JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Théorème concernant les nombres premiers de l'une ou de l'autre des deux formes $40\mu + 11,40\mu + 19$

Journal de mathématiques pures et appliquées 2^e série, tome 5 (1860), p. 387-388. http://www.numdam.org/item?id=JMPA_1860_2_5_387_0

 $\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

THÉORÈME

CONCERNANT LES NOMBRES PREMIERS DE L'UNE OU DE L'AUTRE DES DEUX FORMES $40\mu + 11$, $40\mu + 19$;

PAR M. J. LIOUVILLE.

Pour tout nombre premier m de l'une ou de l'autre des deux formes $40\,\mu + 11$, $40\,\mu + 19$, on peut poser (un nombre impair de fois) l'équation

$$m = 5x^2 + 2p^{4l+1}y^2$$

'x et y étant des entiers impairs, et p un nombre premier (20v + 3 ou 20v + 7) qui ne divise pas y.

En d'autres termes, si d'un nombre premier donné m, de l'une ou de l'autre des deux formes $40\mu + 11$, $40\mu + 19$, on retranche les termes de la suite

$$5.1^2$$
, 5.3^2 , 5.5^2 , 5.7^2 , 5.9^2 ,...,

qui ont une valeur moindre, il y aura un nombre impair de restes susceptibles d'être mis sous la forme

$$2p^{4l+1}y^2$$
,

p étant un nombre premier qui ne divise pas y. Quant à la forme linéaire de p (20v+3 ou 20v+7), elle est une conséquence de l'équation même

$$m = 5x^2 + 2p^{4l+1}y^2$$

qui dans nos hypothèses sur m entraîne ces deux congruences

$$p \equiv 3 \pmod{4}$$
, $p \equiv \pm 3 \pmod{5}$.

Considérons d'abord les nombres premiers $40\mu + 11$. Le plus pe-49.. tit est 11, et l'on a

$$11 = 5.1^2 + 2.3.1^2$$

conformément à notre théorème, 3 étant contenu dans la forme 201 + 3. Ensuite vient 131, pour lequel on a les trois décompositions canoniques

$$5.1^2 + 2.7.3^2$$
, $5.3^2 + 2.43.1^2$, $5.5^2 + 2.3.1^2$.

On en a également trois pour 211, savoir :

$$5.1^2 + 2.103.1^2$$
, $5.3^2 + 2.83.1^2$, $5.5^2 + 2.43.1^2$.

Passons à la forme $40 \mu + 19$. D'abord

$$19 = 5.1^2 + 2.7.1^2$$

et

$$59 = 5.3^2 + 2.7.1^2$$
;

car il ne faut pas compter l'équation $59 = 5.1^2 + 2.3^3$, l'exposant 3 n'étant pas de la forme 4l + 1. Pour 139, qui vient ensuite, on a trois décompositions :

$$5.1^2 + 2.67.1^2$$
, $5.3^2 + 2.47.1^2$, $5.5^2 + 2.47.1^2$.

Pour 179, on n'en a qu'une seule de l'espèce exigée, savoir :

$$179 = 5.3^2 + 2.67.1^2;$$

mais pour 379, on en trouve de nouveau trois,

$$5.3^2 + 2.167.1^2$$
, $5.5^2 + 2.127.1^2$, $5.7^2 + 2.67.1^2$.

Il y en a aussi trois pour 419; les voici :

$$5.1^2 + 2.23.3^2$$
, $5.5^2 + 2.3.7^2$, $5.9^2 + 2.7.1^2$.

Nous ne pousserons pas plus loin ces exemples.