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1. INTRODUCTION

Let M be a real-analytic hypersurface in CN and let py be a distinguished point
on M. We shall address the problem of finding a normal form for M near py € M.
We require that the normal form is “sufficiently unique” (we shall be more precise
below) so that it carries useful information about the biholomorphic equivalence
class of (M, po), i.e. those germs (M’, p;) of real-analytic hypersurfaces M’ at p €
M’ for which there is a germ at po of a biholomorphic transformation Z’ = H(Z)
such that H(M) C M’ and H(po) = py.

We shall begin (in §2) by recalling the classical normal form for Levi nondegen-
erate hypersurfaces due to Chern-Moser [CM] (see also Cartan [C1-2] and Tanaka
[T1-2]). Our aim is to find similar results for hypersurfaces that are Levi degener-
ate. In order to isolate the right class of hypersurfaces to consider, we will need to
discuss (in §3) some fairly recent nondegeneracy conditions for real hypersurfaces,
holomorphic nondegeneracy and finite nondegeneracy. The former was introduced
by Stanton [S1] in connection with the study of infinitesimal CR automorphisms of
real hypersurfaces, and the latter, which can be viewed as a generalization of Levi
nondegeneracy, by Baouendi-Huang-Rothschild [BHR] in connection with a regu-
larity problem for CR mappings. Both notions were further discussed and used by
the author together with Baouendi and Rothschild in [BER1-3]. We shall present
an intrinsic formulation of the definition of finite nondegeneracy and also present
a sequence of invariants that distinguishes different ways that finite nondegeneracy
can occur (Definition 3.25). After the preliminaries on nondegeneracy, we shall
describe (in §4) a formal normal form for a certain class of finitely nondegenerate
hypersurfaces in C3. This normal form was obtained by the author in [E].

First, however, let us introduce some notation. We denote by p(Z,Z) = 0 a
defining equation of M near po; thus, p(Z, Z) is a real-analytic function near pg
with p(po,Po) = 0 and dp(po, po) # 0. We denote by T7(M) the complex tangent
space of M at p € M and by TI?’I(M) the CR tangent space of M at p € M, i.e.

(L.1) Ty (M) = Tp,(M) N Jp(Tp(M)), T, (M) = CI,(M) nT*'(CY),
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2 PETER EBENFELT

where Jp,: T,(CY) — Tp(CV) is the complex structure map and T} (CV) is the
usual tangent space of (0, 1)-vectors in CT},(CV). Thus, T¢(M) is the subspace of
the real tangent space that is invariant under the complex structure map J, and
T'(M) is the —i eigenspace of J, in CT}¢(M). The CR tangent spaces all have
complex dimension n = N — 1 and form a subbundle T%(M) of the complexified
tangent bundle CT'(M). We refer to sections of T%!(M) as CR vector fields, and
denote by Lq,...,L, a local basis for the real-analytic CR vector fields near py.
Studying normal forms for the real hypersurface M in CV is equivalent to studying
normal forms for a basis of the real-analytic sections of the CR bundle T7%!(M) on
the (abstract) real-analytic manifold M.

We may choose coordinates (z,w), with 2 = (z1,...,2,), vanishing at pg such
that the defining equation of M at py can be written

(1.2) Im w = ¢(z, Z, Re w),

where ¢(z,Z,s) is a real-valued, real-analytic function near 0 with ¢(0,0,0) = 0
and d¢(0,0,0) = 0. We can take (z,s) € C* X R to be local coordinates on M near
po via the mapping (z,s) — (2,5 + i¢(z, Z, s)). In these coordinates, the following
vector fields constitute a basis for the CR vector fields near pq

0 iz, (2,2,8) 0O

(13) = 5% T T+ ige(5,9) 05°

j=1,...,n,

where e.g. ¢, = 0¢/0s.

2. LEVI NONDEGENERATE HYPERSURFACES

The hypersurface M, given by (1.2) near pp = 0 above, is called Levi nondegen-
erate at pg if the n x n matrix

(2.1) (aza;;;k (o, 0,.0)) )

1<j,k<n

called the (extrinsic) Levi form of M at py = 0, is nondegenerate. This can also be

expressed intrinsically on the manifold M as follows. We define the (intrinsic) Levi
form L,: T (M) — CT,(M)/CT$ (M) at p € M by

(2.2 Lo(Le) = ooy (1L, Thy)
where 7, is the projection CT,(M) — CI,(M)/CI;§(M) and L is a CR vector
field that equals L, at p. Then, M is Levi nondegenerate at pg if and only if the
corresponding bilinear form is nondegenerate. We shall reformulate and generalize
this notion in the next section.

Let us describe the classical Chern—-Moser normal form for a Levi nondegenerate
hypersurface. First of all, one can choose the coordinates (z, w) so that the equation
for M at po =0 is

(2.3) Im w = (2, 2) + F(z, z,Re w),
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NONDEGENERACY CONDITIONS AND NORMAL FORMS 3
where (z, z) is the Hermitean form
q n
(2.4) (Z2) =) Iz = Y Izl
Jj=1 Jj=q+1

If we require n/2 < ¢ < n, then the number ¢ is an invariant of M corresponding
to the number of eigenvalues of a fixed sign the Levi form of M has at py. The
function F'(z,Z,s) in (2.3) is a real-valued, real-analytic function which is O(3) in
the weighted coordinate system in which z carries the weight one and s the weight
two, i.e. the Taylor series of F(z,Zz,s) contains only terms of weighted degree at
least 3. Let us denote by JF the space of such real-valued, real-analytic functions.
We decompose elements of F according to (z, Z)-type, i.e.

(2.5) F(2,2,8) = Y  Ful(z,%,5)
k,l

where Fy;(z, Z, s) has type (k,l). The latter means that, for every A, u € C,
(2.6) Fu(A\z, pz,8) = Afpt Fry(2, 2, 5).

The reality of F'(z, Z, s) is reflected by the fact that

(2.7) Fu(z,%,s) = Fi(2,%, 9),

for all k,l. We define the contraction tr: Fg; — Fx—_1,1-1, where Fi; has the obvious
meaning, as follows. We write Fy(z, z, s) as

(2.8) Fii(z,z,8) = Zaa““a"'ﬁl"‘ﬂ’ Zay -+ ZapZpPy - - - 2Bp

where such a decomposition is made unique by requiring that the coeflicients are
invariant under permutations of the a’s and of the 3’s, and define

(2.9) trFy = Zbal"'ak_l’ﬁl'“ﬂ'_lzal v Zag_12B1 2B

where

q n .
(2_10) per--ek—1,01.Bri-1 — Zaal---ak—lj,ﬁl-uﬂl—lj _ Z @@ k—15B1...Bi_1]
Jj=1 Jj=gq+1

The space of normal forms A’ C F is defined by

(211) N = N € F: N = Z Nkla tI‘N22 = 0, tI‘2N32 = 0, tr3N33 =0
min(k,l)>2

where tr? = tr o tr, etc. Any biholomorphic transformation (2, w’) = H(z,w),

(2.12) Z = f(zyw), w =j(z,w),
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4 PETER EBENFELT

preserving the origin and the form (2.3) of M, i.e. the image M' = H(M) is also
of the form (2.3) for a possibly different F' € F, can be uniquely factored as

(2.13) H=ToR,

where R is an element of a certain group R of rational transformation (see [CM])
that corresponds to the action of the isotropy subgroup of SU(¢g+1,n — g+ 1) on
CP™ and where T is a transformation of the form

(2.14) =2+ f(zw), v =w+g(zw) .

such that f(z,w) is O(2) (here, z has weight one and w has weight two), g(z, w) is
0O(3), and the following vanish

of 0%g
We denote the space of such biholomorphic transformations T" by Gj.

Theorem 2.16 (Chern—Moser [CM]). Let M be a real-analytic hypersurface of
the form (2.3). Then, given any R € R, there is a unique biholomorphic transfor-
mation H = T o R, with T € Gy, that transforms (M,0) to normal form, i.e. such
that the image M' = H(M) is of the form

(2.17) Im w = (z,2) + N(z,%,Re w)

with N € N.

As a corollary, one obtains a bound on the dimension of the stability group of M
at a Levi-nondegenerate point pg, i.e. the group of biholomorphic transformations

preserving the germ (M, po). We denote the stability group by Aut(M, po) and the
bound we get is the following

(2.18) dimgAut(M,pg) < dimgR = (n +1)% + 1.

Furthermore, one obtains the following description of the biholomorphic equivalence
class of (M, po): a germ (M’,pgy) is biholomorphically equivalent to (M, po) if and
only if for two, possibly different, choices of normalization R,R' € R the two
germs (M, po) and (M',pg) can be brought to the same normal form via the unique
transformations H = T o R and H' = T' o R', where T,T' € Gy are provided by
Theorem 2.16, respectively.

3. HOLOMORPHIC NONDEGENERACY AND FINITE NONDEGENERACY

Let us consider real-analytic hypersurfaces M that are Levi degenerate at a
distinguished point po € M. We observe that if our aim is to obtain a theorem about
normal forms similar in spirit to Theorem 2.16 above, then we must restrict our
investigations to some proper subclass of hypersurfaces. The reason is the following:
an important feature of Theorem 2.16 is the fact that the transformation to normal
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NONDEGENERACY CONDITIONS AND NORMAL FORMS 5

form is unique modulo the finite dimensional group R, and any transformation to
a normal form of a hypersurface M at a point pp € M can only be unique up to
composition with elements of the stability group Aut(M, po). Thus, if Aut(M, py) is
infinite dimensional, then another approach to normal forms must be taken. With
this in mind, we proceed with the following definition (which will be given in an
intrinsic form in Definition 3.16).

Definition 3.1. Let M be a real hypersurface in CV defined near the point po € M
by p(Z,Z) =0, and let Ly,..., L, be a local basis for the CR vector fields on M
near pg. We say that M is finit.:ly nondegenerate at pg if

dp

(3.2) span {27 ( 52) (o, 1] < b = €,

for some integer k.

Here, we use the notation LY = Ly, ... Ly, and |J| = k for any integer valued
k-vector J € {1,2,...,n}*, and also

dp ([ Op op
(3.3) E)Z_(BZl""’(’)ZN)'

This definition is independent of the defining function p(Z, Z), the basis for the
CR vector fields Lq,...,L,, and the coordinates Z (see [BHR]). Moreover, the
smallest integer k = ko for which (3.2) holds is an invariant and we say, more
precisely, that M is kg-nondegenerate at pg. It is an easy exercise to show that M
is Levi nondegenerate at pg if and only if it is 1-nondegenerate at pg. The notion
of finite nondegeneracy is connected with the following; by a holomorphic vector
field, we mean a vector field of the form ) a;(Z)0/0Z;, where the coefficients are
holomorphic functions.

Definition 3.4. A real hypersurface M is said to be holomorphically nondegenerate
at po if there is no germ at po of a holomorphic vector field that is tangent to M
near po.

The relationship between these two notions and some of the basic properties
regarding them can be summarized in the following proposition. The proof can be
found in [BER1] (see also [BR] and [BHR]).

Proposition 3.5. Let M C CN be a connected real-analytic hypersurface. The
following are equivalent.

(i) There exists py € M such that M is holomorphically nondegenerate at p;.

(i) M s holomorphically nondegenerate at every point p € M.

(iii) There exists py € M such that M is finitely nondegenerate at p.

(iv) There ezists a proper real-analytic subset V' of M and an integer £ = £(M),
with 1 <€ < N — 1, such that M is £-nondegenerate at everyp € M\ V.

We say that a connected real-analytic hypersurface is holomorphically nonde-
generate if it is so at one point (and hence at all points). If M is holomorphically
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6 PETER EBENFELT

nondegenerate, then the number £(M) provided by Proposition 3.5 (iv) is called
the Levi number of M.

Stanton [S1-2] proved that the space of infinitesimal CR automorphisms of a
holomorphically degenerate hypersurface is infinite dimensional. From this, it eas-
ily follows that if M is holomorphically degenerate, then Aut(M,po) is infinite
dimensional for any po € M. In contrast, the following theorem was proved in
[BER3].

Theorem 3.6 ([BER3]). Let M be a real-analytic hypersurface in CN that is
ko-nondegenerate at po € M. Then the stability group Aut(M,po) is a finite di-

mensional Lie group whose dimension is bounded by a number that only depends
on kg and N.

Thus, in view of the preceding discussion, it seems reasonable to try to obtain
a normal form, in the spirit if Theorem 2.16, for the class of (M, py) where, for
some fixed integer ko, M is ko-nondegenerate at po. In the next section, we begin
this program by obtaining a formal, i.e. not necessarily convergent, normal form
for real-analytic hypersurfaces M in C3 at points where M is 2-nondegenerate and
has one non-zero eigenvalue of the Levi form; such points are generic on holomor-
phically nondegenerate real-analytic hypersurfaces in C® that are everywhere Levi
degenerate (see e.g. [E] for examples of such). Since the normal form that we
obtain is only formal, the following theorem is needed to obtain information about
the biholomorphic equivalence class of hypersurfaces M in C? for which our normal
form is valid.

Theorem 3.7 ([BERS3]). Let M and M’ be real analytic hypersurfaces in CV that
are finitely nondegenerate at po € M and py € M', respectively. If H(Z) is a formal
equivalence, i.e. a formal invertible transformation, between (M, po) and (M’',py),
then H(Z) 1is convergent, i.e. there is a biholomorphic equivalence between (M, po)
and (M', p}) whose power series coincides with H(Z).

We shall conclude this section by giving an intrinsic description of finite nonde-
generacy (Definition 3.16), similar to the one given for Levi nondegeneracy in §2.
We shall also introduce a sequence of invariants (Definition 3.25) that is connected
with the “data” of k-nondegeneracy of a CR manifold of hypersurface type.

Let 6 denote a real 1-form on M near py such that the annihilator of 6, in

CT, (M) equals CTS(M) = TOHM) & Ty (M), ie.
(3.8) 6, = CTg (M),

at every point p € M in a neighborhood of pyo. The span of 6, in CT; (M), de-
noted by TI?, coincides with the characteristic set of the CR vector fields at p;
hence, 6 is sometimes called a characteristic form. We denote the annihilator of
T)'(M) by T,. Let us denote by wi,...,w, a system of 1-forms on M near po

such that wy p,... ,wn p forms a dual basis to Lip,...,Lynp at every p € M near
po. We denote the span of wyp,...,wsp by T, and we observe that the covec-
tors Wi p, ... ,Wn,p, 0p form a basis for Tz,z' We define the linear operator 7;, for
j=1,...,n, mapping sections of T to sections of 7" as follows

1
(39) 7;‘0) = Z Lj_ldu),
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NONDEGENERACY CONDITIONS AND NORMAL FORMS 7

where the symbol _ stands for the usual contraction operator. We leave to the
reader the easy verification that 7; maps sections of T” to sections of T”. As above,
for J € {1,2,...,n}*, we shall use the notation

(3.10) T =Tho...0T;,

and we shall denote by |J| the dimension k of J. We use the convention that 7/,
when |J| = 0, is the identity. Let us remark here that the operators 7; and Tx
commute if the vector fields L; and Ly do. This is straightforward to verify by
applying the Jacobi identity for commutators of vector fields combined with the
following useful identity for vector fields X, Y and a 1-form w

(X ANY,dw) =X ((Y,w)) - Y ((X,w)) — ([X,Y],w).

Note that if p(Z, Z) = 0 is the defining equation of M near po, then we may choose
as our characteristic form 6 = i(0 — 9)p which, since p = —9p on M, can also be
written 6 = 2i0p.

Proposition 3.11. With notation as above, choose 8 = i(8 — 0)p. Then M is
ko-nondegenerate at po if and only if

(3.12) span {(T760)p,: |J| < ko} =

Proof. Note that in the coordinates Z of the ambient space, we have

N
(3.13) =i(0-D)p=iY. ( 00 47; - ;Z” iz, )

Using the fact that the vector field L is a (0, 1)-vector field, i.e. is of the form

N
= 0
(3.13) Li = ]-§=1: a(2,2)5 A

it is easy to calculate

(3.14) Tet = .XN:Lk (%};) dz
j=1
Repeating this argument, we obtain
(3.15) T76 = iL" (—ai) dZ
' ot 0Z;

Since we have (776),, € T, and since the dimension of T, equals n+1= N, the
conclusion of the proposition follows from Definition (3.1). O
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8 PETER EBENFELT

Remark. Since M is Levi nondegenerate at po if and only if it is 1-nondegenerate,
we obtain the following reformulation of Levi nondegeneracy (whose validity is also

easy to verify directly): M is Levi nondegenerate at po if and only if the covectors
HPO’ (7'19)130’ ceey (ﬁle)po Span TIQO

Let us formulate an intrinsic definition of finite nondegeneracy for abstract CR
structures of hypersurface type.

Definition 3.16. Let M be a smooth manifold and V a CR bundle of hypersurface
type on M. Let 6 be a real 1-form on M near py € M such that 9; =V, ® Vp,
let Ly,..., Ly be a basis for the CR vector fields on M near pg, and let 7; be the
corresponding linear operators (cf. (3.9)) on sections of T, where T, = V;-. Then
the CR bundle is said to be finitely nondegenerate at pg if

(3.16) span {(T70)p,: [J| < k} =T

0

for some integer k. If ko is the smallest integer for which (3.16) holds then the CR
bundle is said to be kg-nondegenerate at pg.

Let us verify that this definition is independent of the choice of # and the choice
of basis Ly,...,L,. We do this by proving the following two propositions that also
reveal a sequence of invariants that is associated with ko-nondegeneracy.

Proposition 3.17. With notation as above, let Ly, ..., L, be another basis for
the CR vector fields near py € M. Then, for any J € {1,...,n}* and any section
w of T', there exist J' € {1,...,n}*r, ..., J” € {1,...,n}*, with k; < k for
j=1,...,v, and smooth functions ay,...,a, near py such that

(3.18) T'w=> a;T"w,
j=1

where;%g is the linear operator on sections of T' that corresponds the CR vector
field Ly, (see (3.9)).

Proof. Since there are smooth functions by, ... ,b, such that
5 n
(3.19) Ly =) kL,
j=1

and the contraction operator is linear, (3.18) certainly holds for all J with |J| = 1.
We proceed by induction on |J|. Assume (3.18) has been proved for |J| < u. Then,
for any J with |J| < p and any k € {1,...,n}, we have

ToT w =T, ZajTwa
J

(3.20) = Zimd (a;T%w)

j
= Z (f/kJ (daj A TJjw) +a; (Z b{“ﬂTJjw)> .
J [
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Now, the identity (3.18), for |J| < u+ 1, follows from the identity

L (daj A TJjw) = (f/k_:daj) Thiw— da; (.Z/k.JTJjLU)
(3.21) _ ( s daj) T,

where the last equality follows from the fact that 77w is a section of 7" and L, is
a CR vector field. This concludes the proof of the proposition. [

Proposition 3.22. With notacion as above, let a be any smooth function and
w any section of T' near po € M. Then, for any J € {1,...,n}*, there exist
Jte{l,...,n}0 ... Jv e {l,... ,n}*, withk; <k forj=1,...,v, and smooth
functions ag, a1, ... ,a, near py such that

(3.23) T/ (aw) = aw + Z a; T w.

=1

Proof. We observe that

Tj(aw) = Ljad(aw)
= L;i(da A w + adw)
= (Ljuda)w — (Ljow)da + aTjw
= (Ljada)w + aTjw,

(3.24)

since Ljow = 0 as above. Thus, (3.23) holds for |J| < 1. Proposition 3.22 now
follows from a simple inductive argument. We leave the details to the reader. O

Propositions 3.17 and 3.22 imply in particular that Definition 3.16 is independent
of the choice of basis Li,...,L, and the choice of characteristic form 6. Indeed,
they imply that the span on the left hand side of (3.16), for every integer k > 0, is
independent of the choice of basis and the choice of characteristic form. Thus, the
following sequences are invariants of the kg-nondegenerate CR structure.

Definition 3.25. Suppose M is kg-nondegenerate at pg. With notation as above,
define p1, 1 < py < kg, to be the smallest integer such that

(3.26) E; = span {(T70),,: |J| < 1}

contains Fy = Tz?o as a proper subspace. Define Ay, with 1 < A; < n, by

(3.27) A1 =dimFE; — dimFEy = dimFE; — 1.

Then, define pj;, Aj, and E; inductively as follows. Assume p;, A;, and E; have
been defined for 1 <1 < j — 1, and let p; be the smallest integer p;_1 < p; < ko
such that

(3.28) Ej = span {(T70)p,: |J] < u3}

VII-9



10 PETER EBENFELT

contains E;_; as a proper subspace. Define A;, with 1 < A\; < n, by
)‘j = dlmEJ — dlmEj_l
We stop when E; =T, and denote this value of j by jo.

Thus, for any CR manifold M of hypersurface type that is ko-nondegenerate at
Po € M, we have defined two invariant sequences (14;)1<j<jo,

(328) 1SM1<M2<...<ﬂj0:k0,

and (Aj)1<j<jo>

(3.29) > Aj=n.

Observe, e.g., that if 4; = 1, then A; denotes the rank of the Levi form. Also, when
M is ko-nondegenerate at pop € M, then it is also of finite (commutator) type in
the sense of Kohn and Bloom-Graham. Indeed, if m denotes the type of M at py,
then m — 1 < 4, as is easy to verify.

In the next section, we shall consider 2-nondegenerate hypersurfaces in C3. In
this case, there are only two possible sequences, namely (i) jo = 2, (i;) = (1,2),
(A;) = (1,1), and (ii) jo =1, (k;) = 2, (A\;) = 2. However, we shall see that there
are still other invariants attached to the lowest order terms in a normal form for
such a hypersurface.

4. REAL HYPERSURFACES IN C3

Let us begin with some motivation. Suppose M is a (connected) real-analytic
hypersurface in C**! and py is a distinguished point on M. In view of Proposition
3.5, such a hypersurface is either holomorphically degenerate (at all points) or it is
/-nondegenerate, for some 1 < £ < n, outside a proper real-analytic variety V C M.
There are plenty of examples, when n > 2, of real-analytic hypersurfaces that are
holomorphically nondegenerate and for which £ > 2 (see e.g. [E]).

Now, if M is holomorphically degenerate then, since Aut(M,po) in this case is
infinite dimensional (cf. §3), there is no hope of obtaining any “finite dimensional”
uniqueness in a transformation to normal form. On the other hand, at a generic
point p near pg such a hypersurface can be locally transformed to M x C¥, where
1 < v < nand M is a real hypersurface in C**1=¥, in view of the Frobenius
theorem. Thus, the study of the biholomorphic equivalence class of M at such a
point p can essentially be reduced to that of M in CH1-v,

If M instead is 1-nondegenerate (which is the same as Levi nondegenerate) at a
point p € M, then its biholomorphic equivalence class can be described using the
Chern—Moser normal form.

Thus, in C? real-analytic hypersurfaces are completely understood (in the sense
that a normal form is known) at generic points, whereas in C**!, with n > 2, there
are real-analytic hypersurfaces for which a normal form is not known at any point.
With this as our motivation, we shall consider real-analytic hypersurfaces M in C3
at 2-nondegenerate points py € M.

We have the following theorem from [E] describing a partial normal form for M,
analogous to (2.3) in the Levi nondegenerate case.
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NONDEGENERACY CONDITIONS AND NORMAL FORMS 11

Theorem 4.1 ([E]). Let M be a real-analytic hypersurface in C3 and assume that
M is 2-nondegenerate at po € M. Then (M, pg) is biholomorphically equivalent to
(M',0), where M' is a real-analytic hypersurface of one the following model forms.

(i) If the Levi form of M at py has precisely one non-zero eigenvalue, then M’
1s one of the following:

(Ail)  Imw=|z1]® + |22 (22 + 22) + V(222 + Ziz3) + O(|2|* + IRe wl|z]?),

where v =0,1;
(A.1.2) Im w = |21|% + (2322 + 2223) + O(|2|* + |Re w||z|?);
(A.i.3) Im w = |21|> + |22)%(21 + Z1) + O(|2|* + |Re w||z|?).

(ii) If the Levi form of M at pg is 0, i.e. both eigenvalues of the Levi form are
zero, then M' is one of the following:

(A.ii.1) Im w = |21]3(22 + 22) + (2322 + Z225) + O(|2|* + |Re w]|2|?),
where r > 0;

(A.ii.2) Im w = |21|?(22+ Z2) + (2322 + 22 25) +i|21|% (21 — 21) + O(|2|* 4+ |Re w||2|?);

(Aii.3) Im w = |z1|2(zz+22)+(212§—|—‘z'1z§)+|22|2(/\z2+/_\22)+0(|z|4+|Re w||z|2),
where A € C, A # 0;

Im w =|21|%(21 + Z1) + |22]% (22 + Z2) + (222y + 12220)+

Aii4g
( ) (vz172 + 0Z123) + O(|2|* + |Re w]|2|?),

where p,v € C, pv # 1.

Im w =|21|2(7721 +7z1) + (2%52 + 2%22)4- .

Aib
(A.1.5) (5152 + 2122) + O(2|* + [Re wl|2),

where n € C.

Moreover, all of these models can be taken in regular form (see below) and are
mutually non-equivalent, provided that we in (A.ii.4) arrange so that |u| > |v| and
arg u > arg v, where arg u,argv € [0,2x), if |u| = |v|.

In [E] a complete, formal, normal form is obtained for real hypersurfaces M that
are of one of the forms (A.1.1-3). It is also proved that if M is everywhere Levi
degenerate and 2-nondegenerate at pg, then M is equivalent to a hypersurface M’
of the form (A.i.2). For that reason and for the sake of brevity, we choose to present
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only the normal form for a hypersurface M of the form (A.i.2) here, and refer the
reader to [E] for the other cases.

We subject a germ (M, 0), of the type (A.i.2), to a formal invertible transforma-
tion

(4.2) z=f(Z,w') , w=g,w),
where f = (f1, f2), such that the form (A.i.2) is preserved. We assign the weight

one to the variables z = (21, 22), the weight two to w, and say that a polynomial
Pv(2,w) is weighted homogeneous of degree v if, for all ¢t > 0,

(4.3) ‘ pu(tz, t*w) = tVp, (2, w).

We shall write O(v) for terms of weighted degree greater than or equal to v. Simi-
larly, we speak of weighted homogeneity of degree v and O(v) for polynomials and
power series in (z, Z, Re w), where Z is assigned the weight one and Re w the weight
two. The following is proved in [E].

Proposition 4.4. A transformation (4.2) preserving regular form (see below) also
preserves the form (A.i.2) if and only if the mapping is of the form

iz, w) = CY2et 2 + Dw — €2#(2iD + CY/2 Ae) 22 + O(3)
(4.5) Az, w) = Azy + %25 + O(2)
§(z,w) = Cw + 2iDCY %€ 21w + O(4),
where C >0,te€R, A,D € C.

We shall consider formal mappings (4.2) of the following form
(4.6) (f(z,w),§(z,w)) = (T o P)(z,w).
Here, P(z,w) = (P1(z,w), Pa(z,w), P3(z,w)) is a polynomial mapping with
Py(z,w) = CY2%ez) + Dw — e?(2iD + CY?2 Ae®)2? + q1 (2, w)
(4.7) Py(z,w) = Az + €25 + qo(2, w)
Ps(z,w) = Cw + 2iDCY/ e 2,0,

where A,C, D,t are as in Proposition 4.4, q;, g2 are weighted homogeneous poly-
nomials such that ¢; is O(3) and g3 is O(2), and T'(z,w) is a formal mapping

(4.8) T(z,w) = (z+ f(z,w),w + g(z,w)),

where f = (f1, f2), and g are formal power series in (z,w) such that f!is O(3), f2
is O(2), and g is O(4). Moreover, we require that the polynomials q1, g2 in (4.7)
are of the form

q1(2,w) =B1z1w + Bazow + Z ngﬂ + Z Dy z%w+
[Bl=3 fa|=2
(4.9) Eizyw® + Byzmpw® + Y | FpzPw + Rayw®
|B]=3
q2(z,w) =G1z1w + Gozow + Hizyw? + Hazgw?,
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for By, Cy, Dg, Ex, Fg, Gk, Hr, € C and R € R, and that the formal series f!, f2
are such that the constant terms in the following formal series vanish (the indices
J, k below range over {1,2}, a range over multi-indices with |a| = 2, and 8 range
over multi-indices with |3| = 3)

82fj 63f1 33f1 anj
Oz 0w’ 0zP ' 0220w’ 0z0w?
34f1 a4f1

0z80u’ Re 0z10w3’

(4.10)

Any transformation preserving the form (A.i.2) can be factored uniquely according
to (4.6) into such a P and such a T'. We say that a choice of P, as described above,
is a choice of normalization for the transformations preserving (A.i.2).

We write the equation of M near 0 as follows

(4.11) Im w = |21|*> + 2323 + 2322 + F(2, 2, Re w).

Here, F(z,z,Re w) is a real-valued, real-analytic function that is O(4). In what
follows, we shall consider F(z, Z, s) as a formal power series

(4.12) F(z,z,s) = Z cﬁﬁza'z‘ﬂsk
a’ﬁ’k

consisting only of terms of weighted degree greater than 3 (here, s is assigned the
weight two) and subjected to the reality condition

(4.13) cgﬁ = cga.

We shall denote by F the space of all such power series. In order to describe the
normal form we shall need to decompose such a power series F'(z, z, s) according to

(Z, 2)'type

(4.14) F(2,2,8) =Y _ Ful(z%,s),
. k,l

as in §2. In what follows, Fy;, Hx;, and Ni; denote formal power series of type
(k,1). We define the space of normal forms N2 C F for the type (A.i.2) as follows:
First, N(z, z, s) is in regular form which can be expressed (see e.g. [E] for another
description and further discussion) by

(4.15) N(z,z,s)= Y  Nu(zZs).
min(k,l)>1

Moreover, the non-zero terms N; satisfy the following conditions.

N33 € Ng?:; s Nyj € N423

Ns3s €NZ . NueNY

Ns4 €N524 , Nss € ./\/525

Nt €N, NeeNA, k=1,2,3...,

(4.16)
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where
N = {Fi1: Fi1 = 22Ho, +m}
N3y = {Fa1: Fo1 = Z3Hao + Z120Hyo}
N3, = {Fs1: F31 = 20Ha1 + 23 23 Hoo }
N3y = {Fag: Fap = 237, Hy1}
N323 = {F333 F33 = 25Hp3 +m}
N3 = {Fus: Fa3 = ZHap + Z325Hyo}
(4.17)

N2y = {Fs3: Fs3 = ZpHsy + Z325Hio }

Niy = {F441 Fus = 23Has + 22Has + zfzngzzﬂoo}
N2, = {Fs4: Fsy = 29Hus + 2372 Hoo }

NEs = {F553 Fss5 = 29Hys +%}

N2 = {Fr1: Fr1 = ZHpo}, k=4,5,...

N2 = {Fre: Foa = 22Hp1}, k=3,4,....

We are now in a position to state the theorem on normal forms for (A.i.2), which
is a special case of Theorem B in [E].

Theorem 4.18 ([E]). Let M be a real-analytic hypersurface in C* given near
0 € M in the form (A.i.2) as defined in Theorem 4.1. Then, given any choice
of normalization (i.e. a choice of P as described above), there is a unique formal

transformation (4.2) with this normalization that transforms the defining equation
(4.11) of (M,0) to

(4.19) Im w' = |2}|? + 2225 + 2220 + N(2/, 7', Re w'),

where N(z,z,s) € N2.

Theorem 4.18 implies a bound on the dimension of the stability group of a
real hypersurface M at a point pg € M where M is of the form (A.i.2), namely
dimAut(M, pg) < 45. Theorem B of [E] implies that the stability group at a point
where M is of form (A.i.1) with v = 0 satisfies dimAut(M, pg) < 17, whereas if M
is of the form (A.i.1) with v = 1 or of the form (A...3), then dimAut(M, po) < 19.
This improves the bound that can be deduced from the results in [BER3], which is
dimAut(M, pg) < 102. On the other hand, the latter bound is valid for all points
where M € C3 is 2-nondegenerate, i.e. also for points where M is of any of the
forms (A.ii.1-5).

Combining Theorem 4.18 with Theorem 3.7 ([BER3]) and Theorem 4.1, we ob-
tain the following the biholomorphic equivalence classes: Let M and M' be real-
analytic hypersurfaces in C® that are of the form (A.i.2) at po € M and p) € M’,
respectively. Then (M, po) and (M',pp) are biholomorphically equivalent if and only
if, for two (possibly different) choices of normalization as described in Theorem 4.18,
(M,po) and (M',pg) can be brought to the same normal form.
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