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Distribution of resonances for convex co-compact hyperbolic
surfaces

Maciej Zworski

Department of Mathematics, University of Toronto
and

Centre de Mathematiques, Ecole Polytechnique

1 Introduction.

The purpose of this expose is to indicate how the methods of Sjostrand for proving geometric
bounds for the density of resonances [17] apply to the case of convex co-compact hyperbolic
surfaces. We present the result of [27] which shows that the exponent in the Weyl estimate for
the number of resonances in subconic neighbourhoods of the continuous spectrum is related to
the dimension of the limit set of the corresponding Kleinian group. We also review some other
results on the distribution of resonances for hyperbolic surfaces.

Figure 1: Tesselation by the Schottky group generated by inversions in three symmetrically
places circles each cutting the unit circle in an 110° angle, with the fundamental domain of its
subgroup of direct isometries and the associated Riemann surface. The dimension of the limit
set is 6 = 0.70055063....

Some of the reasons for studying the relation of the density of resonances for hyperbolic
surfaces to the dimension of the limit set are

• In the case of hyperbolic surfaces we know optimal global lower bounds on the density of
resonances (see Theorem 3 below and [6]) so showing that the density is lower near the
continuous spectrum is particularly meaningful.
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• Hyperbolic surfaces constitute a natural and well understood class of systems with hyper-
bolic dynamics and for which some computations can be made - see Fig.l1. It is harder
to construct potentials with hyperbolic flow for the corresponding Hamiltonian (see Sect 2
and [17]).

• For constant curvature surfaces the resonances coincide with the nontrivial poles of the
meromorphic continuation of the corresponding dynamical Zeta function (see [14] and
Sect.3), that is with the dynamical resonances (see [15]). The question of relating the
density of zeros of the dynamical zeta function to the entropy can then be asked in greater
generality2.

• The structure of infinity is of course dramatically different in the hyperbolic case than
in the euclidean case and that creates a new challenge in the study of resonances. The
resolution of this in the two dimensional case is based on very special techniques while the
results should be true for all negatively curved conformally compact analytic manifolds
[10]. In particular the curvature should not need to be constant.

2 Semi-classical scattering in Euclidean space.
We will recall briefly the relevant result ofSjostrand [17]. Let P = -h2^+V(x) be a Schrodinger
operator on R71 with an analytic potential satisfying the (very) general assumptions of Helffer
and Sjostrand [7]. The resonances of P are defined as the poles of the meromorphic continuation
of (P - z)~1 on suitably defined spaces adapted to V - see [7]. We remark that a larger class of
operators could also be considered.

If we are interested in resonances close to a fixed energy level EQ e (0, oo) then the dynamics
of the Hamilton flow of the symbol of P - EQ, p(x^) = ^ + V{x) - EQ, near the energy
surface p'^O) plays a crucial role. The Hamilton flow is the flow of the Hamilton vector field
Hp = 9^p9x - 9^p9^ and we assume that on the energy surfaces close to p'^o) that flow is
hyperbolic which is stronger than the assumption made in [17] (see Sect.3 for the definition of a
hyperbolic Hamiltonian flow in the geometric situation).
Example 1. If we take n = 2, V = j^ - 2x^ and EQ = 2 then the assumptions listed above
are satisfied3.

With p(x, ̂ )=^+ V(x) - EQ and a fixed small eo > 0 we define, as in [I],

F+ = [p e p'^t-co^o]) : exptHp(p) -^ oo as t -> -00} ,
r- = [P ^P'^t-^o^o]) : exptHp(p) -/> oo as t -^ 00} ,

and then the trapped set:

^ = r - n r + (sTir. (2.1)
^he example of the Schottky group used there and the dimension of the correspoding limit set were kindly

provided by Curt McMullen. I would also like to thank Laurent Guillope for his help with this and the other
pictures.

^It is well possible that in place of our microlocal argument there exists a direct proof using the Zeta function.
The hyperbolicity of the flow follows from a computer assisted argument, see [17].
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In some heuristic sense K plays, in scattering, the role of the full cotangent bundle of a
compact domain. Hence the dimension of K is important and the natural definition of dimension
turns out to be the Minkowski dimension: for L a compact set in R^ we put

dim£ = k - sup [^ : lime-/i(vol [x € R^ : d(x,L) < e}) < 00} . (2.2)

The set is called to be of pure dimension if the sup in the definition (2.2) is achieved. We can
now quote the following consequence of Theorem 5.7 of [17]:

Theorem 1. Let P be a Schrodinger operator with an analytic potential satisfying the assump-
tions listed above. Let m be equal to dim K when K is of pure dimension and otherwise let
m > dimK. Then there exists a constant Co > 0 such that for 0 < h < I/Co, Coh < S ^ I/Co,
the number of resonances of P in

(EQ - ̂ o, EQ + ^o) - i[0,8) (2.3)\ z z /

zs

0 ('-? (!)") • <2-4)
When 6 == C^h the theorem is shown to be optimal by the results of Gerard and Sjostrand [1]:

in rectangles (2.3) with the above 6 they described the precise location of resonances generated
by single hyperbolic trajectory. In that case m = 2, We restrict ourselves to recalling
Example 2. Let V(x) = x\ - F^^l and ^o > 0. Then the number of resonances in (2.3)
with 6 = C7i, C sufficiently large is given by (o^eo, C) + o(l))h~1.

We also recall that Sjostrand [19] recently obtained optimal lower bounds, h^/C, in (2.3)
with 6 = 1/C and V, EQ satisfying some natural assumptions (for instance for V satisfying some
general assumptions and V(x) -> 0 as x -)' oo, EQ > 0, it is required that EQ € sing suppa \{x :
V(x) > •}|). It would be interesting to see the connection between the assumptions of Theorem
1 above and those of [19]. As in the hyperbolic case, the optimal lower bounds in larger regions
make the finer upper bounds in smaller regions much more interesting.

3 Review of scattering on convex co-compact hyperbolic sur-
faces.

The convex co-compact surfaces can be defined as the infinite volume finite geometry quotients,
X == r\H2, for which the group'F has only hyperbolic elements. The limit set of F, A(F) C 9M2,
is classically defined as the set of accumulation points of orbits of hyperbolic elements. As
we will recall below it is naturally related to the dynamically defined trapped set, K of X,
K C T*X \ 0, [12, 23]. The convex co-compact condition can also be formulated as saying that
the projection of the convex hull of the limit set from H2 to r\H2 is compact. Resonances of
X are equivalently given as either the poles of the meromorphic continuation of the resolvent,
Rx(s) = (A^ - 5(1 - 5))~1, the scattering matrix of X, or of the Eisenstein series - see [13], [6].
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The surface X can then be decomposed as follows

X = N U Y ^ U - - U Y ^ (3.1)

where ON = 9Y^ U • • • U QY^ and

Yf ^ [0, oo), x WWy , (7^ dr2 4- cosh^A/2 . (3.2)

We note that each boundary component of N is a geodesic on X. The compact set N is called
the Fenchel-Nielsen region and it is the projection of the convex hull of A(F) from H2 to X (and
hence the name convex co-compact).

To recall the basic properties of the geodesic flow on X we will also denote by g € C°°(T*X; R),
the quadratic form dual to the metric. In particular, g is the symbol of the Laplace-Beltrami
operator of (X,g), A^. The geodesic flow lifted to the cotangent bundle is given by

exptHg : r*X—^T*X,

where, as usual, Hg is the Hamilton vector field of g: uj{;Hg) = dg with Li;, the canonical
symplectic form on T*X. The flow is hyperbolic (Anosov) in the following strong sense:

BCVme 5*X 3E^ E^ C T^*X), dim, E^ = din< = 1 , ̂  + ̂  +< = T^(5*X),
d(exp^U£^) = E^^ , ^(m) € E°,,

||d(exp^U^)|| < Gexp(±G^)||^||, ^ e ̂  .
(3.3)

We also note that if TT : T*X -^ X is the natural projection then

7r(m) ^N =^ 7r(exptHg(m)) ^ N for either all t > 0 or for all t < 0. (3.4)

The trapped set, K, defined by

K == r+ n r-
r ± = { m C T * X \ 0 : 3T{m)\/±t>T{m) exptHg{m) e N} ^

is, in view of (3.4), contained in T*7V \ 0. Using the Patterson-Sullivan measure on A(F) (see
[12],[23]) Sullivan constructed an invariant measure on K and his construction shows that

dim K = 2 dim A(F) + 2, (3.6)

where dim denotes the Hausdorff dimension. As shown in [23] the Hausdorff dimension coincides
in this case with the Minkowski dimension used in [17] and recalled above in (2.2) Since K is
homogeneous we have

dimK = dimK + 1, K = K H 5*X , 5*X = [m : g(m) = 1} ,

and K is compact. Hence, using local coordinates, the definition (2.2) is applicable to K. In
addition, A(F) and K are of pure dimension, that is sup in the definition (2.2) is achieved or,
in other words, that ^(A(F)) < oo, 8 - dimA(F) - see [23].
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Figure 2: Schematic representation of the dynamics in T*X (a) trajectories near infinity:
bounded hyperbolic energy, large cylindrical energy, (b) escaping trajectory close to the trapped
set K: bounded hyperbolic and cylindrical energy.

The dynamical structure of X is shown schematically in Fig. 2: by hyperbolic energy we
mean the energy given by the Hamiltonian g € C°°(T*X', R) and by the cylindrical energy, the
energy given by the cylindrical metric on Y.°, p2 4- rj2.

The dimension of A(F), 8 is also equal to the entropy of X which appears in the asymptotics
of the counting function of the lengths of primitive closed geodesies on X, TTY^):

7TX(0=^(1+0(1)L ^ — — > 0 0 (3.7)

see [2, 3, 9]. The dynamical zeta function of X is defined for Res S> ^ as
00

Zx{s) = n n (1 - exp(-(5 + 7^(7))) (3.8)
{7} "=0

where {7} denotes the conjugacy class of a primitive hyperbolic 7 6 F and ^(7) is the minimal
displacement length of {7}, that is the length of the primitive closed geodesic correspoding to
{7}.

We will now review briefly some basic scattering theory of X referring to [13], [3] and [6] for
detailed presentations.

Let Ax be the Laplace-Beltrami operator of {X,g) acting on functions. As a positive,
unbounded self-adjoint operator on Z/^X.dvolp) with the domain H2(X^dvolg)^ its spectrum,
spec (Ax) is given by

s p e c ( A x ) = { ^ i , - - - , J % } U [ ^ , o o ) , 0 < ^ i <^2 ^ • • • ^ < 1.

The first summand constitutes the pure point spectrum and the second the absolutely continuous
one. Hence the resolvent of the Laplacian has the following mapping property:

Rx^)^ (Ax- 5(1 -s))~1 : L12(X,dyo\g)—^H2{X,dyo\g), R e 5 > 1 ,
^

5(1 - s) ^ spec (Ax).
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By shrinking the source space and enlarging the target space the operator, Rx continues mero-
morphically to all of C:

Rx(s} : £^p(X,dvol,) -^ ^(X.dvol,),

with poles of finite rank. Following [11] (see also [26]) we define the multiplicity of a pole of Rx
as the rank of the full polar part of Rx'.

k f 9 — 1
^s(Rx) = e(s)dim VimA^ , e{s) = \ ~ \

^ l s ̂  2

k .

Rx(s') = Y ^ ——3—— -h {{{s') , H ( s ' ) is holomorphic in s' near s ,
^ (s - s)3

By Lemma 2.3 of [6] this multiplicity is equal to the rank of the residue of RX as a function of
s(l-s):

m5GRx)=rank f Rx(s')(l-2st)dsf, s ̂  1-fs^t) = s + ee11 ,t e[0,27r). (3.9)
•̂ .c 2

The poles of Rx are called resonances and their set, with multiplicities given by rris{Rx) is
going to be denoted by T^x- For the equivalence with other definitions we refer to [6].

Patterson and Perry [14] recently showed, in the generality including all even dimensions,
that the non-trivial zeros of the dynamical zeta function, Z^, given by (3.8) and continued
meromorphically to C (that continuation was proved in [3] for more general groups and with
an order estimate in [14]) coincide with the resonances with multiplicities given by iris (Rx) ~
mi-s(Rx), Re 5 < 1/2.

4 Distribution of resonances.
Perhaps the first result on the distribution of resonances for convex co-compact surfaces is the
theorem of Patterson [12], later extended by Sullivan [23]:

Theorem 2. For a convex co-compact surface, X = r\lHI2, the maximal half plane free of poles
of RX is given by

{s : Res>8}, 5=dimA(r) ,

where A(F) is the limit set of T. In particular, if 6 > - then the lowest eigenvalue of the
Laplacian, A^, is given by 6(1 — 6).

More recently Guillope and the author [4],[6] obtained estimates on the number of resonances
in discs for a larger class of surfaces with hyperbolic ends. In fact, the case of surfaces with
hyperbolic ends is the only higher dimensional, non-degenerate, non-radial case in which optimal
lower bound on the number of resonances is known and that provided additional motivation.
This work is largely based on recent contributions to euclidean scattering theory by Melrose,
Sjostrand, Vodev and the author - see [25] and references given there. In the case discussed
here we get
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Theorem 3. If X = F\H2 15 a coTwerr co-compact surface and if KX denotes the set of reso-
nances of X included according to their multiplicities, then for some C > 0 and for all r > C

r 2 / C < ^ { s E n x : \s\<r}<Cr2.

As mentioned in the introduction the knowledge of the global lower bound motivates the
study of finer upper bounds near the continuous spectrum similar to the semi-classical ones
reviewed in Sect.2. In that direction we have [27]:

Theorem 4. If X = F\M2 is a convex co-compact surface and if KX denotes the set of res-
onances of X included according to their multiplicities, then for C sufficiently large, any a,
0 < a <, 1, and a, b > 0, we have

t t L c T Z x : j - R e 5 < a | I m 5 | Q + & , \s\ < r\ = 0 (r1-^^1-0)) , j=dimA(r) (4.1)

where A(F) is the limit set ofT.

As proposed by Sullivan, X could be viewed from the dynamical point of view as a hyperbolic
manifold of dimension 1+6. If the resonances in a strip are considered as analogous to eigenvalues
of compact surfaces then their Weyl estimate given by Theorem 1 above is C^r14^). This is
opposed to the usual estimate 0(r2) = O^^) and is a quantum reflection of the dynamical
point of view.

^-Res=a{lms)a+b ^ \

Figure 3: Density of resonances in different regions: (a) the number of resonances is in
P/C^Cr2]; (b) the number of resonances is O^-^-K1-0^).
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In view of the recent results of Patterson and Perry [14] reviewed briefly in Sect.3, Theorem
4 provides an upper bound on the number of zeros of the dynamical zeta function in a neigh-
bourhood of Re 5 = ^. It is perhaps possible that Theorem 4 could follow directly from the
asymptotics of ^(7) given (3.7) and the analysis of the meromorphic continuation of Z\ given
by (3.8). Considering the difficulties involved in proving the existence of this meromorphic con-
tinuation that seems rather unlikely. What is the relation between the density of zeros of the
dynamical zeta function and the entropy (the exponent 8 in (3.7)) could however be asked in
greater generality.

The most subtle part of the proof of Theorem 4 comes almost directly from [17] (with
some modifications from [20],[22],[18]). A new difficulty is present however because of the more
complicated structure of infinity which prevents an application of the general results of Helffer
and Sjostrand [7]. This difficulty appears quite serious for general analytic conformally compact
analytic manifolds (in the sense of Mazzeo and Melrose [10]). In the special case of dimension
two a detailed analysis of a neighbourhood of infinity based on separation of variables and a
delicate "gluing" argument allow nevertheless a solution to this problem.

Theorem 4 is known to be optimal essentially in the same case as Theorem 1 recalled above.
We have the following example ofEpstein and Guillope (see [2],[4]):
Example 3. For I > 0 let X = {z i-> e^)\HI2, that is, X is a hyperbolic cylider with one
closed hyperbolic orbit constituting its trapped set. The limit set consists of two points and
8 == 0. The resonances lie on a lattice and the number of resonances in a set of the form (4.1) is
(^(a.fc.a)^!))^.

Finally we would like to describe some other lower bounds for the number of resonances of
hyperbolic surfaces. A basic bound general was derived in [21]:

E -(d-e)(^-Res) . ( 1 Y^ l - o (1}> [ 27rsinh(d/2) ^ l °^
|Im5|<r \^ v ' / ml(^)=d

Re(s-^)<p\og{s}

r . (4.2)

This bound implies that the density of resonances in logarithmic neighbourhoods of Re s = ̂  is
at least r. An easy modification of the argument of Ikawa [8] shows also that there are infinitely
many resonances in some strip ^ > Re 5 > ^ — a. A little more is true: for large enough strips
the density of resonances cannot be less than r1"6, 6 > 0.
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