JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Extrait d'une lettre de M. Liouville à M. Besge

Journal de mathématiques pures et appliquées 2^e série, tome 10 (1865), p. 234. http://www.numdam.org/item?id=JMPA_1865_2_10__234_0

 $\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

EXTRAIT D'UNE LETTRE DE M. LIOUVILLE A M. BESGE.

« ... Oui, la forme

$$x^2 + y^2 + z^2 + 7t^2$$

dont vous me parlez représente (proprement ou improprement) tous les nombres. Pour le prouver, il suffit de considérer les entiers

$$4^{\alpha}(8\mu + 7)$$
,

puisque tous les autres s'expriment déjà par une simple somme de trois carrés, c'est-à-dire en prenant t=0. Il suffit même de considérer les entiers

$$8\mu + 7$$
,

attendu qu'en faisant x, y, z, t multiples de 2^{α} , on se débarrasse du facteur 4^{α} . Les équations

 $7 = 0^2 + 0^2 + 0^2 + 7.1^2$

et

$$15 = 2^2 + 2^2 + 0^2 + 7.1^2$$

répondent aux cas de $\mu=0$, $\mu=1$. Pour des valeurs de μ plus grandes, posez t=2, et l'équation

$$8\mu + 7 = x^2 + y^2 + z^2 + 7t^2$$

se changera en celle-ci

$$8(\mu - 3) + 3 = x^2 + y^2 + z^2,$$

laquelle est, comme on sait, toujours possible. Donc, etc. »