JOURNAL

ŊΒ

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

J. LIOUVILLE

Sur l'intégrale $\int_0^\infty e^{-x} x^n dx$

Journal de mathématiques pures et appliquées 1^{re} série, tome 11 (1846), p. 464-465. http://www.numdam.org/item?id=JMPA_1846_1_11__464_0

 \mathcal{N} umdam

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

SUR L'INTÉGRALE

$$\int_0^\infty e^{-x} x^n dx;$$

PAR J. LIOUVILLE.

Le produit $e^{-x}x^n$ s'évanouit aux deux limites o et ∞ , il n'a d'ailleurs qu'un seul maximum qui répond à x = n; on peut donc poser

$$e^{-x} x^n = e^{-n} n^n e^{-t}$$

en faisant varier $t de - \infty à + \infty$, et l'on a

$$\int_0^\infty e^{-x} x^n dx = e^{-n} n^n \int_{-\infty}^{+\infty} e^{-t} \frac{dx}{dt} dt.$$

En prenant les logarithmes des deux membres, la relation entre x et t se met sous la forme

$$x - n \log x = n - n \log n + t^2.$$

Soit x = n + u; elle deviendra

$$u - n \log (n + u) = t^2 - n \log n.$$

Mais, en désignant par θ une quantité essentiellement comprise entre α et 1, on a, d'après la formule de Taylor,

$$\log(n+u) = \log n + \frac{u}{n} - \frac{u^2}{2(n+\theta u)^2}$$

Il en résulte

$$\frac{nu^2}{2(n+\theta u)^2}=t^2,$$

d'où

$$u = \frac{nt\sqrt{2}}{\sqrt{n} - \theta t\sqrt{2}}.$$

Mais de l'équation

The second secon

$$x - n \log x = n - n \log n + t^2,$$

on déduit

$$\frac{dx}{dt} = \frac{2xt}{x - n} = 2t + \frac{2nt}{u}.$$

Donc, en mettant pour u sa valeur, on a

$$\frac{dx}{dt} = \sqrt{2n} + 2(1 - \theta)t;$$

par suite, et à cause de $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$,

$$\int_{0}^{\infty} e^{-x} x^{n} dx = e^{-n} n^{n} \sqrt{2n\pi} \left[1 + \frac{2}{\sqrt{2n\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} (1 - \theta) t dt \right].$$

Or la valeur numérique de l'intégrale

$$\int_{-\infty}^{+\infty} e^{-t^3} (1-\theta) t dt,$$

où le facteur $1-\theta$ est positif et <1, est évidemment inférieure à celle de

$$\int_0^\infty e^{-t^2} t \, dt = \frac{1}{2}.$$

Donc pour $n=\infty$ son quotient par $\sqrt{2n\pi}$ se réduit à zéro. De là une démonstration rigoureuse et assez simple de cette proposition connue, que le rapport des deux quantités

$$\int_0^\infty e^{-x} x^n dx, \quad e^{-n} n^n \sqrt{2n\pi},$$

a pour limite l'unité lorsque n grandit indéfiniment.