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DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 393

Differential Propertics of Functions of « Complex Variable

which are Invariant under Linear Transformations

By E.-J. WILCZYNSKI.

PART I™,

INTRODUCTION.

[fw = f(5) is a function of the complex variable z, other functions
may be obtained from it by subjecting 3, or «w, or both variables to
linear transformations. Clearly there will exist properties which are
left unchanged by all such linear transformations, and itis evident
that such propertics are likely to be of considerable interest. It is the
purpose of the present paper to show that this is actually the case.

In the first eleven articles we consider linear transformations of the
independent variable only. Thus a given function « = f(s) gives
vise to a Lthrec-parameter family of functions

- Ic)
() w5 ) =T,
where @, 8, v, ¢ arc arbitrary constants. It is quite evident that many
of the most important properties of the function f(s) are left un-

changed by such linear transformations. If w is uniform, so is w; to
every singular point of & will correspond onc of «wj; the cross-ratio
of four singular points, or of four zcros of the function will be

(') La seconde partie du présent Mémoire parvaitra dans le premier fascicule
du Journal, en 1923.
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preserved; etc. Morcover, we may look upon the investigation of
those properties which all of the functions (1) have in common, as an
extension of the theory of invariants of an algebraic binary form to
the case of transcendental forms or functions.

Let us denote the independent variable by Z, and let

(2) w=f(A)=as+a(L—3)+a,({— 3)*+...

be the expansion of /(Z) in the neighborhood of Z = z. Those func-
tions of the coefficients a,, a,, @, ... which are left invariant by all
transformations of the three parameter group

7__al+f

() L= 7s

ave called invariants. Since these invariants may be regarded as func-
. dw d*w . . .

tions of v, T e oty and since their values change with 3, we
speak of them more specilically as d{fferential invariants. Several
complete systems of such invariants are obtained in Art. 4. In Art. 2
we introduce the notion of /ntegralinvariant. The most important

integral invariant is
N Q:[\/‘,w,;‘,(ls,
where '

(.‘) . ( . il 3 “,ll\)g
b Wy 3! e o — )
+ y v (‘\/ )

0 o

is the Schwarzian derivative of w with respect to z. The most impor
tant differential invariant is

(6) 6 \/1“";‘.

It turns out that, from our point of view, an analytic function is essen-
tially determined when the relation between ) and 9 is given. We
speak of this relation as the intrinsic equation of the function
w == f(z). The actual determination of a function whose intrinsic
equation is given, requires the integration of a linear differential
equation of the second order, and may be reduced to the solution of
an integral equation with a skew-symetric kernel.’
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In Art. 4 we introduce rational osculating functions of various
orders, a notion very closely related to certain investigations due to
Frobenius and Padé. The relations which exist between the poles of
these functions, and also hetween their zeros, are very simple and
elegant and scem to appcar herc for the lirst time. The osculating
logarithm, introduced in Art. 5, serves to round out this theory in an
essential fashion, and gives rise to further simple geometrical results.
The osculating logarithm plays an essential role on account of the
fact that every logarithmic function has aun intrinsic equation of the
form 0 = constant.

The poles and zcros of the osculating rational functions and the
singularities of the osculating logarithm are functions of the position
of the point 5 at which the osculation takes place. If s is subjecled to
a linear transformation, cach of these points is transformed by the
same linear transformation, and we therefore speak of these points as
cogredients. Special classes of functions may be defined by means of
prescribed relations betwceen certain ones of these cogredients. Nu-
merous illustrations of this method are worked out in detail in
Acts. 9, 10 and 1. One of the most interesting results obtained in
this way is a new property of certain elliptic functions. Let

- -‘\u‘n"‘ I\|5'|“1‘ 3:-2
—_— b
Bo+ B3~ B,

(7) Q(s)

be tlic rational quadratic function which osculates w = FF(Z) atZ = 3,
and let ¢, and ¢, be its poles. Let = he the harmonic conjugate of z,
the point of contact, with respect to ¢, and ¢,. Then 7 is the point
which we call the quadratic satellite of :. We ask the question; what
functions are those for which = is a fixed point? It is evident that this
will be so whenever IF(7Z) is a quadratic function with coincident
poles. But there is another casc when = is a fixed point; namely,
when « = I'(Z) may be obtained by linear transformation from a
Weierstrass { -function for which the invariant g, has the value zero,
so that the cross-ratio of the branch points of the corresponding
Riemann surface is equi-anharmonic.

The general expressions of the cogredients enable us to write down

-
n

several new formulae which are valid for any analytic function. Each
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of these formulae gives an expression for w = f(z) in the form of an
integral whose integrand depens upon one or several of the cogre-
dients. These formulae admit iteration and are likely to be very
useful in a large number of investigations. Similar expressions have
also been found for the integral invariant o, the most important one
in terms of the singularities of the osculating logarithm. These for -
mulae for ¢ are developed in Art. 7. But we also give, in Art. 7, an
indcpendent definition of ¢ which is of still greater interest, because
this definition is formulated entirely in terms of notions which remain
invariant underlinear transformations, and by means ofa limit process
which is the multiplicative analogon of the process used for defining
a definite integral.

In Art. 8 we introduce the integral invariant ¢ as a new indepen-
dent variable. Thus from w = f(5), we have

R
:,:q:[\/}u‘.:‘\d:.

If we introduce 3, = 9 as independent variahle, & becomes a function
of 5,, and we may put

R /\/f,ﬂ',:,( ds,.
.

We may now introduce =, as independent variable and continue in
this way. The resulting relations between the Schwarzian derivatives
b sl sl Ly sl take the form of continued fractions of a
very simple and remarkable form. \ numicr of new problems present
themselves at once; in what cases will these continuced fractions ter-
minate? when will they be periodic? if they do not terminate, and &
is allowed to grow heyond hound, will they converge? We have
actnally solved some of the simplest of these problems; but heve, as
elsewhere in this memoir, the new problems are too numérous and
too far-reaching to make animmediate solution of all, or ¢cven of many
of them, a possible undertaking.

In Art. 12 we enlarge our group by considering independent
lincar transformations of both dependent and independent variables.
The corresponding invariant combinations are called Lyper invariants.
~ The integral invariant ¢ retains ils invariantive property even under
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the enlarged group. The simplest differential hyperinvariant, denoted
by I, is of the ftifth order. The relation between Iand ¢, called the
hyperintrinsic equaiion, delines a function w = f(5) except for
linear transformations of both variables. The simplest hyperintrinsic
equation, namely I = const., delines the power functions

aw—+b <ots-+-ﬁ>"
ew +d \ys+9d ’

where a, b, ¢, d, a, B, v, 3, and r are constants. The problem imme-
diately presents itself to determine a power function of this form
which shall have the closest possible contact with a given analytic
function at a given poiat. This problem is solved completcly in Art.13,
and leads again to interesting geometric relations between the singu-
larities of the osculating power function and the singularities of other
osculants which have been introduced before.

We have presented in this introduction only a few of the most
striking features of this new theory, just enough to indicate the
general point of vicw. And cven in the body of the paper we have
purposely refrained at maay points from developing the theory more
in detail, becausc it was our desire to obtain mercly a first general
outlook over this new territory. There remains much to be done.

I. — The differential invariants of a function
of a complex variable,

Let w = f(5) be a function of the complex variable s defined, in
the neighborhood of the origin, by means of its Taylor expansion

(1) W= ()= @+ @15+ Q3. .. apst ...
If we transform the independent variable by putting

as+b
cz +d’

(2) 3= ad — be # o,

where @, b, ¢, d are arbitrary constants, & becomes a function f(3)
of zand to properties of the function £() in the neighborhood of
z==0 will correspond properties of the transformed function /(=)
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. . - b b -
in the neighborhood of 5 = - Let us assume < # o and put 5 = K.

We may then write (2) in the form

or

(3) s 25 5 =3 —h. '

If d = o, the transformation (2) may also be reduced to the same

form (3) provided that z, in that case be interpreted to mean < as is

customary.
As a result of the substitution (3) the series (1) will become a power
. . . . - - 1

series in 3,, where z, is eiter equal 1o 5 — Kor=- We proceed to

determine the coefficients of this new expansion. We find from (3)

(4 %

i

(k)
-———.—T——l_;"g

ks (1— B3 )= akh |+ AP+

Lf we substitute these values for =* in (1) and denote by a, the coefti-

cient of = we find

— $~1 Ah-=000 (s—0)

(3) ay=ay. Ug= G gk Bk ($==12.3,...).

b1

The following special cases of (5) are especially important
(6) ay=aq, a=a(wa-+ab), a=oz[a,a+ra,af+ a, 5]

By an absolute invariant of the function f(5) under the transfor-
mations of the group (2) or (3) we mean a function of the coefficients
@y @y, @y, ..., Which, as a vesult of the rclations (3), is identically
equal to the corresponding function of a,, «,, a,, .... Evidenlly a, is
such an invariant. In order to find the others we might use the method
of infinitesimal transformations. Thus (3) represents an infinitesimal
transformation if we put

o =14+ Adl. 3 =pdt.

where o¢is an infinitesimal. The corresponding infinitesimal trans-
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formations of the cocfficients are given by
(7) Octy=== 0, Oar=[hard + (A—1)a;_,p]0¢, A > o,

Therefore every absolute invariant must be a solution of the two
differential equations

: e . o _
(3) Z/\a,{m—o, E(A—l)ak_,m_o.

The first of these two equationsis easy to interpret. Letus attribute
to ay the weight k, and let us agree that the weight of a product shall
be the sum of the weights of it factors. Then, the first equation (8)
merely assevts that ecery alsolute invariant is isobaric of weight
sero. We may therefore find the invariants by constructing isobaric
functions of a given weight p, in such a way as to also satisfy the
second equaltion of (8), and then divide by /. Isobaric functions of
weight different from zero, which also satisfly the second equation
of (8), shall be called relative invariants.

But it is easier to obtain a complets set of invariants by a different
process. l.cl us assume @, %= o. We may then according to (6) deter-
mine « and 3 in aunique fashion so as to make a,=1,a,=o0, namely
by putling

(9) o= —) m——

We obtain in this way the canonical expansion (of the first kind)
(1) w= () =As+5 + Ayt + Ayst .

where, on account of (5), (6), and (9),

‘
1

aa;—al
Au:au‘ ;\l:l‘ ,:\2::(»‘ ‘\3: _l_“j...._'_)
a,
(] ( x‘l( DHs— D (s—2). . (s—0) ala
— 1 (s— U (s=—2). . (§— La, "
(AS: EE[(Q-{—? m -a’ ‘] (s=3,4,3, ...
o . X
t=1

Another canonical form (the second kind) is obtained by putting

R Q —a
(I'?.) 0!:————;'_; 5=~—-—-——-—_._i._0
Val —a,a, Vai—a,ay

Journ. de Math., tome I, — Fasc. 1V, 1g2a, 51
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Tle vesulting expansion is characterized by the relations

a — -
a) -+ ay=u, (y == 0,

(13)
"This form is very useful.

We shall discuss the convergence of (10) later. At present we only
wish to cmphasize the fact that this canonical expansion (10) is
unique. That is, to cvery series of the form (1), in which @, is not
cqual to zero, there corresponds a uniquely defined canonical expan-
ston of form (10). From this it follows that the coeflicients of the
canonical expansion are absolute incariants of f(3).

In fact, suppose we consider any function

. 5,"(:1):{/,.+I),:.‘:+ [),E’-i——..., by o,

obtainable from f(s) by a transformation of form (2). By means of
the transformation

' -

b
1;2—:’

l+'/Fcl

1

o=

+(z) would be transformed into ifs canonical form

el
() By 4 5 -+ Bysd 4.

where B,, B,, etc., are velated to b,, b,, b,, ... in the same way as
are A, Ay, ..., L0 a,, @,y @y, .... But the expansions (10) and (14)
must he identical on account of the uniquencss of the canonical form,

so thal
B.== A,

showing that Ay, Ay, A\, ... are actually absolute invariants. 1t is not
difticult, moreover, to verify this fact by applying the infinitesimal
transformations (7) to the expression (11) for A,. For we (ind 6A;=o,
which again proves that A, is an invariant.

The invariants Mgy Ay, Ay, ooy Ay, o are independent funclions
of the cocfficients a,, a,, a,, .... — For, taken in this order, each of
the invariants involves a coeflicient a; wich does not appear in any of
the earlier invariants. ‘
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Every absolute invariant is a function of Ay, Ay, A, ... — For,
letI(a,, a,, @, a,, ...) be an absolute invariant. Then we shall have

(ls) l(;u, al, Qq, ((3, .o ‘>:~‘[(a07 (’ll, (42D (73, « vy

whenever a,, a,, @, ... are connected with a,, a,, a,, ... by means of
the relations (5). In particular, (15) will be verified if we choose the
values (g) for « and 8, as a result of which choice, the expansion
assumes ils canonical form. Therefore we shall have

Iay ay, asy as, o) =1(Ag, 1,0, Ay, Ay, L0Y)

showing that Lis a function of A, :\,, A,, ... as stated.

We may summarize our last three theorems by saying, that ¢/
invariants Ay, Ay, Ay, ... form a complete system of independent
absolute invariants whenever a, is not equal (o zero.

We shall ordinarily maintain the hypothesis @, = o. 1f «, 1s equal
to zero we study, in place of the expansion (1), the Taylor expansion
of f( =) for some point 5=/ where & £ 0. Of course & may always be
chosen in infinitely many ways so as to eunsure that Lhe coeflicient
of z—/ in the new expansion will not be equal to zero, provided
that «w is not @ constant. It is possible, however, to replace the inva-
riants Ay, Ay, Ay, ... by @ new system adapted to the casc

OQ=a=...=qp..; =0, a, = o,

by an obvious extension of the method which we have used for the
case @, £ o.
Since we have

ay =aa,

@, is a relative invariant of weight 1. Consequently @} A, is @ relative
invariant of weight s. According to (11), the last term of @’ A (corres-
ponding to { = s —1) contains

ay'a;, _ af?

3

s--b T N2
@ a

as a factor, and no other term of a; A, contains @ higher power of «,
in its denominator.
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Therefore = A, is a relative incariant of weight 2s— 2, which
is an integral rational function of a,, a,, ..., a,, Morcover this
ineariant is a linear function of ay, a,, ..., a,. The only coefficients
which appear raised to a higher power are a, and a,.

For this reason we shall occasionally refer to the invariants A\, as
the lincar invariants of the function f(z). It is now easy to see that
these linearinvariants form a complete system in a more specific sense
than that mentioned above. Every absolute incariant, which is a
rational function of the coefficients of f(z), will be a rational func-
tion of the linear invariants.

The invariant A, is of special importance. We have

1 [dfw
G=T\dE )L

so that A, is equal to the value wich

ey 3!

assumes for 5 = o, if we write

(16) w'= z_(ig, W=z -(-:-;:‘—:-, W= %2.—:, U :‘-’i’ - i (1‘—“7)2’
so that | w, 5! represents the Schwarzian derivative of w with respect
to 5. :

We shall frequently think of an expansion of the function W= f(Z)
in the neighborhood of a point 3, not at the origin, where f(Z)is
analytic, :
W=fly=a+a(l—s)+a(l—3)+...,

and we shall then write

1 d¥w 1

1 [dfW :
- ""=/T!<W>z=f maFE=n""

We may then think of a,, @,, @,, ..., as well as &, o, ", ... as func-
tions of 5 and we shall have
_aa—al v, 5!

1
A — LT e
(18) A= @ 5wy = g7
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where

(19) 9:————\/;"":“l ’

”-I

a specific determination of the square root being chosen in any parti-
cular case.

Since A, A,, A,, ... are the coeflicients of z}, 57, ... In the cano-
nical cxpansion, it is apparent that A, \;, ... may be oblained
Srone Ay by repeated differentiation with respect to s,

But we may exhibit another and more convenient differentiation
process which accomplishes the same purpose. 1f we make any linear
transformation of the independent variable,

(20) Z:?;:g, a6 — By Zo,
we find
(21) ds _ a0—3y
dz " (yz-+0o)?
and
(22) ‘—l‘—:- . ds _ dw (43 +9)

ds  dz “dz  ds a8 — By

From our knowledge of the fact that 0* is an absolute invariant and
from (22), we conclude

(7)‘ N ey

(23) :ﬂ‘,;i:

ds
a familiar formula which may also be veritied directly.
More generally we make the following remark. If | is a relatice

incariant of weight p, the transformation (20) will transform I
into | where

. - “dz\” (ys+0)
24 l":::lE ——) ::.l—-‘\———-—.-.
(24) (5 =By

If T is an absolute invariant, we have p = o, and therefore

dl dl

div T dw
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di d*f

Thus we may take v, 0, R asa Sundamental system of

rneariants.
il. — Integral invariants.

All of the invariants obtained so far are functions of the values,
wy W'y W’y .y which W= f(Z) and its derivatives assume for a given
value = of the complex vaviable Z, the function £(Z) being analytic in

-the neighborhood of this point. We shall henceforth speak of these
invaviants as differential invariants. But equation (23) of Art. |
enables us to define a new kind of invariant which we shall call an
integral ncariant of the function. liguation (23) may be written as
follows

(23) Vo, s dsazy oy s ds,

if the square roots ave properly delermined. Let us select a curve C of
linite length in the = plane. This curve may be open or closed bul it

should be so chosen that v}, 5| is analytic in the neighorhood of

each of its points. Les C be the curve in the 3 plane obtained from C
by the transformation (20). Then we shall have

(206) / Vi s d;:j AT
VT 4

Thus, the value of the integral

(27) 9:/\/‘,“',3{({5

remains unchanged if the independent variable and the path of
mtegralion are transformed simultancously by the same lincar
transformation.

We may express this by saying that ¢ is an integral invarviant. More
specilically we shall speak of 2 as a simple integral invariant because
the function under the intcgral sign depends only upon w, o'y o, ...
The integrand does not itself involve integration.
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If 1 s any absolute differential invariant, the integral
[ o o - o

(28) fld.? = /‘I\V-I_\\-\T:-:/:\
vt AN

will be an integral incariant. Concersely, (f w is not a linear funce-
tion of 3, any simple integral invariant may: be expressed in this
Sform.

The teuth of the direct statement is appavent. To prove the con-
verse let

J o= / Fiz.owoni o Lo ds
AN

be a simple integral invariant. If wis not a linear function of 3, the
Schwarzian |, 31 will not be equal to zevo identicaly, and we may
introduce 2 as a new independent variable in place of 3. Then J

becomes
i e
-l o / G (5. (10N -I_\:‘ ‘. ') (I:).
‘ - 145

Since J is invariant for all possible curves C, we must have

] =),
Since we have also
o e,
we hind
AT
a5 dS
wich show that % or 103‘(3.- W :i:: ) is an absolute dilferential

invariant.
There exists an integral invaviant even simpler than 2, namely / dw,

and by an argument analogous to that just completed we can show
that any other simple integral invaviant may be expressed in the form

f l dw where | 1s an absolute differential invariant. In fact this form

remains valid even if w is a linear function of 3, provided it is not a
constant.
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But the absolute differential invariant of lowest order, excepting «
itself, is 0. Therefore

(29) [Od\"—/O\x d::[\/ w, stds .

¢ Yo

is the simple integral invariant of lowest order, excepting only the
integral f div. This latter integral however is velated so simply o the

values of o at the end points of the path of integration, that we prefer
not to think of it as an integral at all. With this understanding we
may claim that ¢ is the simplest integral invariant of «w = f(z) for
lincar transformations of the independent variable.

HI[. — The intrinsic equation.

Let w be given as an analytic function of . We put

-_-:.\/_"._:_“%_:'_‘_, 0= [\/ Wy 3ldi= J\\‘d""/‘ 0w,

the square root being properly specified, and the integration being
performed over a path C at all of whose points ! w, 3! Is analytic.
If we regard ¢ as @ function of its upper limit 3, and eliminate z, we
obtain @ relation of the form

(30) C 0=F(p),

where F is an analytic function of 9. We shall speak of (30), which
expresses the relation between the simplest diflercntial and integral
invariants of the function w = f(3), as the intrinsic equation
of w = f(5), a terminology which corresponds to that used by Cesaro
in his intrinsic geometry.

The importance of this notion for our theory appears in the follo-
wing theorem.

All functions, which can be obtained from each other by linear
transformation of the independent variable, have the same in-
trinsic equation. Conversely, if the intrinsic equation is given,
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there will correspond to it infinitely many functions all of which
may be obtained from. one of them, w = f(3), by adding a constant
and making a linear transformation of s.

The truth of the direct theorem is obvious, since 0 and ¢ are abso-
lute invariants for all linear transformations of .
To prove the converse we observe that

. do .
(31) S=0="F(p),
so that

Y do
(3?.) [ :./ W

Consequently w is determined as @ function of ¢ except for an additive
constant.

IFrom the definition of 0 we lind

;ﬂ\ :{

oy =7
On the other hand we have
(33) by s == (s el (Y,
so that
(34 Ch o =— 0t — (o) ]

In the right member of this equation we may replace ¢ by the func-
tion of w which results for it from (32), giving |z, w! as a known
function of w, say

V3wl = G(w),

and G (w) will be independent of A.

If s is any solution of this equation, the most general solution
will be
_ a5+ B

RN

(18|

(") Cavuey, Collected Mathematical Papers, vol. X1, p. 132,

Journ. de Math., tome 1. — Fasc. LV, g2, 52
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where a, 8, v, &, are arbitrary constants. Thus if «w = £(5) is one
function which corresponds to the given intrinsic equation,

. az+ 3 .
u__f<y:+6)+/.

will be the most general function of the same kind.

The following method of proving the same theorem is more elegant
and leads to some further results. Since (32) furnishes an expression
for as a « function of ¢ by meuns of a simple quadrature, we are
naturally led to think of 5 also as a function of 0. Now Cayley first
proved the formula

nx AN\ o v

(33) }9,@{:(7;> [!S‘“\“i“_rxv‘\“)\] QR

which shows how to transform the independent variable of a
Schwarzian. If we put s = w, =z, X =9, we find

b si= ey s by ol —ts 00

If & is not a linear function | w, z| is not equal to zero, and we con-
clude

(36) sl o=

We may wrile

v ol —1,

and our theovem now follows immediately from the fact that (32)
gives the right member of (37) as a known function of 9 which is
independent of £, and that all solutions = of (37) are linear functions
of any particalar solution.

But we may actually indicale the analytic nature of this problem a
little more closely. If 0 = F(¢) is the given intrinsic equation, we
find from (32)

(38) T =— l_(”——lti'(;%l +r-l)-<(—[%$—l-):]:l,

2

(') Loc. cit, p. 132,
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where I is now a known function of 9. Of course the most general
solution of (38) is a linear function of «v.
Consider the linear homogeneous differential equation

EW

and let W, W, be two of its linearly independent solutions. Then

‘\%’3 will be a solution of (38). Conversely if «w is given as function
1

of 9, as in the present case, we may find W, and W,. Let 9 =g,
be a value of ¢ for which I is analytic and let

/
S WV, =1, %‘ o, lor o = 0,,
! .
(10) ' AW,
W,=o, g =0 for o == ¢,

moreover let the constant & equation (32) be equal to zero.

Then there exist in the o-plane a circle of non-vanishing radins
around g,, such that for all points in this civcle

d\\‘ro . ([\‘,-|
\’ ’ — e ———
\ ! (/C") W 2 d@_

whence follows

dod \\’._.)_ 1
do T dy (W—l Wy
if we put
o Y
W,
and therefore
e I3 e N
Wi== /tbln‘, Wa=== /(('\\
d9 do
Since we have
dw ot
. do ~ F(o)’
we may write
9
. N o JFT [ Ao
(41) W, = /I o0. \\P-\l(c.»)j% oy

In order to determine = as a function of o, we must integrate the
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- differential equation
bz, ol=1—1.

Any solution of this equation may be equated to
(42) 5=t

where Z,, Z, ave independent solutions of

do?

(43) +é(l—-|)'/,:0.

We may write this equation in the form

(44) 7

-+ -:; 17 = —:;Z

and integrate it as though the right member were a known function
of », that is, as though (44) were a non-homogeneous lincar difle-
rential equation whose right member is given. We find in this way
that any solution of (44 ) satislies the equation

@ ?
z:c,w.+c,w.l+w,j §Z(_‘\\f.,)d¢+w,f A
o P

where W, and W), are given by (41), or if we put thic arguments into
evidence,

?
(45) ()= e Wi(9) + e Wa(o) +1 [ LWL () Walo) = Wy (@) Wa ()12
P '

£ Z, and Z, denote those solutions of (43) which are defined by

the same inttial conditions (40) which determine W, and 'W,, 7.,
and 1., will satisfy the two integral equations

' P
(46)  Zy(2) =Wyi(0) -1 ;f/ Wi ($) Wa(e) — Wi (o) Wu ()12, (d) dd,
(/c::(, 0)
and we shall hace
7= otZ. -+ ﬁZg
T Y7447,
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as the most general cxpression for the independent variable =
which corresponds to the given intrinsic equation.

The common kernel of the two integral equations (46) may be
written

(‘2) Ko, ) =TT [ s

7 P =V ) Ty
|{ )

so that

(4%) K(o, §)=—K(d, 9.

Therefore the hernel is skew symmetric. Thus, the general problem
of finding the functions which correspond to a given intrinsic
equation has been reduced to @ problem inlinear integral equations
of the Volierra type with a skew symmetric kernel.

We shall actually determine the intrinsic equations of several
important classes of functions later. IFor our present purposes it
suffices to note a few very simple cases.

If & is a lincar function of z, but not a constant, 0 is identically
equal to zero. Thus, the intrinsic equation of lincar functions
is 0 =o.

Let us consider the funclion

wzalog s, oy
we {ind
W=t W= - a3z"? w'=aqsz?,

so that

IR R— 1 -2

'\\,o\—;\. *y

and

§=-"_.

ay»

The samc value of § will, of course, be obtained if we veplace s by
a linear function of s,

Thevefore, the intrinsic equation of functions of the form

az+ 8

4 ) ~— .______l O —
(49) YELG e

where ky «, B, v, 8 are constants, is 0 = k = o.
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We shall henceforth speak of functions of the form (49) as loga-
rithmic functions.
Finally let

Wz e b, 0 =io,

where @ and b arc constants. We find

i . { 1
Py 3l =— 0= — ¢ Boz
2 [ Va v —b
. i W
o== bew - —=log ~——,
Ji, Va Wb

whence
We—bh={(ny—0b)e" iy
and therefore

0= = ¢iV?

o= — ¢y
\/9‘ (wa—0)

Thevefore, the intrinsic equation of any ecponential function of

the form
aza

(30) W eVl g )
N .

where l, a, B, v, 6 are constunts, is

(1) 0z heivis,

where ko is a constand, which may be equated w unily if the lower
Limit of the integral invariant @ be selected accordingly.

1V. — Rational osculants.

In order to be able to interpret the invarviants alveady found, and
for the purpose of obtaining still others of a more fundamental cha-
racler, we now introduce a device suggested by diflerential geometry.
In the metric theory of plane curves, for instance, certain osculating
curves of a simple characler are introduced, such as the tangent, the
osculating circle, etc. The properties of these osculants, and their
relations to cach other constitute the subject matter of differential
geometry. But the kind of osculants considered in any part of diffe-
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rential geometry depends essentially upon the group of transfor-
mations which, in that branch of geomelry, is regarded as funda-
mental. Thus the osculating circle plays no part in projective
dilferential gcometry, since a projective transformation does not, in
general, transform a circle into a circle.

Our present investigations ave in the domain ol the theory of func-
tions of a complex variable, and we are interested in those properties
of such functions which remain unchanged under any linear translor-
mation of the independent vatiable. Now obviously a rational fune-
tion of degree n will be transformed into another rational
Junction of the same degree by awy lincar transformation of the
independent variable.

Again, lel us consider two analytic functions

W2 g ()3 b @y 3l o @ sR - @ SR L,

Wy o= by -k Oy 3 o= Dy st oo 03 ol Dp 3P -,

which ave so related that

(y:oz by, a = by, Cees by Aot 55 Oy

We shall say that the two functions have K order contact at the
point 3= o, The point z = o may be called the point of contact. Let
us now subject s to any lincar transformation. Formulae (5) show
that we shall have

dy= by, ay=z 0y, o s by W15 Dy

Consequently, the order of contact between iwo functions remains
unchanged under lincar transformations of the independent
variable.

Therefore, the following problem clearly belongs to our field. 7o
determine the rational function of degree a which has contuct of
the highest possible order with a given analytic function at a given
poind. We shall henceforth speak of this function as the osculuting
rational function of degree a.

This problem may be solved very easily by explicit {ormulac. It is
included in a more general problem studied by several mathemati-
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cians, especially by Frobenius ('), and by Padé (*), namely the follo-
wing : to determine the rational function, whose numerator is of
degree «and whose denominator is of degree 8, such that the power
series expansion of this fraction at a specified point (say at 3 =o0)
shall agree with a given power series

Ay @, s 4 ags*+. ..

as far as possible, that is, ordinarily 10 « + § + 1 terms. The {ractions
obtained in this way may be arranged in a double entry table usually
known as P’adé’s table. We are only interested in those (ractions of
Padé’s table for which a = 8, thatis, those which would be located
normally in the principal diagonal. The reason for this is apparent.
To specily the degrees of numerator and denominator separately is
equivalent to the requirement that a certain number of zeros or poles
of the rational function shall be at infinity. But in our present theory
the point at infinity is in no way distinguished by special properties.

The formulae of Frobenius give us immediately the following
results.

Given the expansion of a function, analytic in the neighborhood
of z=o,
W= @y )5 4 @y 3 a5

The osculating rational function of degree o will be

'l\
(52) %
Uq
where
al\ Ay, IR ] Aoy n""-ﬂ
- -%—1
(53) rlva: ay, Ay, ey Quayy ST Q3
ey vy ey ceeay DRI RN IR
Qor1y oy +oov Qagy g3~k @y 37 - @

(") Crelle’s Journal, vol. 90, 1881.
() Annales scientifiques de Ulicole Normale supéricure, 3¢ série, 18g,
vol. 9.
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and
a,, a,, ey Qg 3%
a a ey @ 5%t
=7 — 29 31 ] 041y
(34) Uy,= *
.oy “oy BN .
Agvyy  Qgrzy, ooy Aoy, 1

Moreover this rational function will actually be of degree o and in
its lowest terms, if and only if the determinant

a, a,, ey Qg

aasy as,

oy N } ceey @
(55) - 1 Qg
N cery eeae

Aoy Auggs o ooy Qoxy
is different from sero,

The following relation between two successive rational osculants
should also be noted

g Ty Ty €34 5%+
20 —_ % 1y,
(%) Ve Ua = UaUpry U

One very obvious remark may be made atonce. The quantitics c,,
defined by (55), are relative incariants of the function w = f(s)
under linear transformations of the independent variable.

To prove this, let us suppose

¢y 740, caZ o, Cu1 250, Cou=0.
Then cachi of the osculants

T . T \ '-I‘a.—. .

[T U/ VN

is actually of the degrec indicated and is not reductible to a lower
degree, but according to (56) we shall have

" E\
Py Tooy
— .

Us ~ Uay

In other words, the rational osculating :function of degree o, which
has 2at" order contact with «, is not in its lowest terms but reduces

(1) Froeenws, loc. cit., p. 6, équation (16),
Journ, de Math., tome 1. — Fasc. IV, 1921, 53
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Ty
Ua ;

not only contact of order '»(oc—t) with a = f(z) but contact of

order at least 2a: We shall say that it lryperosculates the lunction

w = f(3). But hyperosculation is obviously a property invariant

under linear transformation. The refore the condition ¢,= o is an inva-

riant equation, and c, must be an invariant, as stated above.
Since the sum of the indices in any term of the expanded determi-
nant is «*, the weight of ¢, is equal to «*, and the effect of the infi-

- nitesimal transformation (7) upon ¢, is given by

(37) . deq== ahey 0L

tO

- That is, the osculating rational function of degree o —1 has

The direct proof of (37) is somewhat complicated and may be
omitted. The invariants

i =a, Cy==ayay— al,

have already made their appearance in Art. 1. Moreover the con-
ditions

(58) Comt 72 0y Co =0, Car1 =0, Cot-27= 0y cee

obeiously imply that « = f(z) is a rational function of de-
gree o— 1.

This also follows from the fact that the coellicients of the power
scries will, in this case, possess a scale of relation.

Of coursc the invariants ¢,, ¢,, ¢y, ... do not form a complete
systzm. For, as we advance from ¢, to ¢,,,, Lwo new cocllicients, a,,
and @, ,, arc introduced at the same lime. It is casy however to
form a complete system from these invariants by adding to them the
invariants

(39) dy=a,cy— 202, ¢y.
That these quantities are invapiants is casily scen ax follows. Since ¢,

is a relative invariant of weight «?, a, is an absolute invarviant. The-

relore (See Art. 1) its derivalive is a relative invariant. But this devi-

valive is
a¥eg—aat’"lcqq) _ ajcq— '@ | Ca

2 2 a1
a3 as
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Since a, is a relative invariant, the numerator of this fraction is also a’
relative invariant; but this numerator reduces to o, since

1
ay=w=2 () n"’) = 2 ay.

Of coursc the weight of d, is a* + 2.
We can find a simple general expression for ¢, in terms ol
@y @yy ..o\ Qay. Todo this we obscrve in the first place that

(60) ap=(k+Vup  (h=o0,1,3,...),

since
i T
= — W = (h 1) ———— )
= Sy |

Now let us write ¢, as follows

lA—1 k) A-+1
Ul 2) k—1) k K-+
o= ally e, oo @fTY alll, aiity o A,
«— .
crey eeey ey eaeeey ey evsary  siay wwas
Ly 12 (h—1j (k) (A1) (L1
Ay g v gy Qg Qehxy ooy Qapy

where the upper indices, which indicate the column to which each
element belongs, have been introduced merely (or the sake of fixing a
notation for the cofactors. We actually have

X — i) —
ad = a¥ = ay,

.

and we shall denote by A} the cofactor of @} so that
x x ' x
-\
v, e— A — () A8} e — (x) k3
‘1—}_‘ aMAf ~E a G =... '—E a AL
=1 i=1 i=1
)
We find
-t ] @M, @, oL el apg. dEEN L e
N\
A=V e ) s eeaeee eeey e
ol 2 A - .
k=t |oagly a(u—’H’ R I LI 3 JY "‘;f:;,» coe G
Ay, gy, e Qg (1) Az
N ey e e oo by
Qay Harpy sovy gy, 3% Aay
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or
o—1
C’a:z [ak+11\$,f"+ 2(1/.-_,_2}\2.}21 + oot XAy .‘\f{.ﬂa-d
k=1
(0 ) Qa AR (a4 2) @ AR - 2@ AL

Thus we have found

= ay A 4oa2ay AN 4+ (a—1)ag Al

4oy, Al

+ay AR taa, AR (@ —age AR 4oy, AR

......... et e et et er e et a bt e
+ay ARV aae i AR (@ 1) @aa s AT a a1 ARTY
+ Ay AR +2(11-r-'z’\‘a°.‘.).1 Hoet (@ DAy AR, +aay AR

+ o[ @ar A+ g AR B T - R
The sum of the firsL o terms, in the fivst column
agA{l“+ A a“_‘_‘A(aa}: 0.

The same thing is true of the sum of the first « terms in all of the other
columns, excepl the last. Consequently

o= o[y Al b a@u A A+ asg AR ]
4 o @yt AR g AR L asg AR ],

so that we lind finally

ay, @y, ey Ay

g,y @y, sy Qg oy
(61) ch=aa ] « .y ey ,

“a._h (11, cey agu_._!

Axi1r Aagy ooy (g

where the determinant differs from that for ¢, only in the last row.
The dericative of ¢, is obtained by increasing the index of each
element in the last row of ¢, by a single unit, and then multiplying
the whole determinant by 2.
This formula assumes an interesting form if we rcmember that
1 dkw

Ap== =

&1 dsF”



DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 419

As a result of formula (61) we may regard the invariants d, as being
known in terms of the coefficients a@,, @,, ..., dg,, in the form of sums
of two determinants.

The direct proof of (57), which has been omitted, may be based
upon a calculation very similar to the one just completed.

We proceed now to study the distribution of the poles and zeros of

. . . . .7
these rational osculants. The osculating linear function is ;5> where

U,
m a, @3 a, <
ll: ) U|: l‘
Ay, U3+ QA Aq, |
Therefore we tind the formulac
1 Ay
(62) . fasd —l> ¢ = ———o—l—:, >
ay Ayty— i

where p is the pole, and e the sero of the osculating linear func-
tion. 4

The expression for the osculating quadratic function depends upon
ayy @y, @y, @y and @,. If, in this cxpression, we replace @, by an arbi-
lrary parameter A, we obtain @ one-parameter family of quadratic
functions each of which will have third order contact with the function
w= f(z) at 3=o0. We shall speak of these quadratic functions as
penosculating quadratics. The osculating quadratic is that penoscu-
lating quadratic for which A has the value ;.

The denominator of the general penosculating quadratic is

a a, 5*

(63) a ay 3 |=(ray—a)s*+ (aa3—ray)s + a ay— ai.
ay 1 ) §

Since its coefficients are linear functions of A, there will exist in
general two values of A, call them A, and A,, for which the linear
factors of (63) will become identical. These values of A are given by

3

(64) = g [—mea—saa) = ei—aa)]-

= -3
ay

Those penosculating quadratics which correspond to A =1%,, and
to A = A, will be the only oues whose two poles coincide. We shall
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call them the singular penosculating quadratics. Let p, and p, be the
poles of the singular penosculating quadratics. Then p, and p, will be
obtained [rom the factors of (63) by equating A to 2, and A, respec-
tively. Thus we find that

o ay+- ol —ajay ay—\Val —a,a,
(()‘)) | I ——————————y P —————,
25 oy

are the poles of the two singular penosculating quadraiics.

Let us assume «, % o, and that the series under consideration has
beun reduced (o its lirst canonical form (See Art. 1). Then we shall
have

W= Ay + A s ARt AL,
where
o, ay— a3

Al\(': Qq, :\l:l, .‘\3:(. .‘\;y: ’ e

at
Thus we {ind
P ==, P pa=o,

showing that the four points o, p, p,, p. form a harmonic set, that is,
the cross-ratio

(66) (OVl’apHpﬁ)::—l'

Now the cross-ratio of four points in the = plane is left un-
changed by all linear \ransformations of =3 to a function of 5 and
the linear function which osculates it at z=o will corvespond the
transformed function and its linear osculating function. Consequently
we obtain the following theorem.

Let s be any point of the plane in the neighborhood of which the
Sunction f(z) is analytic and where f'(z) ts not equal o sero.
Counsider the osculating lincar function and the tvo singular penos-
culating quadratics of f(3)which belong to the point s, which shall
hence forth be called the potnt of contact. Then, the point of contact
and the pole of the osculating lincar function are separated har-
monically by the poles of the tvo singular penosculating qua-
dratics.

Of course this gives us the corollary that (ke four points mentioned
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are on one and the same circle, 1t being understood, as is customary
in this theory, that a straight line is to be regarded as a special circle,
namely a circle through infinity.

In proving this theorem we made use of the canonical form of the
expansion. Of course the theorem may be proved without this device,
but not without sume calculation. Tt suffices for this purpose to note
that

(67)

=
=
=

an equation which is equivalent to (66 ).

Let us now consider any penosculating quadratic, and let us denote
its poles by p® aud p. These poles will be distinct, except when A is
equal to cither A, or A,, and they will always be the roots of the qua-
dratic equation,

(68) (hay— a)*+ (ayuy—2.a,)5 +a,a; — a3 = o,

which ix obtained by equating (63) Lo zero. According to (65) p, and
p» are the rools of the quadratic

(6g) (33 —20,3 4+ a,=o.
.. & . .
But the harmonic invariant of these two quadratics, namely,
(Mety — a2t - (a3 — aj)ay + (d,ay—hay)a,

is equal to zevo lor all values of A, Consequently p* and p* arve har-

monic conjugates with respect 1o p, and p,. This gives rise to the
following theorem.

The poles of every penosculaling quadratic, and therefore also
the poles of the osculating quadratic, are harmonic conjugates of
each other witl respect to the poles of the wvo singular penosculating
quadratics.

The same result may also be expressed by saying that the poles of
the penosculating quadratics ave pairs of an involution.
“quation (68) will furnish, as its roots, the poles of the osculating
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quadratic if we put A = @,. Therefore we find

A, a, — @y a, a,a,— a3

(70) T+ = T

where q, and g, denote the poles of the osculating quadratic.
We now pass to the consideration of penosculating and osculating

. . . .. T . .
cubics. The osculating cubic is o> and the penosculating cubics are
3

obtained from 'flf by writing an arbitrary parameter A in place of a,.
3
Thus the poles of the pcnosculating cubics are the roots of

a a, a; 3*

]

a a; a, 3 )
(z1) ' =— A3+ Bs'—Cs+D=o,
a a, ag S
a, a; 1 1
where
1 a a a, a a ay
A=|a a a;], B=|a, a a;]|,
ay as A a, a; A
(72)
. A, a a a, ay
C=|a a; a|, D=|a a; a,
a, Qs A a; @, a;

Since the coefficients of (71) are linear functions of A, the poles of
every penosculating cubic constituie a triple of a cubic involution.

The product zU,, where U, is the denominator of the osculating
quadratic,will be the denominator of one penosculating cubic,namely
that one which corvesponds to A = %. There also exists a penoscula-
ting cubic, one of whose poles coincides with the pole of the oscu-
lating linear funciion.

In order to determine the essential properties of this Jalter cubic,
let us assume that the given expansion for « = f(z) is in the first
canonical form, so that

(73) ay=1, as=o. a,= Ay,
we then find

A 1
(74) P =, PirtpPs=0, q,+qg=—;(-§-, l]l(]g:—-m-
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In order that p = o may be a root of (71), we must have A = o, and
this condition furnishes the following equation for A :

Ay
(75) A= j—\-g(,‘u\,.‘\;-—Af)‘

Let r, and 7, be the remaining two poles of this special penosculating
cubic. Then r, and r, are the roots of the quadratic
Bys*— Gys + D =o,

obtained from (71) by substituting for A the value given by (75).
Consequently we have

1 1 G, 1B,
(76) R D oD
But we tind
D . A D
By=— A_Z-:(A“A'"’_'Az)’ Co= ‘xa ,
so Lhat
1 1 A, 1 Al—AA;
(77) l_,‘+7-__7\-‘;’ "1"2— A3 *

From (74) we lind

- A\ Gs ___u_\,
(78) T aatqs . A

and from (77) we find similarly

aryr, 2l
(79) ry+ 1y - A; ?
so that
N 2 1 !
(So) :::——{-——___.._;.L.
. ’/| (e "y AN

According to this equation, 7 is the harmonic conjugate of the
origin, both with respect to ¢,, ¢, and with respect to »,, »,. The
point < willappear so frequeatly in our theorems as to make it desirable
to give it a name. We therefore formulate the following definition.
The point ©, which isthe harmonic conjugate of the potnt of contact
with respect to the poles of the osculating quadratic, shall be called
the quadratic satellite of the pornt of contact.

Journ. de Math., tome I, — Fasc. IV, 1ga, 54
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We may now express the contents of equations (80) as follows.
Consider the special penosculating cubic one of whose poles corncide
with the pole of the osculating linear function. lts other two poles
will be separated harmonically by the point of contact and the qua-
dratic satellyte. _

Still another formulation of this theorem is the following. The
incolution determined by the two point-pairs (¢, q.) and (r,.r,)
has as its double points the point of contact and its quadrate
satellite.

We have characterized geometrically, the denominators of two of
the penosculating cubics, namely

{(s—g (s —qy) and (s—=p)(s—r) (s —ry),

wheee the latter may be veplaced by (s — 1) (3 — r,) il the expansion
of f(3) ix assumed o he in ils canonical form. The poles of any
penosculating cubte will then be the roots of the equation

(81) 33— g0) (s —gs) + p(3 = 1) (s = ry) ==,

whicl is merely another form for the cubic involution (71).
Let s,, $., 8, be the voots of this cubic for a given value of u, so that
8y a0 8y form a triple of the cubic involution. We find

(82) Xsi=q 4+ qe—p, Ixps=qige— () SISN 3T — P Ty,
and therefore

sesj— (114 13) 25= gy qa— (o 4s) (1 + P2),

S8y — Py ry == — (g qa) Py P

.
(83) { -

The equations (83), being independent of ., represent those pro-
perties of the triples of our involution, which are common to all of
them.

Let us determine those triples of the involution which have two
coincident points. They correspond to those penosculating cubics which
have a multiple pole, and which we shall call the singular penoscu-
lating cubics. For such a triple we may put

s=sy=d. s=e,

Xsi=ad +e, Iy, =d+ ade, $iSasy=de.
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If we substitute these values in (83), we find

d*+ade — (r\+ ry) (2d +e) ='q,q,—- (qu-F q) (ry+ ra)s

(34) \ _
d*e—ryry(ad + ) =— (q =4 qa) " Iss
whence
_ o rd—(g,4-¢)]
= b
(85) ai— r rg

d—= (M= e+ [gigy— ryra— (= ) (M rle + (o= g e
- 2(e=—r))(e—ry)

If the value of e from (85) is substituted in the first equation of (84),
we obtain the biquadratic equation

(86) dt—a(ry+r)d - [3rrs— qiqet (g -+ q) (8 4+ 2 | d?
—arrg 4 g d 4+ rrag ga=o,

Jor the double points dyof the cubic involution. To cach of these four
double points there corresponds, by means of (85) a point ¢, at its
companion, and we obtain in general four singular penosculaling
cubics cach of which has one of the points d; as a double pole and
whose remaining pole, in general distinct from ¢/, will be ¢;.

Of course equation (86) might also have been obtained by equating
to zero the Jacobian of the pencil of binary forms (71).

\We may write (86) as follows

. I Ao ;3 1 4 ) 1 I l
S W AL N N S ! -
(87 d TR (r/,q._. Py + A gt d + Gral s e

Consequently we find

[ N
O ! 4 ~ A 3 1
Z—:—s \‘-—-—-:——‘.-,-}-—-——'—-—-—,
d; T 142 [N
(Sl it
(8%) o ’
- g lidsddd
¥ —— dididyd, = qar 1.
e of el ol r].(/;‘?, VGG = ity
ik =1

The first of these equations is capable of a simple interpretation.
Let us put

(S ) L+l___ R 1 L
9 d,' dl - d,'j’ ;l—/‘_l_ ;//_d_g-/’
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where ¢, j, k&,  represent the indices 1, 2, 3, 4, arrangedin any order.
Then we shall have, according to (88),

1 I

R

Conscquently the four double poles of the four singular penoscu-
lating cubics have the following property. Select any two of them,
d; and d;, and determine the harmonic conjugate, d;;, of the point
of contact with respect to them. Proceed in the same way with the
other two double poles, dy and d,, giving rvise to the point dy. The
points d;; and dy will be harmonic conjugates of each other with
respect to the point of contact and its quadratic satellite.

The four points ¢; may he arranged in two pairs in six different
ways, thus giving rise to six pairs (d,;, dy,). According to the
theorem just proved, each of these pairs determines, with the point of
contact, a circle passing through the point z. We obtain in this way
six circles of the pencil determined by the point of contact and its qua-
dratic satellite.

A stmilar relation may be obtained from (86). Let us put

(0} ﬁj:§(¢15+d,‘)\ fk,:i(dk+d,). r:%lrp{—rg.

Then we find {rom (86),

(92) fl;(fii +fed =1, .
But in deducing equation (86) we used the canonical expaunsion, so
that the pole of the osculating linear function p was at inlinity. Con-
sequently equations (g1) and (92) indicate that (f;;,p) and (d;,d;)
are harmonic pairs, that (fi,»p) and (dy,d;) are harmonic, etc. We
obtain therelore the following second property of the points d;.

Select any two, d; and d;, of the four points d,, d,, dy, d,, and
determine the harmonic conjugate, f;, of the pole p of the oscula-
ting linear function with respect to them. Proceed in the same way
with the remaining two points, dy and d;, giving rise to the
point fy. The reselting two points, fi; and fy, will be harmonic
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conjugates of each other with respect to the pole of the osculating
linear function p, and the point r, which is itself the harmenic
conjugate of p with respect to r, and r,.

We obtain in this way six circles of the pencil determined by p
and ».

Let us put further

L3 I 1 . ‘..’..f,” &
(93) q9= 5 (u+aq.  dyn= 5 (dij+dide Jij= EifT;[,

so that ¢ is the harmonic conjugate of p with respect to ¢, and g¢,,
d,;x. 1s the harmonic eonjugate of p with respect to d;; and dj,;, and
Siire 1s the harmonic conjugate of the point of contact with respect
to f;, and f;,. We shall have

(94) G1gs=qT, PPy = PR,

If we make use of the coefficient of d* and the constant term of equa-
tion (86), we lind

(93) Siidiy+ fule+ fi fru=3rt- g7+ 4qr.
dfjd/u‘lfijfkl: (]I'T!.

On account of (g3), the last equation may be written
(96) dijirfijit= g% = q1qa,

so that d;j, and f;, are a pair of the involution

(97) 3= 1gs,

of which :=o0,3'=, and s =¢,, 3'=¢., constitute two other
pairs. .

Thus the involution of which the point of contact and the pole of
the osculating linear function form one pair, and for wich the
poles of tke osculating quadratic form a second pair, also contains
the pair d, fijue

Let us assume that d, and d, are distinct. Then

(s—d)}(s—e) and (3 —dy)¥(s— &)
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will be two distinct forms of the cubic involution (71), and this invo-
lation may be rewritten in the form

(98) (3=—d\)3(5—e¢))=v(3—d )2z —e).

Let s, 5., 5, be the roots of (98) for a given value of v. \We shall

have
(Se—dy) (s — ¢y) = v (81— dg)* (85— ¢

(=1, 2.3),
and therefore, by division,
sp—dy s,——d,)* S—ey | s,«—v,) .
sp—dy " s—dy Sp— €y S;i—ea] T

/

or
(99) (o550 (e eaesis) =1 (i k=1, 0, 3).

Thus the relations between the poles, s,y 8., sy, of any penosculating
oubic and the poles of the four singular penosculating cubic are
given by the double-rativ equations (99). In particular these rela-
tions will hold for the poles of the osculating cubie.

A similar relation may be obtained between s, $,, s, and the
points p, q,, ¢., 'y, Iy, by starting from the form (81) of the cubic
involution, if we remember that in our canonical form s = % takes
the place of = = p.

Some of the features ol thie theory developed so far may be extended
at once to the osculating rational functions of higher vrder, Theve will
always exist one penosculating rational (unction of degree «, one of
whose poles is the point of contact, and whose & — 1 other poles are
the same as the poles of the osculating rational function of degree 2 — 1.
There will exist another penosculating rational function of degree «,
one of whose poles coincides with the pole of the osculating lineav
function. The poles of all of the other penosculating functions of
degree o will be determined by an involution of degree «, of which
the two special integral rational functions of degrec a just mentioned
are the base forms. Among these penosculating functions there will
be 2(@ — 1) which are singular, that is, which have at least two coin-
cident poles.

Our theoreme have all been concerned with properties of the poles
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of the vavious osculating functions. But the same relations are also
true of their zeros.
To prove this statement, it suffices to note that the rational func-

"

] . .
tion UZ has contact of order 22 with f(3)at 3= o0, so that the ex-
N .

pansion of
Usf13)—"Tx

begins with the term of ovder at least 22 + 1. Since @, % 0, we find

that the expansion of
w1

U,
sy o

will then also begin with a term of ovder at teast 22 + 1.

Therefave. the rational osculants of 7('75 are the reciprocals of
the corresponding ratronal osculants of f(3). Consequently the same
relations which we have found between the poles of the rational
osculants of f(3) must also hold between their zeros. The same
statement also applies to the point-sets for which the various osculants
assume a given value &, even it & is different from zero orv inlinity.

We have alveady pointed out that the rational osculating functions
of ovder 1, 2, 3, ..., %, .... which we have studied are the functions
which normally oceupy the positions in the principal diagonal of the
Pad¢ table. We have also studied certain classes of penosculating
functions which have not beea considered by Padé, and it appears
clearly from our exposition thal these penosculants are needed for the
geometric interpretation. We have notso far considered any of the
rational functions of Padd’s table which are not on the prineipal
diagonal. But our original objection to these functions, namely the
non-imvariant character of their delinttion, may now he disposed of,
at least if we use some canonical form for our power sevies so that the
point at infinity becomes the pole of the osculating linear function or
some other invaviantly delined point. Consequenty we may now
regard all of the functions ol the Padé table as legitimate objects
of our theory, opening up a lavge tield fov further investigation.

The theoreme wich have been established on the question of the
convergence of a sequence of Padé fractions are of course of special
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interest. We merely mention that they provide, among other things,
criteria as to whether a given power-series does or does not represent
a meromorphic function, and that, in the former case, the poles and
zeros of the rational oeculants approach in definite fashlon the poles
and zeros of the function f () as limits.

We close this section with a discussion of the convergence of the
canonical expansion which we have used so frequently; we have
postponed this discussion, because we shall make use in it of some of
the results which have been obtained since the canonical expansion
was first introduced.

Let us suppose that the original series

W=@y+ a5+ a5 4. ..,
is convergent for
[s|<R.

‘We obtained the canonical expansion by putting

ags a;p~
&= = -
a_~ p—s
l— _~
Q

where p is the pole of the osculating linear function. From our method
of deriving the canonical series it is evident that it will be convergent
if we have simultaneously

|s]<R. sl <lallpl,
or

|51<R‘ |:’l<“)—;|$
whence

’ 1
lsl<® |s|<;lel

Thus, the canonical expansion will surely be convergent in a circle
of center 5 = o and of radius r, where r is the smaller of the two

positive numbers, Rand - ~|pl
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\. — The osculating logarithm.

We saw in Art. 3 that the absolute differential invariant

I o

0= Vs

W

has a constant value ) = £ for any function of the form

1 s—u
(100) w=—log + (.

/> s—0b

Since such a function involves four arbitrary constante, a, b, &,
and 1, we may expect to lind a logarithmic function whicl has third
order contact with a given analytic function

w=f(3)=ay+ a3+ @St + ..,

at the origin. The resulting logarithmic function shall be called the
osculating logarithm.

We see at once that for the determination of & we have
(101) h=4= V:_“';j‘_i’

W

where, of course, the value of 0 for : = o is meant, and where a defi-
nite determination should be chosen for the square root. However, a
change in this determination has no actual significance since it will
be balanced by an interchange in the values of a and 6, the two
singular points of the vsculating logarithm.

With this value for k, we tind from (100),

ﬂ’__ t [ (S
ds “5\7; :——u_:—-—b_’

if_s‘_"_;[_ L, ‘
T gal G—al T (5= b))

In order that (100) may represent the osculating logarithm, these
dw d*w

value of w, —=? =z must be equal o a,, a,, 2a, respectively for s=o.

-
Journ. de Math., tome I, — Fasc. 1V, 1gna. 53
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We obtain the following conditions

0\/

o L[] '_) N -__'_(;_').
(l*‘(}\/; Ev—u/’ "ag'_g\/’.}, VR

From the last two cquations we conclude by division

@

-+

QA -
-
Il
AR
|
J

(102)

that is; the singular points of the osculating logarithm are har-
monic conjugates of cach other with respect to the point of conlact
and the pole of the osculating linear function.

Since we have also found

l 1 —
— = == Y
o O v
we obtain the formulae
N 2 2a, o a2 .
103 - = — = 0
( ) t a, h a, Ve
whence
(1o}) aﬁqu+dnUmu-a)] bH”JW“V“UWN*“”
! - Sal —Ga,ay o S8a; —6ua,
and finally
- a,—aif
(103) {ozay+ loT 2 V
V) s ai0ya

that branch of the logarithm being selecied in (105) such that the
cxpansion of (100) will actually have a, as its constant term.

If the function w = /(3) is not a linear funclion, we may use Lhe
second canonical formn, for which

a,=o, a,= — a,.

We then find
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so that

(106) (P Pay @, O :_%__;.

!
)

V3.
Moreover, the circles delermiried by (o, @, b) and (o, p,, p.) are
(for this canonical form) the imaginary and veal axes of the = plane
(circles through p = ). Since angles are preserved by linear (rans-
formations we have proved the following theorem.

The cross-ratio determined by the poles of the two singular
penosculating quadratics and the singularitics of the osculating
logarithm is equal to a complex cube root of unity. The circle
determined by one of these points pairs with the point of contact
is orthogonal to the corresponding circle for the sccond pair,
and these cireles meel again in the pole of the osculating linear
function.

Let us consider for a momeni the conformal representation of the
s — planc upon the a — planc established by means of the osculating
logarithm. If 3 moves on a circle of the pencil throueh @ and 0, the
el b )

{ . . . .
= will remain constant; if s moves on a circle of

.,——[)

argument of

S—a . .
~ will remain conslant.

S— 0

the orthogonal family, the modulus of

To the circles of the fist family there corvespond in the w — plane
the straight lines of a family of parallels, and 1o the civcles of the
second family will correspond the straight lines of the orthogonal
family. Through the point of contact (z=0) there will pass a civele
of cach family. If we use the same canonical form as above, the civcle
through o, @, and b, is the axis of imaginavies. All circles of the
second family have the property that @ and b ave inverse points with
respecl lo each of them. Since in our canonical form

r. 3
a==-—bh-= =~ \' 3,
the circle of the second family which passes through s = o is the axis

of reals. Both of these lines, regarded as circles, pass through p = =.
We obtain the following result.
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Consider the pencil of circles through the singular points of the
osculating logarithm, and the orthogonal family of circles. The
tvo circles of the two families which pass through the point of
conlact meet again in the pole of osculating linear-function.

We may also express this resull as follows.

Consider an analytic function w = f(3) and the osculating
logarithm of f(3) at s=o0. Determine the isothermal system of
straight lines in the w — plane which corresponds, by means of the
osculating logarithm, to the isothermal system of circles which
is determined by the singular points of the osculating logarithm.
To this system of straight lines in the w — plane there corresponds,
by means of w = f(3), an isothermal system of cwrves in the
s — plane. The two curces of this system which meet at s =o0 will
have osculating circles which meet again in the pole of the lincar
osculating function.

The truth of this statement follows from the preceding theorem,
if we remember further that the osculating logarithm has third order
contact with f(3) at 5 = o. Consequenltly the curves of the 1wo iso-
thermal nets in the 5 — plane, which correspond to the above men-
tioned system of lines in the « — plane, by means of the two vela-
lions

1 I—a

=log
o\a °

w=f(3) and Wz +{

s—0
will have the same osculaling circles al 5 = o.

It only remains to put into evidence the fact which is already clear
from our discussion, that the quantity A which appeavs in (100) is
actually an invariant for all transformations of the form

as+f3

e

73 +0

[} mnii S N ST

For this purpose, lei z, and =, be any two values of 3, and w, and v,
the corresponding values of w. Then we lind

. 1 0 Sy—a@ 5 —a
Vg — (V) == = loy H ’
kyo Ga— b5 =0,
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whence
- |
k \/’) = mlog(a, b, 59y :-.),
where (a, b, 3,, 5,) denoles the cross-ratio of the four points mea-
lioned. This formula accomplishes our purpose since the right member
obviously remains invariant under all transformations of the group
under counsideration.



