JOURNAL

DE

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Théorème concernant la fonction numérique relative au nombre des représentations d'un entier sous la forme d'une somme de trois carrés

Journal de mathématiques pures et appliquées 2^e série, tome 5 (1860), p. 141-142. http://www.numdam.org/item?id=JMPA_1860_2_5_141_0

NUMDAM

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

THÉORÈME

CONCERNANT LA FONCTION NUMÉRIQUE
RELATIVE AU NOMBRE DES REPRÉSENTATIONS D'UN ENTIER
SOUS LA FORME D'UNE SOMME DE TROIS CARRÉS;

PAR M. J. LIOUVILLE.

Soit ψ (μ) le nombre des représentations d'un entier donné μ par une somme de trois carrés, c'est-à-dire le nombre des solutions de l'équation indéterminée

$$\mu = x^2 + y^2 + z^2,$$

où x, y, z sont indifféremment positifs, nuls ou négatifs. On a

$$\psi(1) = 6$$
, $\psi(2) = 12$, $\psi(3) = 8$, $\psi(4) = 6$,...

et nous conviendrons en outre de faire

$$\psi$$
 (o) = 1.

La fonction $\psi(\mu)$ jouit d'un grand nombre de propriétés curieuses dont j'aurai plus tard à m'occuper longuement. Celle que je vais indiquer me paraît digne de quelque attention quand on la prend dans toute sa généralité.

Soit n un nombre pair quelconque, en sorte que l'on ait

$$n = 2^{\alpha} m$$

 α étant > 0 et m impair. Désignons par A, B, C trois constantes arbitraires et par s un entier auquel nous donnerons les valeurs successives

$$s = 0, \quad s = \pm 1, \quad s = \pm 2, \quad s = \pm 3, \dots, \quad s = \pm \omega,$$

 ω étant le plus grand entier contenu dans \sqrt{n} , en sorte que $\omega = \sqrt{n}$ quand n est un carré. C'est à cet entier variable s que se rapporte la

1/12

somme

$$\sum (As^4 + Bs^2 + C) \psi (n - s^2),$$

que je désignerai par U. On peut avoir quelquefois $n-s^2=0$, d'après ce qui vient d'être dit, et c'est pour cela que nous avons fixé la valeur de $\psi(0)$ en convenant de prendre $\psi(0)=1$.

Cela posé, je trouve pour U cette expression très-simple

$$U = (3 A n^2 + 6 B n + 24 C) \int m,$$

où $\int m$ désigne, d'après une notation d'Euler, la somme des diviseurs de m.

Les constantes arbitraires A, B, C peuvent changer avec n. Rien n'empêche, par exemple, de faire

$$3An^2 + 6Bn + 24C = 0$$
:

alors on a

$$\mathbf{U} = \mathbf{o}$$
.

Une seule application suffira. Soit n=2, d'où m=1, $\int m=1$. Notre formule donne

$$U = 12A + 12B + 24C;$$

et c'est bien ce qu'on tire du calcul direct, en observant que les valeurs de s à employer ici sont 0,1 et -1, de manière que C se présente avec le facteur

$$\psi$$
 (2) + 2 ψ (1),

qui est égal à 24, tandis que A et B n'ont que le facteur

qui est égal à 12.