of the osculating rational functions and the 
singularities of the osculating logarithm are functions of the position 
of the point ζ at which the osculation takes place. If ζ is subjected to 
a linear transformation, each of these points is transformed by the 
same linear transformation, and we therefore speak of these points as 
cogradients. Special classes of functions may be defined by means of 
prescribed relations between certain ones of these cogredienls. Nu-
merous illustrations of this method are worked out in detail in 
Arts. 9, 10 and 11. One of the most interesting results obtained in 
this way is a new property of certain elliptic functions. Let 

w / ν l - ) — η ι n _ , ι> _ > ' 

be the rational quadratic function which osculates w = F(Z ) at Ζ = ζ, 
and let q, and q

a
 be its poles. Let τ be the harmonic conjugate of z

f 

the point of contact, with respect to q, and q.2. Then τ is the point 
which we call the quadratic satellite of r. We ask the question ; what 
functions are those for which τ is a fixed point? It is evident that this 
will be so whenever F(Z) is a quadratic function with coincident 
poles. But there is another case when τ is a fixed point; namely, 
when w = F(Z) may be obtained by linear transformation from a 
Weierstrass ζ -function for which the invariant »·., has the value zero, 
so that the cross-ratio of the branch points of the corresponding 
Riemann surface is equi-anharmonic. 

The general expressions of the cogredients enable us to write down 
several new formulae which are valid for any analytic function. Each 
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of these formulae gives an expression for w = /(-) in the form of an 
integral whose integrand depens upon one or several of the cogre-
dients. These formulae admit iteration and are likely to he very 
useful in a large number of investigations. Similar expressions have 
also been found for the integral invariant φ, the most important one 
in terms of the singularities of the osculating logarithm. These for 
mulae for φ are developed in Art. 7. But we also give, in Art. 7, an 
independent definition of φ which is of still greater interest, because 
this definition is formulated entirely in terms of notions which remain 
invariant under linear transformations, and by means of a limit process 
which is the multiplicative analogon of the process used for defining 
a definite integral. 

In Art. 8 we introduce the integral invariant φ as a new indepen-
dent variable. Thus from vv we have 

s, — o — yv'pv, 3; dz. 

If we introduce z
{
 = φ as independent variable, <r becomes a function 

of zn
 and we may put 

=2= yVi =» '·
 rf=

i· 

We may now introduce r
a
 as independent variable and continue in 

this way. The resulting relations between the Schwarzian derivatives 
..., jw,5A.j ta've form of continued fractions of a 
very simple and remarkable form. Λ number of new problems present 
themselves at once; in what cases will these continued fractions ter-
minate? when will they he periodic? if they do not terminate, and k 
is allowed to grow beyond hound, will they converge? We have 
actually solved some of the simplest of those problems; but here, as 
elsewhere in this memoir, the new problems are too numérous and 
too far-reaching to make an immediate solution of all, or even of many 
of them, a possible undertaking. 

In Art. 12 we enlarge our group by considering independent 
linear transformations of both dependent and independent variables. 
The corresponding invariant combinations are called hyper invariants. 
The integral invariant φ retains its invariantive property even under 
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the enlarged group. The simplest differential hyperinvariant, denoted 
by I, is of the lifth order. The relation between I and 0, called the 
hyperintrinsic equation, defines a function w=/(-) except for 
linear transformations of both variables. The simplest hyperintrinsic 
equation, namely I = const., delines the power functions 

aw 4- b / α c 4- β \ '* 

where α, />, c, d, α, (3, γ, δ, and r are constants. The problem imme-
diately presents itself to determine a power function of this form 
which shall have the closest possible contact with a given analytic 
function at a given point. This problem is solved completely in Art. 13, 
and leads again to interesting geometric relations between the singu-
larities of the osculating power function and the singularities of other 
osculants which have been introduced before. 

We have presented in this introduction only a few of the most 
striking features of this new theory, just enough to indicate the 
general point of view. And even in the body of the paper we have 
purposely refrained at many points from developing the theory more 
in detail, because it was our desire to obtain merely a first general 
outlook over this new territory. There remains much to be done. 

I. — The differential invariants of a function 
of a complex variable. 

Let w=/(z) be a function of the complex variable 3 defined, in 
the neighborhood of the origin, by means of its Taylor expansion 

(1) w — /"( £ ) — a 0 4- a ! c a * 4-. .. 4- αι·ζ^ 4-·.. · 

If we transform the independent variable by putting 

( 2 ) γ· —
 a~ ^, ad — bcyé. ο, 

where «, b, c, d are arbitrary constants, w becomes a function/(3) 

of s and to properties of the function /(*) in the neighborhood of 
5 = 0 will correspond properties of the transformed function /(-) 
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in the neighborhood of ζ = Let us assume άφ ο and put ^ = K. 
We may then write (2) in the form 

ζ — Κ = ) 
or 

(3) 3=Γ^' = 

ifc? = o, the transformation (2) may also be reduced to the same 

form (3) provided that 3, in that case be interpreted to mean as is 

customary. 
As a result of the substitution (3) the series (1) will become a power 

series in 3,, where 3, is eiter equal to 3 — Ko/'-i· We proceed to 

determine the coefficients of this new expansion. We find from (3) 

(4) 5*^ I. + /■?;,+ /(/^n '-■■■ ■ 

If we substitute these values for zk in (1) and denote by a
s
 the coeffi-

cient of 3* we find 

(0) rt0=a0. "s—>i ( v/.yi <(h y.h$> L [s 1 3,...). 

The following special cases of (5) are especially important 

(6) Οχ—αα-ι, α(«.,α r/, β), αΆ= ν·\a3a--h ·.».flrâa(3 -+- α, β8]. 

By an absolute invariant of the function f(z) under the transfor-
mations of the group (2) or (3) we mean a function of the coefficients 
α

0
, α,, a

2
, which, as a result of the relations (0), is identically 

equal to the corresponding function of α
0

, a
n
 a», Evidently a

{)
 is 

such an invariant. In order to find the others we might use the method 
of infinitesimal transformations. Thus (3) represents an infinitesimal 
transformation if we put 

α = ιΗ-λο/. β~μόί. 

where St is an infinitesimal. The corresponding infinitesimal trans-
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formations of the coefficients are given by 

(7) àaA.= [Αγί*λ + (A — ι)rtA._aμ.]β/, / > ο. 

Therefore every absolute invariant must be a. solution of the two 
di/ferenti a I equations 

^ ZLka*-sr = 0> 2.(/'-l)ai-à^ = 0· 

The first of these two equations is easy to interpret. Lotus attribute 
to ak the weight k

y
 and let us agree that the weight of a product shall 

be the sum of the weights of it factors. Then, the first equation (8) 
merely asserts that every absolute invariant is isobaric of weight 
zero. We may therefore find the invariants by constructing isobaric 
functions of a given weight p, in such a way as to also satisfy the 
second equation of (8), and then divide by a\. Isobaric functions of 
weight different from zero, which also satisfy the second equation 
of (8), shall be called relative invariants. 

But it is easier to obtain a complets set of invariants by a different 
process. Let us assume a

t
 φ ο. We may then according to (6) deter-

mine α and β in a unique fashion so as to make «, = 1, a., = o, namely 
by putting 

(9) (X.— —, β =——. 

We obtain in this way the canonical expansion (of the first kind) 

(10) tï' — / ( j) = Ao + Z[ ~\r À3 -+- Λ* + . . . 

where, on account of (5), ((>), and (9), 

1 Ao— flfo* ^*-3 \ > 

— Uia3 s/az—axa 3 

Another canonical form (the second kind) is obtained by putting 

(li) «—-==, t5 — /——= * 

Journ. de Math., tome I. — Fuse. IV, 19a a. 5i 
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Tlie resulting' expansion is characterized by the relations 

C/, -H <7;1 = <>. ro — o. 

This form is very useful. 
We shall discuss the convergence of(io) later. At present we only 

wish to emphasize the fact that this canonical expansion (10) is 
unique. Τ liât is, to every series of the form (i), in which a, is not 
equal to zero, there corresponds a uniquely defined canonical expan-
sion of form (10). From this it follows that i/ie coe fficients of the 
canonical expansion arc absolute invariants of f{z). 

In fact, suppose we consider any function 

• ·?) — -+- b
(
 ζ -4- b.> v1 +·. . ., b\o, 

obtainable from/(:?) by a transformation of form (2). By means of 
the transformation 

·:_ Tx51 

g{~-) would be transformed into its canonical form 

( t\ ) Β<> -Ι- -ι Β,ί 4-. . .. 

where B„, B
3l

 etc., arc related to b
{))
 b

n
 b«, ... in the same way as 

are A
(t
,A.,,..., to a

0J
 a

n
 a* But the expansions (10) and (i4) 

must he identical on account of the uniqueness of the canonical form, 
so thai 

lb- Λ,, 

showing that A
0

, A
a

, A.
4
, ... are actually absolute invariants. It is not 

difficult, moreover, to verify this fact by applying the infinitesimal 
transformations(7) to the expression (11) for A,. For we find $A

S
= o, 

which again proves that A, is an invariant. 
The invariants A

0
, Λ

;1
, A,, ..., A,

s
,, ... are independent functions 

of the coefficients a9faiya.i — For, taken in this order, each of 
the invariants involves a coefficient a

s
 wich does not appear in any of 

the earlier invariants. 
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Every absolute invariant is a function of A
0

, A,, A,, .... — For, 
let I(«

0
, a

n
 α

2
, a

;t
, ...) be an absolute invariant. Then we shall have 

(i5) l(a
0

, au α2) α
Ά
, ...) = I(a0, «,, «·», σ3, · · ·» 

whenever «
0

, aiy a.,
f
 ... are connected with α0, an a2, ... by means of 

the relations (5). In particular, (i5) will be verified if we choose the 
values (9) for α and β, as a result of which choice, the expansion 
assumes its canonical form. Therefore we shall have 

I(tf0, «ι, a.,, α„ ...) = I(A
0

, ι, ο, A 3, A;, ...) 

showing that I is a function of A0, A.,, A,, ... as stated. 
We may summarize our last three theorems by saying, that (he 

invariants A
0

, A
;t
, A.,, ...form a complete system of independent 

absolute invariants whenever «, is not equal to zero. 
We shall ordinarily maintain the hypothesis a

{
 φ ο. If a

t
 is equal 

to zero we study, in place of the expansion (1), the Taylor expansion 
of f(z) for some point ζ — k where k φ ο. Of course k may always be 
chosen in infinitely many ways so as to ensure that the coefficient 
of j — k in the new expansion will not be equal to zero, provided 
lhatcv is not α constant. It is possible, however, to replace the inva-
riants A

0
, A

3
, A.j, ... by a new system adapted to the case 

t7, = aâ=;. . .=r α,,-ι — ο, a,, y ο, 

by an obvious extension of the method which we have used for the 
case α, φ ο. 

Since we have 
α, — α 

«, is a relative invariant of weight 1. Consequently ct\ A
s
 is a relative 

invariant of weight s. According to (11), the last term of α* A, (corres-
ponding to t = s— 1) contains 

«!"' ~ «ΐ~2 

as a factor, and no other term of αΛ, A, contains a higher power of «, 
in its denominator. 
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Therefore a]s~~ A
s
 is a relative invariant of weight ι s— 2, which 

is an integral rational function of a,, a», ..., a
s

. Moreover this 
invariant is a linear function of a

3
, a4f

 a
s

. The only coefficients 
which appear raised to a. higher power are ά, and a2. 

For this reason we shall occasionally refer to the invariants A, as 
the linear invariants of the function /(s). It is now easy to see that 
these linear invariants form a complete system in a more specific sense 
than that mentioned above. Every absolute invariant, which is a 
rational function of the coefficients of /(-), will be a rational func-
tion of the linear invariants. 

The invariant A
3
 is of special importance. We have 

1 ( dkw\ 

so that A3 is equal to the value vvich 

1 ! »·, ζ ! 

assumes for ζ — o, if we write 

iV'—dw rfS,r 3/»r"y 

so that J w, 3 j represents the Schwarzian derivative of w with respect 
to z. 

We shall frequently think of an expansion of the function W=/(Z) 
in the neighborhood of a point z, not at the origin, where /(Z) is 
anal ν tic. 

w — y*(^) — 0 1 c ~ ^2 — C )3 H- ..., 

and we shall then write 

(l7) ak~ k\ \ drLk j
z=i

 ~ λ ! dzk ~ k\ w ' 

We may then think of α0, «,, a2, as well as w\ w\ ... as func-
tions of ζ and we shall have 

\ ' " ) Λ-3 — ϊ — 7 —/—7T5— — 7 
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where 

(l9) θ— — , 

a specific détermination of the square root being chosen in any parti-
cular case. 

Since A
3

, A,, A
;>

, ... are the coefficients of sj, z\, ... in the cano-
nical expansion, it is apparent that A,, A

:i
, ... may be obtained 

front Aa
 by repealed differentiation with respect to r,. 

But we may exhibit another and more convenient differentiation 
process which accomplishes the same purpose. If we make any linear 
transformation of the independent variable, 

{?.o) ζ = _ 1 , αο —(3y^ ο, 

we find 

(21) ,h = , 

and 

^2"' fa " dz ' dz ~~ dz aô— βy 

From our knowledge of the fact that Ga is an absolute invariant and 
from (22), we conclude 

(0$) ' ,y - ' — ' 5 : — ' tv - ■ (73 + Q)f l 

a familiar formula which may also be verified directly. 
More generally we make the following remark. If I is a relative 

invariant of weight p, the transformation (20) will transform I 
into I where 

\ds) (αά-βγ)" 

If I is an absolute invariant, we have ρ = ο, and therefore 

d[ _ d[ 
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Thus ivr may lake vr, 0, · ·. as a fundamental system of 
invariants. 

II. — Integral invariants. 

All of the invariants obtained so far are functions of the values, 
\v

t
 w', w", ..., which W == /(Z) and its derivatives assume for a given 

value s of the complex variable Z, the function/(Z) being analytic in 
the neighborhood of this point. We shall henceforth speak of these 
invariants as differential invariants. Bui equation (23) of Art. 1 
enables us to deline a new kind of invariant which we shall call an 
integral invariant of the function, liquation (ai) may be written as 
follows 

( *5) \ ! u·, ν I dz — \ ; ο·, ^ : dz, 

if the square roots are properly determined. Let us select a curve C of 
Unite length in the τ plane. This cur\e may be open or closed but it 
should be so chosen that \ j tv, ζ j is analytic in the neighorhood of 
each of its points. Les G be the curve in the ; plane obtained from C 
by the transformation (20). Then we shall ha\e 

(26) {Vx 5 ! = ;[dz. 

Thus, the value o f the integral 

(27) 9 = / v/ ; IV, 5 : dz 

remains unchanged if the independent variable and the path of 
integration are transformed simultaneously by the same linear 
transformation. 

We may express this by saying that ο is an integral invariant. More 
specifically we shall speak of ο as a simple integral invariant because 
the function under the integral sign depends only upon α·, «>', «>", — 
The integrand does not itself involve integration. 



DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 4o5 

If 1 is any absolute differential invariants the integral 

(28) j I cto ~ j I ^ 3 ; tfz-s 

Kvill be an integral invariant. Conversely
%
 if w is not a linear func-

tion of 3, any simple integral invariant may be co-pressed in this 
form. 

The truth of the direct statement is apparent. To prove the eon-
verse let 

.1 f V{Z. xvs xv'
%

 xv\ ...)(tz 

be a simple intégral invariant. If m is not a linear function of 3, the 
Schwarzian ; w, 3 ; will not be equal to zero identicalv, and we may 
introduce φ as a new independent variable in place of 3. Then J 
becomes 

·' ('·"■· '■£'■■■) **· 

Since J is invariant for all possible curves (1, we must have 

,β — </,ι. 

Since w e have also 
(to (to s 

w e litul 

dô ' ' 

wich show that ^ or log^3,tr. is an absolute differential 

invariant. 

There exists an integral invariant even simpler than o, namely j dw, 

and by an argument analogous to that just completed we can show 
that any other simple integral invariant may be expressed in tbe form 

I \dw w here I is an absolute differential invariant. In fact this form 

remains valid even il\v is a linear function of 3, provided it is not a 
constant. 
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But the absolute differential invariant of lowest order, excepting w 
itself, is 0. Therefore 

(29) f Qd\v—( 0\v'dz—f \i]i\\z[dz . 

is the simple integral invariant of lowest order, excepting only the 

integral j dw. This latter integral however is related so simply to the 

values of vv at the end points of the path of integration, that we prefer 
not to think of it as an integral at all. With this understanding we 
may claim that φ is the simplest integral invariant of κν — f(s)for 
linear transformations of the independent variable. 

HI. — The intrinsic equation. 

Let w be given as an analytic function of We put 

0 zzz - ' χ· ' , ο — f \f ; tv, ^ ; dz ~ f Qw'ds f 0 ϊΛγ, 

the square root being properly specified, and the integration being 
performed over a path C at all of whose points y | - ! is analytic. 
If we regard φ as à function of its upper limit 3, and eliminate τ, we 
obtain a relation of the form 

(3o) 0 = F( φ), 

where F is an analytic function of φ. We shall speak of (3o), which 
expresses the relation between the simplest differential and integral 
invariants of the function \v = /(;;), as the intrinsic equation 
of w = f(~<)> a terminology which corresponds to that used by Cesàro 
in his intrinsic geometry. 

The importance of this notion for our theory appears in the follo-
wing theorem. 

All functions, which can be obtained from each other by linear 
transformation of the independent variable, have the same in-
trinsic equation, Conversely^ if the intrinsic equation is given, 
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there will correspond to it infinitely many functions all of which 
may be obtained from one of the in, w—f(z), by adding a constant 
and making a linear transformation of ζ. 

The truth of the direct theorem is obvious, since 0 and <p are abso-
lute invariants for all linear transformations of 

To prove the converse we observe that 

(30 ^ =
 5
 =

 1
·»· 

so that 

(3a)
 "·=(

?
4

+ί
·· 

Consequently w is determined as a function of © except for an additive 
constant. 

From the delinition of 0 we lind 

1 u w > g» 

On the oilier hand we have 

(33) z[=- (<v'y\z, w\ (>), 

so that 

(3/,) :3,,r:=—0*-^— [Γ(®)]4. 

In the right member of this equation we may replace 0 by the func-
tion of w which results for it from (32), giving* | w[ as a known 
function of tv, say 

; v, IV ; =G(tv), 

and G(<v) will be independent of k. 
If ^ is any solution of this equation, the most general solution 

will be 

α ζ -η β 

(1) CAYLEY, Collected Mathematical Papers, vol. XI, p. i5a. 
Journ. de Math., tome I. — Kasc. IV, u>r.i. 52 
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where α, β, γ, S, are arbitrary constants. Thus if w—f(z) is one 
function which corresponds to the given intrinsic equation, 

a' = f(az + b) + k 

will be the most general function of the same kind. 
The following method of proving the same theorem is more elegant 

and leads to some further results. Since (32) furnishes an expression 
for as a m function of <p by means of a simple quadrature, we are 
naturally led to think of s also as a function of ©. Now Cayley first 
proved the formula 

(35) Κ*:=(ί^Υ|>.\:;-;*,ΛΜ] ('), 

which shows how to transform the independent variable of a 
Schwarzian. If we put s = er, χ — z> Λΐ = φ, we find 

! u\ z\ = ) u·, ; | [ j iv, φ ! — } 5, φ | ]. 

If w is not a linear function J vr, 3 J is not equal to zero, and we con-
clude 

(36) : η·, '
T ! ) "·) 9 : ' · 

We may write 

(37) : 5, © : = jtv, 9; — 1, 

and our theorem now follows immediately from the fact that (32) 
gives the right member of (37) as a known function of φ which is 
independent of A, and that all solutions r of (37) are linear functions 
of any particular solution. 

But we may actually indicate the analytic nature of this problem a 
little more closely. If 0=-F(<p) is the given intrinsic equation, we 
find from (32) 

(38) ; ,ν- φ ι =- [-35^- -l·- Ϊ (-3$-) _='· 

(1 ) Loc. cil, p. 15a. 
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where I is now a known function of o. Of course the most general 
solution of (38) is a linear function of w. 

Consider the linear homogeneous differential equation 

(39) _j«
+

I|
W

 = o, 

and let W
t

, Wa
 be two of its linearly independent solutions. Then 

^ will be a solution of (38). Conversely if w is given as function 

of φ, as in the present case, we may find W, and W>. Let φ = o
0 

be a value of φ for which I is analytic and let 

V\\,—I, — o, lor ο ~ ©0, 

! \\ â = o, = ι, lor φ ~ φ0 ; 

moreover let the constant A equation (3s) be equal to zero. 
Then there exist in the φ-plane a circle of non-vanishing radius 

around o
0

, such thai for all points in this circle 

w d\\\ ... dW, 
whence follows 

do " do \ W, J ~~ Wf1 
if we put 

,r~w,· 
and therefore 

\V, = ±-4=» 

Since we have 

do 1' ( ο ) ' 
we may write 

w,=v/K
(?

). wW» fA. 

In order to determine 3 as a function of <p, we must integrate the 
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differential equation 
js. φ î = I — I. 

Any solution of this equation may be equated to 

(4«) s = 

where Z
n Z3 are independent solutions of 

(43) + i (,-,)/.= ». 

We may write this equation in the form 

(44) £" + Ι|/,-ίχ 

and integrate it as though the right member were a known function 
of o, that is, as though (44) were a non-homogeneous linear diffe-
rential equation whose right member is given. We find in this way 
that any solution of (44) satislies the equation 

7 = c
l
W

1
4-c

s
W,+W, / -7(-\ν,)Λψ + WJ ςΖΛΥ,ί/ψ. 

where W, and W
a
 are given by (40»

 or
 ^

 we
 P

ut
 ^

1C arguments into 
evidence, 

(45) Z(9) =
 i
.',W

I
(o>)-)-

C!
\V

!
(
?

) +i Γ [\ν,(ψ)\ν
2

(ç>) — \ν,(φ)\ν.(ψ)ϊ/.(ψ)<ίψ. 

If Ζ, ααβί Za
 denote those solutions o/(43) which are defined by 

the same initial conditions (4o) which determine W, «/w/ W,, Z, 
and Ζ

3 svt7/ satisfy the two integral equations 

(46) Z*.(9) = W*(®)-|. J Γ
?

ΐ;νν,(ψ) W
a
(9) - Αν

ι
(φ)ΛΥ

2
(ψ)1Ζ,(ψ)

ί
/ψ, 

α· = ι>9) 
anrf wtj s/m// have 

Ί — + β/lf 
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as the most general expression for the independent variable ζ 
which corresponds to the given intrinsic equation. 

The common kernel of the two integral equations (7(6) may be 
written 

(•17) κ(?> ψ)~\/Ι'(ν)1,,(ψ) ^ 

so that 

(48) Κ (<p, ψ) — —■ Κ (ψ, ο). 

Therefore the kernel is skew symmetric. Thus, the general problem 
of finding the functions which correspond to a given intrinsic 
equation has been reduced to a problem in linear integral equations 
of the Vollerra type with a skew symmetric kernel. 

We shall actually determine the intrinsic equations of several 
important classes of functions later. For our present purposes it 
suffices to note a lew very simple cases. 

If s,v is a linear function of 3, but not a constant, 0 is identically 
equal lo zero. Thus, the intrinsic equation of linear functions 
is 0 = o. 

Let us consider the function 

(1 V:0, 
we unci 

\\>'—(tz"x, w"— - as-*, 
so that 

; u·, 3 ; = 
and 

o = ~-
r 

The same value of 0 w ill, of course, be obtained if we replace ^ by 
a linear function of z. 

Therefore, the intrinsic equation of functions of the form 

("9) "'=^ΙΟί;π^' 

where /c, α, β, γ, S are constants, is 0 = k o. 
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We shall henceforth speak of functions of the form (/jp) as loga-
rithm ic fit fictions. 

Finally let 
/>, ay·, o. 

where a and h are constants. We find 

; >»·, ; = — -α·, ο = — c-«-= , 

ο ~~ I 'J (tiv — 1oj>' r, 

whence 
w — (> — ( iv„ — b) c 'v- ? 

and therefore 

\/'i ( tv1,, — b ) 

Therefore, the intrinsic equation of any exponential function of 
the form 

(5o) »c — <??-* 1 '' -i- f 

where I, α, β, γ, ο arc constants, is 

cons 

where h is a constant, which may he equated to unity if the lower 
limit of the integral invariant a he selected accordingly. 

IV. — Rational osculants. 

In order to be able to interpret the invariants already found, and 
for the purpose of obtaining* still others of a more fundamental cha-
racter, we now introduce a device suggested by differential geometry. 
In the metric theory of plane curves, for instance, certain osculating* 
curves of a simple character are introduced, such as the tangent, the 
osculating* circle, etc. The properties of these osculants, and their 
relations to each other constitute the subject matter of differential 
geometry. But the kind of osculants considered in any part of diffe-
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rential geometry depends essentially upon the group of transfor-
mations which, in that branch of geometry, is regarded as funda-
mental. Thus the osculating circle plays no part in projective 
differential geometry, since a projective transformation does not, in 
general, transform a circle into a circle. 

Our present investigations are in the domain of the theory of func-
tions of a complex: variable, and we are interested in those properties 
of sucli functions which remain unchanged under any linear transfor-
mation of the independent variable. Now obviously a rational func-
tion of degree η will be transformed into another rational 
function of the same degree, by any linear transformation of the 
independent variable. 

Again, lei us consider two analytic functions 

iv, — </,, -ι- ο ι c -ι - α., -ι- .. ,-i- a/,zk'-\- -κ . 
— |0„ -f- />, C. 4- />,χ :·- -}- .. . 4- bk zk 4- 0i,+l 4-.. ., 

which are so related that 

Λ,„ fly l>\ «/<--- !>k, «Ι,+y /:'·· 

We shall sa\ that the (wo functions hace klh order contact at the 
point ζ = i). The point ; — ο may be called the point of contact. Let 
us now subject ; to any linear transformation. Lormulae (5) show 
that we shall have 

— Λ,>» «χ -- by, .... a
k

!>/., a,.,, vi Λ
Α
..
Η

. 

Consequently, the order of contact between two functions remains 
unchanged under linear transformations of the independent 
variable. 

Therefore, the following problem clearly belongs lo our field. To 
determine the rational function of degree » which has contact of 
the highest possible order with a given analytic function at a given 
point. We shall henceforth speak of this function as the osculating 
rational function of degree a. 

This problem may be solved very easily by explicit formulae. It is 
included in a more general problem studied by several mathemali-
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cians, especially by Frobenius ('), and by Padé (a), namely the follo-
wing : to determine the rational function, whose numerator is of 
degree α and whose denominator is of degree β, such that the power 
series expansion of this fraction at a specified point (say at ζ = o) 
shall agree with a given power series 

cr0-+- a! ? -1- .. 

as far as possible, that is, ordinarily to α -+- β 4- 1 terms. The fractions 
obtained in this way may be arranged in a double entry table usually 
known as Padé's table. We are only interested in those fractions of 
Padé's table for which α = β, that is, those which would be located 
normally in the principal diagonal. The reason for this is apparent. 
To specify the degrees of numerator and denominator separately is 
equivalent to the requirement that a certain number of zeros or poles 
of the rational function shall be at infinity. But in our present theory 
the point at infinity is in no way distinguished by special properties. 

The formulae of Frobenius give us immediately the following 
results. 

Given ike expansion of a function, analytic in the neighborhood 
ofz — o, 

IV — rty -l·- U\Z H- Ο Ζ ~ G k 5'' ·+· . · . · 

The osculating rational function of degree α will be 

<fa> Jr. 
where 

au a,, rta, 
,K.3\ ri, «s, «3' ···> αχζΛ-{-α0ζΛ~ι 

• · > · ' > · · · 1 . . · ., 
CTa-»-2> ···> (7a 3a sx~ '4-. . .-I-

(') Crelie's Journal, vol. 90, 18S1. 
(a) Annales scientifiques de l'Kcole Normale supérieure, 3l> strie, 1, 

vol. 9. 
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and 
«ι, 02, « . . , ·3* 

/ " f \ 11 ^2> ^31 · · · ι ^α+Ι» -v 

• . , ♦ ·) . · . ) '·· m .... 
^a-Hî ···> 1 

Moreover this rational function will actually be of degree a and in 
its lowest terms, if and only if the deter initiant 

«ι» · · · ι rta 

, WW . Λ3, . . . , «α-Μ 
. . , · M · · · > · . . · 

* · · ι ^2χ— t 

is different from zero. 
The following relation between two successive rational osculants 

should also be noted 

t-r\ TX-M la i->a-+-i5sa"t*1 /lx 

One very obvious remark may be made at once. The quantities c
a

, 
defined by (55), are relative invariants of the function w= f(z) 
under linear transformations of the independent variable. 

To prove this, let us suppose 

C 1~:°, CVj^O, ca_,^0, Ca= «. 

Then each of the osculants 

T, T, T«_, 

is actually of the degree indicated and is not réductible to a lower 
degree, but according to (56) we shall have 

-Ια 1 a-i 

In other words, the rational osculating-function of degree a, which 
has aath order contact with w, is not in its lowest terms but reduces 

(l) Frobenius, loc, cit., p. 6, équation (i6). 

Journ. de Math., tome I. — Fuse. IV, igaa. 53 
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to rp-1· That is, the osculating rational function of degree α — ι has 

not only contact of order 2(a—i) with w=f(z) but contact of 
order at least 2a; We shall say that it hyperosculates the function 
w—fiz). But hyperosculation is obviously a property invariant 
under linear transformation. The rcfore the condition ca=o is an inva-
riant equation, and c

a
 must be an invariant, as slated above. 

Since the sum of the indices in any term of the expanded determi-
nant is a2, the weight of c

a
 is equal to a % and the effect of the infi-

nitesimal trans for mat ion (7) upon c
a
 is given by 

(5-) _ a2Xca 0/. 

The direct proof of ( >7) is somewhat complicated and may be 
omitted. The invariants 

ct=ai, c.,= α{α·ά— rt;, 

have already made their appearance in Art. 1. Moreover the con-
ditions 

(58) Ca_!pi; O, C
a

—O, = Ο, ί.'ΧΗ.2=0, ... 

obviously imply that w — J\z) is a rational function of de-
gree α — 1. 

This also follows from the fact that the coefficients of the power 
scries will, in this case, possess a scale of relation. 

Of course the invariants c,, c
2

, o
;t
, ... do not form a complete 

system. For, as we advance from to two new coeflicients, <?
2(Χ 

and α
2α+ι

, arc introduced at the same time. It is easy however to 
form a complete system from these invariants by adding to them the 
invariants 

(5<>) (1Λ = αχο'χ— ûaVjCj. 

That these quantities are invariants is easily seen as follows. Since c
a 

is a relative invariant of weight a2, is an absolute invariant. The-

relbre (See Art. 1) its derivative is a relative invariant. But this deri-
vative is 

—«s«?"""'<?«α', _ < « 
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Since α, is η relative invariant, the numerator of this fraction is also a 
relative invariant; but this numerator reduces to (ί

Λ
 since 

a\ — iv
y
 rr ·.>. ^ — a Cf

â
. 

Of course the weight of d
x
 is a3+ 2. 

We can find a simple general expression for r
a
 in terms ο I 

«,, a., .... a2
x

. To do 1 his we observe in the first place that 

((>0) a\.— (λ·+ ι)«Λ. (Χ· = 0Γ I, a, ...), 

since 

+Ι)^ 

Now let us write o
a as follows 

α1,11, .... «ΐ*ΓΛ «iAl, — «'α
αι 

__ <, .... ···' Λα+ι 
• · · > '**» ' ' ' » " * * ' ) > · · · 1 · · . · 

Λ|ΙΙ ΛΤ'-' λ(Λ4-1Ι /7*^* 

where the upper indices, which indicate the column to which each 
element belongs, have been introduced merely for the sake of fixing a 
notation for the cofactors. We actually have 

~a>" 

and we shall denote by A^1 the cofactor of n£', so that 

f. V rt'UAU) — V ati\ \vsi — —V αι*ι A(*' 

Wo find 
<v I /jl') 7?'^' — " /7; I //(A-t-l I 771·5" 

/•--I 77^' 77^"^ /Y fl t ,jl Απ-Ι I jaj 

7A., ί?2, rta_t, (a + i)r/a+i 
"+■ · · ·> · · > » > 

wa> "Λ+Ρ ···» 2 « a
ia 
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0Γ 

e'a=^ [rt/k.+iA^-t- ΐβ/,+οΑ^ 4- <x(t/<+a A^e_iJ 

4- ( a 4- ι ) «χ+1A'*» 4- ( α + a ) er
a+1

 A{*h 4-... 4- a α Α
ία

 Λ < *»_!· 

Thus we have found 

c'« — at
 A'/I +2rt

3
 A!/1 4-. . .4-(a — i)aa

 A^l, +«%, AtJ' 

4-<v
:i
 A If -f-'irt.», A!,-'' — i)^.^ Aj^1 4- cco

x+:
, Aj£J., 

. . . . . 
4- a

a
 A{*7," + ·,ί «

α+1
 A'

a
a-1' 4-... 4- ( a — ι ) a2a-2 A&l'j 4- a a,

a
.
 t

 A .^V 

4- ί/α+ι Α{«' 4-2 aa+2
 A <*>, 4- ... 4- ( Λ — ι ) c

2a
_, A!«

a
>_

2
 4- a c

2a Λ$_, 

4-α[ί?α+ιΑ^α,4- 4-» 4- rt2a A!,®|_I]· 

The sum of the first a terms, in the first column 

. ·. 4- aa+i o. 

The same thing is true of the sum of the first α terms in all of the other 
columns, except the last. Consequently 

C«— α[«α-Μ A«' 4~ ax+2 A^l 4- ... 4- tfaaAf^Li J 

4- a[tfa-t-i ΑόΓ14- <ϊχ·\-> A{^t4- · · · 4- <*2* Aj^Lji 

so that we lind finally 
«ι, o.if ..., ox 

<7j, as, ·.., Λϊ+| 

(6l) <4 — 2 « ··, ··, .·., .... , 

<*α—11 <?a> »·ί aix--i 
a«H-li rta+2) ···> (,ix 

where the determinant differs from that for e
a
 only in the last row . 

The derivative of ca is obtained by increasing the index of each 

element in the last row of c
a
 by a single unit, and then multiplying 

the whole determinant by 2a. 
This formula assumes an interesting form if we remember that 

ak~ Tl ~dT* 
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As a result of formula (61) we may regard the invariants as being 
known in terms of the coefficients α,, a2, ..., à2a, in the form of sums 
of two determinants. 

The direct proof of (5j), which has been omitted, may be based 
upon a calculation very similar to the one just completed. 

We proceed now to study the distribution of the poles and zéros of 

these rational osculants. The osculating linear function is jj-> where 

rp ^ 1 » «0 »· j· γ Ct 1 ) 

Therefore we lind tlie formulae 

(62) P=— » e = r, » 

where ρ is the pole, and e the zero of the oscillating linear func-
tion. 

The expression for the osculating quadratic function depends upon 
α

0
, α,, a2, a3

 and aIf, in this expression, we replace a, by an arbi-
trary parameter λ, we obtain a one-parameter family of quadratic 
functions each of which will have third order contact with the function 
tv = f(z) at ; = o. We shall speak of these quadratic functions as 
penosculaling quadratics. The osculating quadratic is that penoscu-
lating quadratic lor which λ has the value as. 

The denominator of the general penosculating quadratic is 

«, z-
(63) α, ο a ζ — O-e-i— «^).c2-+· {a»az—λίϊ|):+·«,<7;ι —λ;. 

«3 λ ι 

Since its coefficients are linear functions of λ, there will exist in 
general two values of λ, call them λ, and λ

2
, for which the linear 

factors of (63) will become identical. These values of λ are given by 

(64) ^ j = gi aj(aal — 3a,a
a
)± «,a

a
)sJ . 

Those penosculating quadratics which correspond to λ = λ,, and 
to λ = λ2 will be the only ones whose two poles coincide. We shall 
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call them the singular penosculating quadratics, hct p{ and p.2 be the 
poles of the singular penosculating quadratics. Then p

{
 and p., will be 

obtained from the factors of (G3) by equating λ to λ, and respec-
tively. Thus we find that 

Oo-hdaz — <t*— \/<r; — a·, 

are the poles of the two singufar penosculatiiig quadratics. 
Let us assume f= o, and that the series under consideration has 

ben reduced to its first canonical form (See Art. 1). Then we shall 
have 

w — A
0
 -+- Λ, c -f- A.» c■ A

:t
 *·'' + ..., 

where 
A»= «ο» A t = ι, A s — ο. Λ, = j ^> 

Thus we find 
p — x, />, -ι- p., — υ, 

showing that the four points o, />, p
n
 p > form a harmonic set, that is, 

the cross-ratio 

(66) (o, />./>,, />,)——i. 

Now the cross-ratio of four points in the - plane is left un-
changed by all linear transformations of : ; to α function of ζ and 
the linear function which osculates it at r = ο will correspond the 
transformed function and its linear osculating function. Consequently 
we obtain the following theorem. 

Let ζ he any point of the plane in the neighborhood of which the 
function f(z) is analytic and where f'(~·) is not equal to zero. 
Consider the osculating linear function and the two singular penos-
culating' quadratics off(z) which belong to the point, z, which shall 
henceforth be called the point of contact. Then

)
 the point of contact 

and the pole of the osculating linear function are separated har-
monically by the poles of the two singular penosculating qua-
dratics. 

Of course this gives us the corollary that the four points mentioned 
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are on one and the same circle, il being understood, as is customary 
in this theory, that a straight line is to be regarded as a special circle, 
namely a circle through inlinity. 

In proving this theorem we made use of the canonical form of the 
expansion. Of course the theorem may he proved without this device, 
but not without some calculation. It suffices for this purpose to note 
that 

(Ο" ) — — 1 > 

an ecpialion which is equivalent to (GG). 
Let us now consider any penosculating quadratic, and let us denote 

its poles by and pj1. These poles will be distinct, except when λ is 
equal to either λ, or λ.,, and they will always he the roots of the qua-
dratic equation, 

(08) (λ<Γ>—cz) ζ·'1-i-— λ//,) s -t- α
χ
α

Ά
 — a'% ™ o, 

which is obtained by equaling (03) to zero. According to (Go) p
t
 and 

p., are the roots of the quadratic 

(69) U
:i

Zi 2 ί/., V -+- <7i = O. 

But the harmonic invariant of these two quadratics, namely, 

(Xuo — <7 ij ) < /1 -|- (<7|<7S— a.])i/3+ (α.>α·Λ—λ//,)ί7ο . 

is equal to zero for all values of λ. Consequently pf and pf are har-
monic conjugates with respect to p

t
 and p.>. This gives rise to the 

following theorem. 

The poles of every penosculating quadratic, and therefore also 
the poles of the osculating quadratic, are harmonic conjugates of 
each other with respect to the poles of the two singular penosculating 
quadratics. 

The same result may also be expressed by saying that the poles of 
the penosculating quadratics are pairs of an involution. 

Equation (G8) will furnish, as its roots, the poles of the osculating 
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quadratic if we put λ = «
ν
. Therefore we find 

rti Ct* Cl\ Ct^ 

where q
{
 and denote the poles of the osculating quadratic. 

We now pass to the consideration of penosculating and osculating 

cubics. The osculating cubic isr^> and the penosculating cubics are 

obtained from — by writing an arbitrary parameter λ in place of 

Thus the poles of the penosculating cubics are the roots of 

«, a% s3 

(71) rts "* C'~ r:-A^+B:»-C: + Dr:o, 
a 3 Or, ati s 
αδ λ ι 

where 
( fit e., «V fly (?, (7;

t 

I A —. rt3 «i «3 , Β = α3 α4 «5 , 
ι «5 λ a

s
 λ 

(7^) 
1 «t a3 ο y αχ ai ci-i 
J G = rt2 «3 (h < D — rtj «3 «4 . 

1 fil λ ft
3
 λ4 «s 

Since the coefficients of (71) are linear functions of λ, the poles of 
every penosculating cubic constitute a triple of a cubic involution. 

The product slL, where U
a
 is the denominator of the osculating 

quadratic, will be the denominator of one penosculating cubic, namely 
that one which corresponds to λ = ao. There also exists a penoscula-
ting cubic, one of whose poles coincides with the pole of the oscu-
lating linear function. 

In order to determine the essential properlies of this latter cubic, 
let us assume that the given expansion for w—f(z) is in the first 
canonical form, so that 

(78) «1=1, ns—0. «3= A3. 

we then find 

(74) p = cc, />, 4-^—0, <7, + ^ — — -φ Vl<7
i=

=— -i-. 
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In order that ρ = oo may be a root of (71), wc must have A = o, and 
this condition furnishes the following equation for λ : 

(75) λ=^(,Λ
3
Λ,-Α|). 

Let /·, and r
2
 be the remaining two poles of this special penosculating 

cubic. Then r, and r, are the roots of the quadratic 

B„ c2 — C0 0 D = o, 

obtained from (71) by substituting for λ the value given by (70). 
Consequently we have 

(76) /·, rt D ' /·,/·, ~D* 

But we tind 
B,=-^(A,A

5
-A>),

 C
«=^7· 

so that 

/·, As' r, r2 A J 

From (74) we lind 

(78) T = ^1 = 2^, 

and from (77) we tind similarly 

/ _Λ\ 2 ' 1 ' s 2 As 

so that 

/0 . 2 1 1 I I 

According to this equation, τ is the harmonic conjugate of the 
origin, both with respect to qt) q« and with respect to r,, r«. The 
point τ will appear so frequently in our theorems as to make it desirable 
to give it a name. We therefore formulate the following definition. 
The point τ, which is the harmonic conjugate of the point of contact 
with respect to the poles of the osculating quadratic, shall he called 
the quadratic satellite of the point of contact. 

Journ. de Math., tome I. — Fasc. IV, 19:1a. 54 
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We may now express the contents of equations (80) as follows. 
Consider the special penosculating cubic one o f whosepoles coincide 
with the pole o f the osculating linear function. Its other two poles 
will he separated harmonically by the. point of contact and the qua-
dratic satellite. 

Still another formulation of this theorem is the following. The 
involution determined by the two point-pairs (7,, q.

2
) and (/·,. /·.,) 

has as its double points the point of contact and its quadratic 
satellite, 

We have characterized geometrically, the denominators of two of 
the penosculating cubics, namely 

3(3— 7,)(3 — </s) and (3 —/>)(.- — ) (3 — rs), 

where the latter may be replaced by (ζ—(ζ — t\) if the expansion 
of /(-) is assumed to he in its canonical form. The poles of any 
penosculating cubic w ill then be the roots of the equation 

( 81 ) 3(s — tji) ( 3 — </,) 4- μ(s — /\ ) (5 — r\) = ο, 

w hich is merely another form for the cubic involution (71). 
Let s

t}
 s.

iy
 Sx be the roots of this cubic for a given value of p.,so that 

s
t
, s

a
, form a triple of the cubic involution. We lind 

( 8a ) 2.*,· = 7, 4- 7*— μ, -SrV = </1 <73 — μ ( Cl 4- /*a ), ■*, .*« s 3 = — μrs, 

and therefore 

\ (''»+ '«)-av=7i73 —(7i + 7
a
)(/-

t
+r

a
), 

( ΑΊ -v
4
 *

3
 — ζ» / â — ·</ = — ( 7ι + 7ί ) '"» ''s· 

. The equations (83), being independent of u., represent those pro-
perties of the triples of our involution, which are common to all of 
them. 

Let us determine those triples of the involution which have two 
coincident points. They correspond to those penosculating cubics w hich 
have a multiple pole, and which we shall call the singular penoscu-
lating cubics. For such a triple w e may put 

.v, = sa = rf. *,= «, 
- -V,- = -Aft 4- 4- 2 (te s *,Λγν3= (Pc. 
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If we substitute these values in (83), we find 

(84) j
 «P+arfe —(#·,-*-/·,)(atf 4-β) = 0,0j— (7,-h </·.)(/·,-W,>), 

( d*e—-+- e) — — 7s)'W 

whence 

!λ_ ,·,/·*[·!Λ— (</i + 7sl] 

^ ('Ί ~+~ + I//1 '/-2 — r\ ri— (71 + y a) (P| -+- r.>)|e -+- (71 -1- 7^) r\ /··> ^ 

If the value of e from (85) is substituted in the first equation of (84), 
we obtain the biquadratic equation 

( 86 ) d*— 2 ( r, 4- r.x ) oP [3 /·, /·., — 7, 7,4- ( 7, + q.x ) ( /·, 4- r, ) | i/2 

— a Ρ 1 '5171 + 7-J)+ i'i r
2

</, 7., =: o, 

for the double points dk of the cubic involution. To each of these four 
double points there corresponds, by means of (85) a point ek at its 
companion, and we obtain in general four singular penosculating 
cubics each of which has one of the points dk as a double pole and 
whose remaining" pole, in general distinct from dk, will be ek. 

Of course equation (86) might also have been obtained by equating 
to zero the Jacobian of the pencil of binary forms (71). 

We may write (86) as follows 

dK τ (f:{ v/i7.» ΓιΡ, τ*) d* 7,72-rr/ (h'/a^r, °" 

Consequently we find 

1 idrtf τ djdj -- 7,7., r,r, 

rary constan1 

The first of these equations is capable of a simple interpretation. 
Let us put 

(89) j + T, + } = ^r 
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where i,y, k, I represent the indices i, 2, 3, 4j arranged in any order. 
Then we shall have, according to (88), 

(9°) IF IF -

Consequently the four double poles of the four singular penoscu-
lating cubics have the following property. Select any two of them, 
d(anddj

y
 and determine the harmonic conjugate, diJy of the point 

of contact with respect to them. Proceed in the same way with the 
other two double poles, dk and d

n giving rise to the point dkl. The 
points dy and dkt will be harmonic conjugates of each other with 
respect to the point of contact and its quadratic sate/lite. 

The tour points dt may he arranged in two pairs in six different 
ways, thus giving rise to six pairs (d,j, dk/). According to the 
theorem just proved, each of these pairs determines, with the point of 
contact, a circle passing through the point τ. W e obtain in this way 
six circles of the pencil determined by the point of contact and its qua-
dratic satellite. 

A similar relation may be obtained from (86). Let us put 

(9·^ fu — - + <ij). f
kl

 — - -+- (1,). r =:-(/·, 4- r
s
). 

Then we find from (86), 

(9*) -ffa+AA = r-

But in deducing equation (86) we used the canonical expansion, so 
that the pole of the osculating linear function ρ was at infinity. Con-
sequently equations (91) and (92) indicate that (/,/,/>) and(rf,,d,) 
are harmonic pairs, that (fuvp) and (dk,di) are harmonic, etc. We 
obtain therefore the following second property of the points d(. 

Select any two, dt and dj, of the four points d
n

 d.
2i
 f/

v
, and 

determine the harmonic conjugate, ffj, of the pole ρ of the oscula-
ting linear function with respect to them. Proceed in the same way 
with the remaining two points, dk and dh giving rise to the 
point fkt. The resulting two points, f,, and fu* will be harmonic 
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conjugates of each other with respect to the pole of the osculating 
linear function p, and the point r, which is itself the harmonic 
conjugate of ρ with respect to /', and i\. 

We obtain in this way six circles of the pencil determined by ρ 
and r. 

Let us put further 

( 9^ ) 7 — ~ (7i "+" 7^· dij/'i — ~ (d,j Jijkt — » 

so that q is the harmonic conjugate of ρ with respect to 7, and q
2} 

d
ljkl

 is the harmonic conjugate oip with respect to dtj and dkh
 and 

fijki is the harmonic conjugate of the point of contact with respect 
to fij and fkl. We shall have 

(94) r,/·,—ττ. 

If we make use of the coefficient of d2 and the constant term of equa-
tion (86), we find 

(Φ) ftjdij +fu(h·/ -+- fijfkt =3rz~ 47''« 
d-ijdktf ijfki — qrz'-. 

On account of (p3), the last equation may be written 

( 96 ) dU klfij k!= 7 7 — 717s
 5 

so that djju and f(jk{ are a pair of the involution 

(97) 55'= 7,74, 

of which r = o,j' = ao, and ζ = q
n z'= q

2
, constitute two other 

pairs. 

Thus the involution of which the point of contact and the pole of 
the osculating linear function form one pair, and for wich the 
poles of the osculating quadratic form a second pair

y
 also contains 

the pair dijkh fijkt. 

Let us assume that d
x and d2 are distinct. Then 

(-? — )*(- — e») and (ζ — ά^(ζ~ <?,), 
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will be two distinct forms of the cubic involution (71), and this invo-
lution may be rewritten in the form 

(98) (5 - </,)«(*- e,) = v(*-d.Yiz - <?,)· 

Let s,, s
2

, s., be the roots of (98) for a given value of v. We shall 
have 

(SA — rf| )*(.«*— — v(.s·/, — d,)8(.v*.— <·,). 
(A-= .. a. 3), 

and therefore, by division, 

/λ·λ. — t 5,—rf,y Λ9/,— et s s,· — <>x\ _i 
or 

(99) Λ-f)3 Κ.ν,) = > (Λ /> — I, 9., 3). 

Thus the relationsbetween the poles, s
4
,s.j,s

3
, of any penosculating 

ouhie. and the poles of the four singula/· pen osculating cubic are 
given by the double-ratio équations (99). //* particular these rela-
tions will hold for the poles of the osculating cubic. 

A similar relation may be obtained between &·,, s2, s.
t
 and the 

points jOy qn </0, /·,, i\, by starting from the form (81) of the cubic 
involution, if we remember that in our canonical form ^ = ao takes 
the place of τ = p. 

Some of the features of the theory developed so far may be extended 
at once to the osculating rational functions of higher order. There will 
always exist one penosculating rational function of degree a, one of 
whose poles is the point of contact, and whose α — 1 other poles are 
the same as the poles of the osculating rational function of degree α — 1. 
There will exist another penosculating rational function of degree a, 
one of whose poles coincides with the pole of the osculating linear 
function. The poles of all of the other penosculating functions of 
degree α will be determined by an involution of degree a, of which 
the two special integral rational functions of degree α just mentioned 
are the base forms. Among these penosculating functions there will 
be 2(α — 1) which are singular, that is, which have at least two coin-
cident poles. 

Our theoreme have all been concerned with properties of the poles 
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of the various osculating functions. But the some relations are also 
true of their zeros. 

To prove this statement, it suffices to note that the rational func-

tion ̂  has contact of order 2a with f (z) at 3 = o, so that the ex-
pansion of 

—T*. 

begins with the term of order at least 2 a 4-1. Since a^f= o, we lind 
that the expansion of 

lx/t-) ^ 

will then also begin with a term of order at least 2 α -+- ι. 
Therefore, the rational oseulants of jjrj arr ^u' reciprocals of 

the corresponding rational oseulants of f{z). Consequently the same 
relations which we have found between the poles of the rational 
oseulants o f f(z) mast also hold between their zeros. The same 
statement also applies to the point-sels for which the \ariousoseulants 
assume a given value /9 even if /1 is different from zero or infinity. 

We have already pointed out that the rational osculating functions 
of order 1, u, 3, ..., a, .... which we have studied are the functions 
which normally occupy the positions in the principal diagonal of the 
Padé table. We have also studied certain classes of penosculaling 
functions which ha\e 110t. been considered by Padé, and it appears 
clearly from our exposition that these penosculants are needed for the 
geometric interpretation. We lunc not so far considered any of the 
rational functions of Padè's table which are not on the principal 
diagonal. Hut our original objection to these functions, namely the 
non-invariant character of their definition, may now be disposed of, 
at least if we use some canonical form for our power series so that the 
point at infinity becomes the pole of the osculating linear function or 
some other invariantly defined point. Consequently we may now 
regard all of the functions of the Padé table as legitimate objects 
of our theory, opening up a large field for further investigation. 

The theoreme wich have been established on the question of the 
convergence of a sequence of Padé fractions arc of course of special 
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interest. We merely mention that they provide, among other tilings, 
criteria as to whether a given power-series does or does not represent 
a meromorphic function, and that, in the former case, the poles and 
zeros of the rational osculants approach in definite fashion the poles 
and zeros of the function/(s) as limits. 

We close this section with a discussion of the convergence of the 
canonical expansion which we have used so frequently; we have 
postponed this discussion, because we shall make use in it of some of 
the results which have been obtained since the canonical expansion 
was first introduced. 

Let us suppose that the original series 

it·' —■ -J- CI | Ζ Ct-> Ζ " ~t~.... 
is convergent for 

M<R. 

We obtained the canonical expansion by putting 

_ _ __ aipz 

where ρ is the pole of the osculating linear function. From our method 
of deriving the canonical series it is evident that it will be convergent 
if we have simultaneously 

M< R. |5,|<Klb9|, 
or 

1 5 I < R, | 3 1 < \p — V 1 , 
whence 

M< ih M< jM-

Thus, the canonical expansion will surely be convergent in a circle 
of center ζ = ο and of radius r, where r is the smaller of the two 

positive numbers, Rand ^ |/> |. 
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\. — The osculating logarithm. 

We saw in Art. 3 that the absolute differential invariant 

9 = 1^1, 

has a constant value 0 = A lor any function of the form 

(100) »·=—-= log- 7 + '· 

Since such a function involves four arbitrary constante, α, Α, A, 
and ι, we may expect to lind a logarithmic function which has third 
order contact with a given analytic function 

U' = f ( ΰ) — Cf0 -f- <t\ Ζ -+- ((«Ζ* 

at the origin. The resulting logarithmic function shall be called the 
osculal in g logavilh m. 

W e see at once that for the determination of A we have 

(ιοί ) k= 0= 

where, of course, the value of 0 for ; — ο is meant, and where a defi-
nite determination should be chosen for the square root. However, a 
change in this determination has no actual significance since it will 
be balanced by an interchange in the values of a and A, the two 
singular points of the osculating logarithm. 

With this value for A, we lind from (ioo), 

d* " θ v'm L 3 — a 3 — A _ * 

d> u· _ ι Γ ι ι "I 

In order that (ioo) may represent the osculating logarithm, these 

value of w, ^ must be equal to 2respectively for 3 = 0. 
Journ. de Math., tome I. — Fuse. IV, 
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We obtain the following conditions 

αϋ — ^ log ^ i- /, 

α ο a, ρ 

From the last two equations we conclude by division 

(102) —h 7 = 2 — = -j 

that is; the singular points of the osculating logarithm are har-
monic conjugates of each other with respect to the point of contact 
and the pole of the osculating linear function. 

Since we have also found 

-! · -I ----- α, 0\/·>.. 

wc obtain the formulae 

, , 2 2,α« Λ - 2 2 «2 n J-

whence 

, ,, a 11,(?.> + y/12(a 1 a:, — ^^ ) 1 ^ a, | a., — \/ia(a,a:,~ a,]) | 

and finally 

(100) -log —=" 

lhnl branch of ihe logarithm being selected in (io5) such that the 
expansion of (100) will actually have a

{)
 as ils constant term. 

If the function w =is not a linear function, we may use the 
second canonical form, for which 

α, — ο, a-.\= — ^ ι · 
We then find 

/J,- + I} ^, = — I, /> = <*, 

α — - έ v/3, h — — - i ν/3, 
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so thai 

(106) (/>!,/>-,«· />) — ^ — ~ 'V'S. 

Moreover, 1 he circles determined by (o, b) and (0, p
n

 p.
2
) <\re 

(for (his canonical form) (he imaginary and real axes of I lie ζ plane 
(circles through ρ = ce). Since angles are preserved by linear trans-
formations we have proved the following theorem. 

The cross-ratio determined by the poles of the hvo singular 
penosculating quadratics and the singularities of the osculating 
logarithm is equal to a complex cube root of unity. The circle 
determined by one of these points pairs with the point of contact 
is orthogonal to the correspondit!g circle for the second pair, 
and these circles meet again in the pole of the osculating linear 
function. 

Lei us consider for a moment I he conformai representation of I he 
; — plane upon (lie <r — plane established by means of the osculating 
logarithm. If ; moves on a circle of the pencil through a and b, the 

argument of —j will remain constant ; if ^ moves on a circle of 

the orthogonal family, the modulus of ^—j will remain constant. 

To the circles of the first family there correspond in the w — plane 
the straight lines of a family of parallels, and to the circles of the 
second family will correspond the straight, lines of the orthogonal 
family. Through the point of contact (z = o) there will pass a circle 
of each family. If we use the same canonical form as above, the circle 
through ο, a, and b, is the axis of imaginaries. All circles of the 
second family have the properly that a and b are inverse points with 
respect to each of them. Since in our canonical form 

a — — /> - - i \ 3, 

the circle of the second family which passes through 3 = ο is the axis 
of reals. Both of these lines, regarded as circles, pass through ρ — zc. 
We obLain the following result. 
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Consider the pencil of circles through the singular points of the 
osculating logarithm, and the orthogonal family of circles. The 
two circles of the two families which, pass through the point of 
contact meet again in the pole of osculating linear-function. 

We may also express I his result as follows. 

Consider an analytic function w=f(z) and the osculating 
logarithm of f(z) at ζ ~ o. Determine the isothermal system of 
straight lines in the w — plane which corresponds, by means of (he 
osculating logarithm, to the isothermal system of circles which 
is determined by the singular points of the osculating logarithm. 
To this system of straight lines in the w — plane there corresponds, 
by means of w =f(z), an isothermal system of curves in the 
ζ — plane. The two curves of this system which meet at ζ = ο will 
have osculating circles which meet again in the pole of the linear 
osculating function. 

The truth of lliis slatemenl follows from I lie preceding theorem, 
if we remember further that the osculating logarithm has third order 
contact with /(-) at z = o. Consequenlly the curves of I he two iso-
thermal nets in the ζ — plane, which correspond to I he above men-
tioned system of lines in the w — plane, by means of the two rela-
tions 

«'=/(5) and w:--. —!!—log 7 + ' 

will have the same osculating circles at ζ = ο. 
It only remains to put into evidence the lacl which is already clear 

from our discussion, lhat the quantity A which appears in (100) is 
actually an invariant for all transformations of the form 

W — U\ Ô — v· 

For ihis purpose, let and be any two values of z, and w, and tv
a 

the corresponding values of w. Then we lind 

1 . Γ — a 3. — ^ Ί 
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whence 

*Va =
 <T

, ' „■ loS(ff' b> -S> 5|). 

where (a, 3
2
, s,) denotes the cross-ratio of the four points men-

tioned. This formula accomplishes our purpose since the right member 
obviously remains invariant under all transformations of the group 
under consideration. 


