JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Théorèmes concernant le quadruple d'un nombre premier de l'une ou de l'autre des deux formes $20\kappa + 3$, $20\kappa + 7$

Journal de mathématiques pures et appliquées 2^e série, tome 8 (1863), p. 85-88. http://www.numdam.org/item?id=JMPA_1863_2_8_85_0

 \mathcal{N} umdam

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

THÉORÈMES

CONCERNANT

LE QUADRUPLE D'UN NOMBRE PREMIER DE L'UNE OU DE L'AUTRE DES DEUX FORMES 20k + 3, 20k + 7;

PAR M. J. LIOUVILLE.

En considérant le nombre N des décompositions dont le quadruple d'un nombre premier $m \equiv 3 \pmod{4}$ est susceptible sous la forme

$$x^2+p^{4l+1}y^2,$$

x et y désignant des entiers impairs et p un nombre premier 8g + 3 qui ne divise pas y, on prouve sans peine que ce nombre \mathbb{N} est essentiellement pair. Mais quand m est de l'une des deux formes spéciales

$$20k + 3$$
, $20k + 7$,

c'est-à-dire quand m est à la fois $\equiv 3 \pmod{4}$ et $\equiv \pm 3 \pmod{5}$, on peut aller plus loin et démontrer que N est la somme de deux entiers impairs N_1 , N_2 , en sorte qu'on est assuré d'avoir au moins N=2. Cela résulte de deux théorèmes que nous allons énoncer et qui sont fondés sur la distinction des nombres premiers p de la forme 8g+3 en deux classes suivant qu'ils sont ou non résidus quadratiques de 5; l'une de ces classes contiendra donc les nombres premiers p de l'une ou de l'autre des deux formes

$$40h + 11, 40h + 19,$$

et c'est à elle que se rapportera l'entier impair N_i : l'autre contiendra les nombres premiers p de l'une ou de l'autre des deux formes

$$40h + 3$$
, $40h + 27$,

et c'est à elle que se rapportera l'entier impair N₂. Nos deux théorèmes s'appliquent en effet à ces deux classes de nombres premiers prises successivement.

Théorème I. — « Pour tout nombre premier m de l'une ou de » l'autre des deux formes 20k + 3, 20k + 7, on peut poser au moins » une fois (et toujours un nombre impair de fois) l'équation

$$4m = x^2 + p^{4l+1}y^2$$

» x et y étant des entiers impairs et p un nombre premier 40h + 11 » ou 40h + 19, qui ne divise pas y. »

THÉORÈME II. — « Pour tout nombre premier m de l'une ou de » l'autre des deux formes 20k + 3, 20k + 7, on peut poser au moins » une fois (et toujours un nombre impair de fois) l'équation

$$4m = x^2 + p^{4l+1} y^2,$$

" x et y étant des entiers impairs et p un nombre premier 40h + 3" ou 40h + 27, qui ne divise pas y."

On peut réunir ces deux énoncés en un seul en disant que : « Si du » quadruple 4m d'un nombre premier donné, de l'une des deux » formes 20k + 3, 20k + 7, on retranche tant que faire se peut les » carrés impairs

$$1^2$$
, 3^2 , 5^2 , 7^2 , 9^2 , 11^2 ,...,

» il y aura un nombre pair N de restes susceptibles d'être mis sous la
» forme

$$p^{4l+1}\,\mathcal{Y}^2,$$

» p étant un nombre premier (naturellement de la forme 8g + 3) qui » ne divise pas \mathcal{J} . Mais ce nombre pair \mathbb{N} sera la somme de deux » nombres impairs \mathbb{N}_1 , \mathbb{N}_2 respectivement relatifs aux deux cas de » $p \equiv 11$ ou $19 \pmod{40}$ et de $p \equiv 3$ ou $27 \pmod{40}$. » Soit, comme premier exemple, m = 3, d'où 4m = 12. On aura

$$12 - 1^2 = 11.1^2$$
,
 $12 - 3^2 = 3.1^2$.

d'où visiblement N=2, $N_1=1$, $N_2=1$, conformément à ce que nous avons annoncé.

Prenons ensuite m = 7, d'où 4m = 28. Il viendra d'abord

$$28 - 1^2 = 27 = 3^3.1^2$$

ce qui ne fournit pas un reste canonique parce que l'exposant 3 n'est pas de la forme 4l + 1; mais en continuant on a

$$28 - 3^2 = 19.1^2$$
,
 $28 - 5^2 = 3.1^2$.

ce qui conduit encore à $N_1 = 1$, $N_2 = 1$.

Soit à présent m = 23, d'où 4m = 92. Les restes seront

$$9^{2} - 1^{2} = 7.13,$$

 $9^{2} - 3^{2} = 83.1^{2},$
 $9^{2} - 5^{2} = 67.1^{2},$
 $9^{2} - 7^{2} = 43.1^{2},$
 $9^{2} - 9^{2} = 11.1^{2}.$

Il y a quatre restes canoniques, et le dernier seul appartient à la première classe des nombres p. On a, par suite, $N_1 = 1$, $N_2 = 3$, et cette fois encore notre théorème est confirmé.

Pour m = 43 (c'est-à-dire pour 4m = 172) on a également $N_4 = 1$, $N_2 = 3$, les restes canoniques étant d'une part

et d'autre part

$$172 - 1^2 = 19.3^2,$$

 $172 - 3^2 = 163.1^2,$
 $172 - 5^2 = 3.7^2,$
 $172 - 13^2 = 3.1^2;$

les restes non canoniques sont

$$172 - 7^2 = 3.41,$$

 $172 - 9^2 = 7.13,$
 $172 - 11^2 = 3.17.$

Enfin pour m = 47 (ou 4m = 188) on trouve $N_4 = 3$ et $N_2 = 3$. Après avoir écarté le reste non canonique

$$188 - 1^2 = 11.17,$$

on obtient en effet ces deux classes de restes

$$188 - 3^2 = 179.1^2,$$

 $188 - 7^2 = 139.1^2,$
 $188 - 13^2 = 19.1^2,$

puis

 $188 - 5^2 = 163.1^2$

 $188 - 9^2 = 107.1^2$

 $188 - 11^2 = 67.1^2$.

Je ne crois pas devoir pousser plus loin ces vérifications numériques.