JOURNAL

DR

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

BESGE

Sur l'équation
$$\frac{d^2u}{dx^2} = \frac{Au}{(a+2bx+cx^2)^2}$$

Journal de mathématiques pures et appliquées 1^{re} série, tome 9 (1844), p. 336. http://www.numdam.org/item?id=JMPA_1844_1_9_336_0

 $\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

SUR L'ÉQUATION

ARTER SETAC SENANANASISENSELLIANANANASIANIAN ARTER ART

$$\frac{d^2 u}{dx^2} = \frac{Au}{(a+2bx+cx^2)^2};$$

PAR M. BESGE.

On devrait, ce me semble, dire un mot de cette équation (où A, a, b, c sont des constantes quelconques) dans les Traités élémentaires; car elle est du très-petit nombre de celles qu'on peut intégrer sous forme finie. En effet, si l'on pose $u = e^{sydx}$, il vient

$$\frac{dy}{dx} + y^2 = \frac{\Lambda}{(a + 2bx + cx^2)^2}.$$

Or Euler a reconnu [*] et il est facile de vérifier qu'en prenant

$$y = \frac{b+k+cx}{a+2bx+cx^2}$$
, et $k = \pm \sqrt{b^2 - ac + \Lambda}$,

on satisfait à cette dernière équation. Il est donc aisé de trouver deux valeurs particulières de u, et par suite de former l'intégrale complète de l'équation linéaire du second ordre dont u dépend.

^[*] Voyez les Mémoires de l'Académie de Saint-Pétershourg, t. III, 1809 et 1810.