JOURNAL

DR

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

E. CATALAN

Théorème sur la réduction d'une intégrale multiple

Journal de mathématiques pures et appliquées 1^{re} série, tome 6 (1841), p. 81-84. http://www.numdam.org/item?id=JMPA_1841_1_6_81_0

 $\mathcal{N}_{\mathsf{UMDAM}}$

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA

THÉORÈME

SUR LA RÉDUCTION D'UNE INTÉGRALE MULTIPLE;

PAR E. CATALAN.

La formule suivante

$$\int_{0}^{\pi} \int_{0}^{2\pi} \varphi(m\cos\theta + n\sin\theta\sin\omega + p\sin\theta\cos\omega)\sin\theta d\theta d\omega = 2\pi \int_{-1}^{+1} \varphi(\alpha\sqrt{m^{2} + n^{2} + p^{2}}) d\alpha,$$

que l'on doit à M. Poisson [*], est comprise comme cas particulier dans une autre formule que je vais démontrer, et où l'intégrale double se trouve remplacée par une intégrale multiple.

Soit l'intégrale d'ordre n-1,

(1)
$$A = \iiint dx_1 dx_2 ... dx_{n-1} \cdot \varphi \left(m_1 x_1 + m_2 x_2 + ... + m_n x_n \right) \sqrt{1 + \left(\frac{dx_n}{dx_1} \right)^2 + ... + \left(\frac{dx_n}{dx_{n-1}} \right)^2}$$

dans laquelle les variables reçoivent toutes les valeurs. positives ou négatives, propres à vérifier l'équation

$$x_1^2 + x_2^2 + \ldots + x_n^2 = 1$$
,

et dans laquelle aussi, par conséquent, les variables indépendantes satisfont à la condition

$$x_1^2 + x_2^2 + \ldots + x_{n-1}^2 \stackrel{=}{\leq} 1.$$

Cette intégrale revient évidemment à

(2)
$$\Lambda = \int \int \dots \frac{dx_1 \dots dx_{n-1}}{x_n} \varphi(m_1 x_1 + \dots + m_n x_n).$$

^[*] Nouveaux Mémoires de l'Académie des Sciences, tome III, page 126

Tome VI. - Mars 1841.

Pour la réduire, je prends les formules de transformation suivantes :

(3)
$$\begin{cases} x_1 = a_1u_1 + b_1u_2 + \ldots + l_1u_n, \\ x_2 = a_2u_1 + b_2u_2 + \ldots + l_2u_n, \\ \vdots \\ x_n = a_nu_1 + b_nu_2 + \ldots + l_nu_n \end{cases}$$

dans ces équations, les coefficients de u, sont

$$a_1 = \frac{m_1}{\Delta}, \quad a_2 = \frac{m_2}{\Delta}, \quad \ldots, \quad a_n = \frac{m_n}{\Delta},$$

en supposant

$$\Delta^2 = m_1^2 + m_2^2 + \ldots + m_2^2;$$

les autres coefficients satisfont aux conditions

$$(4) \begin{cases} b_1^2 + b_2^2 + \dots + b_n^2 = 1, \dots l_1^2 + l_2^2 + \dots + l_n^2 = 1, \\ a_1b_1 + a_2b_2 + \dots + a_nb_n = 0, \dots a_1l_1 + a_2l_2 + \dots + a_nl_n = 0, \\ \dots & \dots & \dots \\ k_1l_1 + k_2l_2 + \dots + k_nl_n = 0. \end{cases}$$

Le nombre des coefficients a_1 , b_1 , etc., dans les formules (3), est n^2-n . Les équations de condition sont en nombre $(n-1)+\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$. On pourra donc prendre arbitrairement $n^2-n-\frac{n(n+1)}{2}$ coefficients, ou $\frac{n(n+3)}{2}$ coefficients.

En ajoutant les carrés des équations (3), et ayant égard aux relations (4), on trouve

$$x_1^2 + x_2^2 + \ldots + x_n^n = u_1^2 + u_2^2 + \ldots + u_n^2$$

donc

(5)
$$u_1^2 + u_2^2 + \ldots + u_n^2 = 1.$$

Les formules (3) et (4) donnent aussi

(6)
$$m_1x_1 + m_2x_2 + \ldots + m_nx_n = u_1\Delta;$$

donc, au moyen de la transformation de variables qui vient d'être indiquée, la fonction $\varphi(m_1x_1 + \ldots + m_nx_n)$ devient simplement

$$\varphi (u_1 \Delta).$$

Il nous reste actuellement à transformer la quantité $dx_1 \dots dx_{n-1}$. Or, M. Jacobi a démontré depuis long-temps [*] que le système de variables employé ci-dessus donne cette relation très simple :

$$\frac{dx_1 \dots dx_{n-1}}{x_n} = \frac{du_1 \cdot du_2 \dots du_{n-1}}{u_n}.$$

En substituant dans la formule (2), on trouve

(7)
$$A = \int \int \dots \frac{du_1 du_2 \dots du_{n-1}}{u_n} \varphi(u_1 \Delta).$$

Dans cette nouvelle intégrale, les variables doivent recevoir toutes les valeurs réelles satisfaisant à l'équation (5).

Actuellement, remplaçons u_n par sa valeur, et donnons à u_i une valeur déterminée; nous aurons à évaluer

(8)
$$B = \int \int \dots \frac{du_{1} \dots du_{n-1}}{\sqrt{1 - u_{1}^{2} - \dots - u_{n-1}^{2}}},$$

les limites étant données par

$$u_2^2 + u_3^2 + \ldots + u_{n-1}^2 \stackrel{=}{\leq} 1 - u_1^2$$

On sait [**] que cette intégrale d'ordre n-2, a pour expression

(9)
$$B = \frac{\frac{n-1}{\pi^{\frac{2}{2}}}}{\Gamma(\frac{n-1}{2})} (1 - u_1^2)^{\frac{n-3}{2}};$$

^[*] Journal de M. Crelle, tome XII, page 40. — M. Sturm m'a fait voir que l'on peut arriver facilement à cette relation, en effectuant le changement de variables successivement, au lieu de l'opérer en une seule fois.

^[**] Mémoire sur la réduction d'une classe d'intégrales multiples, tome IV de ce Journal, page 336.

donc, en substituant dans la formule (7), et doublant le résultat à cause du radical, on obtiendra

(10)
$$A = 2 \frac{\frac{n-1}{2}}{\Gamma(\frac{n-1}{2})} \int_{-1}^{+1} \varphi(u_i \Delta) du_i (1 - u_i^2)^{\frac{n-3}{2}}.$$

Enfin, en égalant les valeurs (2) et (10), on a ce théorème :

$$(11) \int \int \dots \frac{dx_1 \dots dx_{n-1}}{\sqrt{1-x_1^2 - \dots - x_{n-1}^2}} \varphi(m_1 x_1 + \dots + m_n x_n) = 2 \frac{\frac{n-1}{2}}{\Gamma(\frac{n-1}{2})} \int_{-1}^{n-1} \varphi(u \Delta) du (1-u^2)^{\frac{n-3}{2}}.$$

Si l'on pose $u = \cos \theta$, on obtient, au lieu de la formule (10),

(12)
$$A = 2 \frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2})} \int_{0}^{\pi} \varphi(\Delta \cos \theta) \sin^{n-2} \theta d\theta.$$

Lorsque n=3, la formule (11) coı̈ncide avec celle de M. Poisson.

(Juin 1840.)